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Abstract. At universities, some fields of study offer multiple branches
to graduate in. These branches are defined by mandatory and optional
courses. Configuring a branch manually can be a difficult task, especially
if some courses have already been attended. Hence, a tool providing guid-
ance on choosing courses is desired. Feature models enable modelling such
behaviour, as they are designed to define valid configurations from a set
of features. Unfortunately, the branches contain constraints instructing
to choose at least k out of n courses in essence. Encoding some of these
constraints näıvely in propositional calculus is practically infeasible. We
develop a new encoding by combining existing approaches. Furthermore,
we report on our experience of encoding the constraints of the computer
science master at TU Braunschweig and discuss the impact for research
on configurability.

1 Introduction

Universities offer various fields of study to graduate in. In our rapidly growing
economics and academia, the need for custom variants or even hybrid areas
of study arises. Usually, this would lead to the introduction of a new field of
study. However, if the changes are only slight or partial, allowing the graduation
in different sub-branches within the same field saves bureaucratic effort and
thereby time and money. Such branches are usually bound to two constraints
in selection of courses. First, some courses are mandatory for graduating in the
desired branch. Second, courses from a given list for at least a certain amount
of credit points have to be attended. These compulsory elective courses and the
amount of required credit points often vary for each branch. For example, the TU
Braunschweig offers various branches of study in their masters degree program
for computer science.1 That allows not only studying computer science, but
also putting emphasis on individual branches like visual computing, networked
systems, or robotics.

Usually, informal specifications of the branches tend to be ambiguous and
inconsistent, as noticed at TU Braunschweig. Furthermore, students often

1 https://www.tu-braunschweig.de/informatik-msc/struktur/studienrichtungen.
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enquire whether they still have the opportunity to graduate in a certain branch
after they already completed a number of possibly unrelated courses. A configu-
ration tool for these branches to automate this process and specify the branches
precisely is desired.

Feature models are designed to describe relations between individual features
(e.g., the courses), such that only specific subsets of features can be chosen [1].
Thereby, they separate configuration logic from the configuration process itself.
In contrast to ad-hoc programming and using SMT solvers, we can profit from
reusing existing research and tooling on configuration and decision propagation
when using feature models [4,14,16–18,20]. For example, guidance for feature
selection and explanations for automatic decisions are available [11]. Hence, a
configurator comes for free if we can model the branches as a feature model.

As feature models are translated to a boolean formula for analysis, constraints
are expressed in propositional calculus [3]. Unfortunately, the compulsory elective
constraints become a bottleneck. These essentially break down to the atmostk
constraint describing that at most k out of n variables can be set to true. This
constraint grows exponentially in n when encoded näıvely in propositional cal-
culus. For example, we obtained a formula of about 1 GB text for the branch
of Automotive Informatics. Formulas this huge are intractable for common SAT
solvers and cannot even be generated in Conjunctive Normal Form (CNF) in a
reasonable time even though required by SAT solvers.

Albeit the atmostk constraint can be encoded to first-order logic naturally,
using SMT solvers requires upgrading existing tools and research on boolean
feature models. These not only provide configurators with decision propagation
already, but are also able to inform the user when and why features are (de-)
selected automatically due to model constraints. Thus, course selection would
be fully transparent in the resulting tool. Such configurators do not yet exist for
first-order logic.

Our research question is: Can we express branches of study as boolean feature
models? Therefore we split the problem into multiple steps:

– We developed a new encoding for the atmostk constraint to minimise formula
size by combining existing state-of-the-art encodings [8,12,19]. This is not
only useful for feature models but SAT queries in general.

– To describe branches of study we created a Domain Specific Language (DSL)
and a compiler, translating the DSL artefacts to a feature model including
the constraints.

– We propose a method for generating propositional formulas requiring a sum of
weighted variables to be reached. We show its usability for resolving different
amounts of credit points.

– We compare performance of different encodings by generating constraints for
the branches of study at TU Braunschweig.

In order to test and evaluate our encoding, we implemented each reviewed encod-
ing, our DSL, and our compiler in an open-source project. Our final Branch of
study Tool (BroT) and all data are publicly available online at GitHub.2

2 https://github.com/PaulAtTUBS/BroT.

https://github.com/PaulAtTUBS/BroT
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Encoding atmost1({A, B, C})

Binomial (¬B ∨ ¬C) ∧ (¬A ∨ ¬C) ∧ (¬A ∨ ¬B)

(T0 ∨ ¬A) ∧ (¬T0 ∨ ¬B0) ∧ (¬T0 ∨ ¬B1)
Binary (T1 ∨ ¬B) ∧ (¬T1 ∨ B0) ∧ (¬T1 ∨ ¬B1)

(T2 ∨ ¬C) ∧ (¬T2 ∨ ¬B0) ∧ (¬T2 ∨ B1)

(¬A ∨ R0) ∧ (¬B ∨ R1)
Sequential Counter ¬R0 ∨ R1

(¬B ∨ ¬R0) ∧ (¬C ∨ ¬R1)

A ∨ B ∨ ¬c0
(¬B ∨ c0) ∧ (¬A ∨ c0) ∧ (¬A ∨ ¬B)

Commander C ∨ ¬c1
¬C ∨ c1
¬c0 ∨ ¬c1

Fig. 1. With each encoding atmost1({A, B, C}) is generated. For readability, formulas
are split upon multiple rows and are concatenated with ∧. For the same reason, some
generated variable indices are shortened.

2 Encoding At-Most-k Constraints

In this section, we elaborate on the atmostk constraint and how it can be
expressed in propositional calculus and introduce our novel selective encoding for
it. Albeit, the atmostk constraint is essential for describing compulsory elective
constraints, choosing at most k out of n elements, where k, n ∈ IN, 0 < k < n, is
a common problem. Translated to propositional calculus, the atmostk constraint
requires not more than k variables from a given set V to be true:

∧

X⊆V,
|X|=k+1

∨

x∈X

¬x (1)

As this encoding creates
( |V |
k+1

)
clauses, it is called the binomial encoding [8].

Unfortunately, in this representation, formula size grows too fast to be suit-
able for most use cases. Thus, we further review the encodings binary [9,10],
commander [8,12], and sequential counter [19]. Each of them introduces new
variables summarizing some information about the original variables’ values.
Figure 1 exemplifies these encodings for atmost1({A,B,C}). The binary encod-
ing introduces k Bit-Strings of length �log2(n)� identifying exactly one variable
each. It does not generate a CNF per default as required by SAT solvers. Hence,
we use a variation of the binary encoding presented by Frisch and Giannaros [8],
creating a CNF directly. The sequential counter encoding uses n unary registers
of size k to count the number of true variables sequentially. An overflow is dis-
allowed because then more than k variables would to be true. The commander
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encoding recursively groups the variables and assigns k commander variables to
each group. These contain information whether no or some of the variables in
their corresponding group are true. We refer interested readers for details on
those encodings to the paper by Frisch and Giannaros [8].

To minimise the resulting formula size, we develop a meta-encoding, called
selective encoding, which chooses the most efficient of the reviewed encodings
considering formula size:

selective(n, k) =

⎧
⎪⎨

⎪⎩

binomial kbinom(n) ≤ k,

binary ksplit(n) < k < kbinom(n),
seq. counter otherwise.

(2)

As selective encoding is motivated by our evaluation results we present its con-
struction as well as the bounds kbinom and ksplit and the reason for the com-
mander encoding not being used in Sect. 4.2.

Our use cases mostly rely on the related atleastk and exactlyk constraints
as illustrated later. We express atleastk by reducing it to atmostk. If at least k
variables have to be true, not more than the remaining number of variables can
be false:

atleastk(S) = atmostn−k({¬s | s ∈ S}) (3)

By combining atleastk and atmostk, we obtain an expression for choosing exactly
k variables:

exactlyk(S) = atleastk(S) ∧ atmostk(S) (4)

We encode exactlyk by using our new encoding for atleastk and atmostk respec-
tively.

3 Modelling Configuration of University Courses as
Feature Models

In this section, we describe our pipeline for branch configuration. First, we for-
mally define the concept of branches of study to give an unequivocal reference as
informal specifications usually tend to be ambiguous. Therefore we refer to the
four terms field, branch, subject, and category. A whole area of study at a univer-
sity like physics, biology and computer science is referred to as a field of study.
Branches of study are subtypes of a field of study and are more fine-grained.
Students can specialise in a branch fitting their individual interests. Working
units granting credit points like lectures, labs and theses are referred to as sub-
jects. Categories group subjects belonging to a common department. Second,
we present our DSL allowing users to create and edit fields of study including
branches. Third, as we are interested in the possibility of expressing branches of
study as boolean feature models, we present our compiler, translating artefacts
of our DSL to a feature model. Thereby, special attention is given to differing
amounts of credit points.
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Compulsory subjects (35 credit points)
Seminar IT-Security (5 credit points)
Master’s Thesis (30 credit points)

Compulsory elective subjects (35 credit points)
Category System Security

Advanced IT-Security (5 credit points)
Machine Learning for IT-Security (5 credit points)
Lab on IT-Security (5 credit points)
Lab on Intelligent System Security (5 credit points)
Project Thesis (15 credit points)

Category Connected and Mobile Systems
Management of Information Security (5 credit points)

Category Distributed Systems
Operating Systems Security (5 credit points)

Fig. 2. Example for specification of IT-Security branch at TU Braunschweig (trans-
lated from German).

3.1 Formalizing Branches of Study

Branches of study are subtypes of a field of study. They are a concept for dealing
with the need for more customised fields of study at universities due to growing
complexity of economy and science. Instead of constructing new fields of study,
branches can be introduced to existing fields if they are similar enough. For
our case study, we look at the branches of study at TU Braunschweig, but
nevertheless, the concept of branches is analogous for other universities and
institutions. Credit points granted at this university are ECTS-points (European
Credit Transfer System points).

Graduating in a branch is optional, but not more than one can be chosen.
To complete a branch its constraints for choosing courses have to be fulfilled.
These consist of a compulsory and one or more compulsory elective constraints,
containing a set of subjects each:

– Compulsory subjects have to be attended.
– Compulsory elective subjects have to be attended, such that a certain amount

of credit points is reached.

As an example, the specification of the IT-Security branch at TU Braunschweig
is given in Fig. 2. Next to its mandatory seminar and master’s thesis, subjects
from a given compulsory elective pool have to be attended, such that at least
35 credit points are reached. The project thesis is listed optional here, but is
actually mandatory because the sum of all other subjects does not reach the
required 35 credit points. Our tool BroT will detect this issue and automatically
select the project thesis when this branch is picked.
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Field "Computer Science"

Category "Master Thesis" [1, 1] {
"Master Thesis IT-Security" 30 CP

"Master Thesis Computer Graphics" 30 CP

...

}
Category "Subjects" {

Category "IT-Security" {
"Advanced IT-Security" 5 CP

"Lab on IT-Security" 5 CP

...

}
...

}
...

Branch "IT-Security"

Compulsory

"Master Thesis IT-Security"

"Seminar IT-Security"

CompulsoryElective 35 CP

"Advanced IT-Security"

"Machine Learning for IT-Security"

"Lab on IT-Security"

"Lab on Intelligent System Security"

"Project Thesis IT-Security"

"Management of Information Security"

"Operating Systems Security"

Fig. 3. Excerpt of DSL artifact specifying the IT-Security branch described in Fig. 2.
Subjects referenced by a branch have to be specified with their corresponding credit
points.

3.2 A DSL to Describe Fields and Branches of Study

Creating a feature model for a field of study directly is practically infeasible.
The branches constraints would have to be written by hand in propositional
calculus, but due to their extent and complexity, this task is highly error-prone
and time-consuming. Hence, we provide a DSL from which the branches can be
translated to a feature model.

Our DSL allows specifying fields, branches and subjects of study (e.g. courses,
theses) with their corresponding amount of credit points granted on completion.
Branches are described by a set of constraints. A constraint is a subset of sub-
jects and is either compulsory or compulsory elective. Furthermore, subjects can
be grouped. For example, all possible master’s theses are grouped in category
Master Thesis. That allows for specifying cardinalities [a, b] ⊂ Z, 0 ≤ a, describ-
ing how many subjects have to be attended at least and at most. For example,
the Master Thesis in Fig. 3, having cardinality [1, 1], has to be written exactly
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Fig. 4. Example of a feature model describing a simplified version of the field of study
computer science at TU Braunschweig. Dots denote that some features are omitted
for readability. The modules Algorithmics and Robotics contain 7 and 9 courses
respectively. These are collapsed for readability, too.

once. A value of −1 for b denotes an arbitrary amount, otherwise b has to be
greater or equal to a. The default value for cardinalities is [0,−1].

Typically, branches are described by one compulsory and one compulsory
elective constraint, but the official specifications may contain additional side
conditions. For example, in Visual Computing, auxiliary to the compulsory con-
straint, selecting one of three pre-defined courses is mandatory. The other two
courses will then be added to the pool of subjects of the compulsory elective con-
straint. We resolve this issue by introducing a new compulsory elective constraint
and adjusting the required credit points of the original one.

3.3 Compilation of Our DSL to a Feature Model

As feature models come with dedicated and well investigated analysis tools [4,
11,16,18,20], these can be reused as is for configuring branches of study when
encoding the branches as a proper feature model.

Originally introduced to manage configurations of software product lines,
feature models are far more general. They define individual features in a tree
hierarchy. In Fig. 4, a simplified model describing the field of study Computer
Science (without the branches) is given. Features can only be selected if their
parent feature is selected. Optionally, features can be cumulated in alternative
or or groups. For example, the children of Master Thesis in Fig. 4 are in an
alternative group, as only one master’s thesis can be written. Additionally, the
Master Thesis feature is marked mandatory because it has to be selected. An
or group requires at least one of its children to be selected. The Subjects
are grouped by their categories and collapsed in this example. Features can
be marked abstract, indicating that they do not have a concrete implementation
and are used for modelling purposes only. Auxiliary to parent relationships, each
feature can be part of additional arbitrary constraints. These have to be given
in propositional calculus, as shown in Fig. 5.
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Fig. 5. The feature model generated for branch Big Data Management : Num-
bers behind collapsed features indicate their number of children. The feature
GeneratedVariables is artificial and groups all variables that were generated for
atmostk constraints by the respective encoding.

Subjects and Categories. Each subject and branch is translated to a fea-
ture. For traceability, features are grouped as children of abstract features if
their corresponding subjects are grouped. Specific cardinalities of categories can
directly be translated to the feature model hierarchy. The feature of a category
with cardinality [cmin, cmax] is mandatory if cmin > 0, i.e., at least one subject
has to be selected. Otherwise, it is optional. Furthermore, the group type can
be derived as follows:

– alternative if cmax= 1, i.e., at most one child can be selected,
– or if cmin ≥ 1, i.e., at least one child has to be selected.

Moreover, the branches’ constraints are translated to propositional calculus, such
that they can be added to the feature model. It is important that these con-
straints are only valid if their corresponding branch is chosen (i.e., feature is
selected). We achieve this by means of an implication.

Figure 5 exemplarily shows the feature model of the branch Big Data Man-
agement compiled from its corresponding DSL artefact. If the feature Branch
Big Data Management is selected, the two constraints at the bottom will ensure
that the right subjects have to be chosen for the configuration to be valid. The
first constraint describes the compulsory subjects according to Eq. 5. The second
constraint describing compulsory elective subjects according to Eq. 10 is too long
to be shown here entirely. It was computed with our selective encoding. Thereby,
the sequential counter encoding was used to encode atleast6({1, ..., 8}) and pro-
duced 14 = (8 − 1)(8 − 6) = (n − 1)k variables. 55 variables were generated by
the binary encoding for atleast3({1, ..., 8}).

Compulsory and Compulsory Elective Constraints. In the following, we
show how our compiler translates constraints consisting of a set of subjects SB

for a given branch B.
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In compulsory constraints all subjects are mandatory, meaning that they
have to be attended if their corresponding branch is chosen:

B =⇒
∧

s∈SB

s (5)

Compulsory elective constraints are defined by the amount of credit points p to
achieve at least by selecting a subset of its subjects SB .

B =⇒ atleastk(SB), (6)

Assuming that each subject in SB grants an equal amount c of credit points, we
can determine the number k of required subjects via k = �p / c�. For example, if
all subjects grant 5 credit points and a compulsory elective constraint requires
at least 35 credit points (like in Fig. 2), at least 7 = 35 CP/5 CP subjects have
to be chosen. Occasionally, some subjects grant a different amount of credit
points, wherefore Eq. 6 is insufficient. In these cases a more advanced approach
is necessary, which we discuss in the next section.

3.4 Resolving Differing Credit Points

If all subjects grant equally high credit points, all variables have equal weight.
Hence, the actual value of credit points must only be considered to obtain the
total number of subjects to choose at least. However, many branches’ compulsory
elective subjects differ in their credit points.

We solve this problem by recursively splitting our set of subjects S in two
sets H (high) and L (low). All subjects granting the most credit points are put
into H, the rest goes to L. Accordingly, all subjects in H grant an equal amount
of credit points. By choosing an exact amount of subjects from H, the remaining
credit points can be obtained. These remaining credit points can then be chosen
from subjects in L. If all subjects in L grant an equal amount of credit points
we can use Eq. 6, otherwise we recursively split L again.

Formally, we define cp(s) ∈ N as the amount of credit points a subject s
grants. If all subjects in a set of subjects S grant the same amount c of credit
points, we define cp(S) = c. To split S, we introduce the former set H as a
function

H(S) = {x ∈ S | ∀s ∈ S : cp(x) ≥ cp(s)}, (7)

which returns all subjects with the highest amount of credit points. For given
subjects S and credit points c, our resulting compulsory elective constraint CEC
is constructed as follows:

CEC(S, c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true c ≤ 0
false c >

∑
s∈S cp(s)

atleast�c/cp(S)�(S) H(S) = S ∧ 0 < c ≤ ∑
s∈S cp(s)

split(S, c) otherwise

(8)
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If the amount of credit points is smaller or equal to zero, enough of them are
already reached. If the amount of credit points to achieve c is greater than the
credit points all subjects grant together, we never can choose enough subjects.
If all subjects grant an equal amount of credit points, the previous solution from
Eq. 6 can be used. Finally, we formalise our approach of splitting S into two sets
and choosing a definite amount from the higher credit subjects:

split(S, c) =
|H(S)|∨

k=0

exactlyk(H(S)) ∧ CEC(S\H(S), c − k ∗ cp(H(S))) (9)

The recursive call to CEC is done on the remaining subjects S\H(S) and remain-
ing credits k ∗ cp(H(S)). Hence, the problem is simplified to a smaller instance
of itself with one amount of credit points removed from the set of subjects. By
combining Eqs. 6 and 8, we obtain the final constraint for a given branch B with
compulsory elective subjects SB and credit points cB :

B =⇒ CEC(SB , cB) (10)

As a post-processing step, some of the clauses generated by the split function
can be omitted in the first place if they are not satisfiable considering the feature
model. This commonly occurs if all subjects in H(S) are in the same category
with an upper bound cmax > 0 where one can never choose more subjects than
cmax. Thus, exactlyk(H(S)) can never be true for k > cmax.

Finally, we can generate feature models representing any fields of study,
including branches and subjects with arbitrary credit points. Our upcoming
evaluation focuses on their applicability for configuring the modelled branches.
Furthermore, we derive our selective encoding for the atmostk constraint by
measuring the other encodings performance. We evaluate it by generating the
compulsory elective constraints for all branches according to Eq. 10.

4 Evaluation

We evaluate the four considered encodings binomial, binary, sequential counter,
and commander, in terms of produced literals and generated variables. Addition-
ally, we report our experiences when implementing, testing and applying these
encodings. We introduce our new encoding, called selective encoding, that com-
bines the other encodings to choose the most efficient one considering formula
size. By generating the compulsory elective constraints for each branch with each
encoding, we can evaluate the performance of our new selective encoding.

4.1 Tool Support for Implementation

For the opportunity to reuse dedicated libraries and frameworks, we implemented
our tool BroT in Java. The FeatureIDE library [13] allows expressing formulas
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Fig. 6. Encodings producing the lowest number of variables when encoding atmostk(n).
The binomial encoding is not considered because it does not introduce any new vari-
ables.

of propositional calculus as well as describing feature models. Additionally, the
FeatureIDE plugin [17] for the Eclipse IDE [21] contains graphical editors for
feature models and their configurations. We created our DSL with the plugin
EMFText3, which integrates well into the other tools.

4.2 At-Most-k Encoding Performance Comparison

First, we evaluate the atmostk encodings in terms of generated variables. Here,
the binomial encoding is not considered because it always produces the lowest
amount of variables, namely none. Second, we investigate formula size by count-
ing the number of literals to be independent of clause size. Thereby, we develop
our new selective encoding, as it is motivated by these results.

To detect the most efficient encoding, we encoded atmostk(n) for each 2 ≤
n ≤ 130, 1 ≤ k < n with each encoding. Many instances with n > 26 became too
big for the binomial and commander encoding, resulting in a memory overflow.
In these cases, we assessed them to produce infinitely many variables and literals.

Remarkably, for both criteria, the results split into three connected areas.
Hence, stack plots identifying the encoding producing the lowest amount of vari-
ables and literals for each k and n are shown in Figs. 6 and 7 respectively. Our
plots are available as scatter and stack plots as interactive HTML versions bundled
with our code to allow investigating the exact values.4

3 https://github.com/DevBoost/EMFText.
4 https://github.com/PaulAtTUBS/BroT/tree/master/Evaluation/Encodings.

https://github.com/DevBoost/EMFText
https://github.com/PaulAtTUBS/BroT/tree/master/Evaluation/Encodings
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Fig. 7. Encodings producing the lowest number of literals when encoding atmostk(n).
These results serve as the basis for our selective encoding.

Number of Generated Variables. As shown in Fig. 6, the binary encoding
performs best in most cases. For each k > 7, it introduces the lowest amount
of variables in the investigated data range of 1 < n ≤ 130. The commander
encoding is best for small k. It groups the variables and assigns new commander
variables to each group. Thereby, it depends heavily on the size of its groups.
We discovered, that an optimal group size can only be chosen for the very rare
case of k(k + 2) < n. We hypothesise this to be the reason for the commander
encoding producing the lowest amount of variables only for small k. As the
commander encoding is recursive, it could be further optimised by not using the
binomial encoding at end of recursion, but a more sophisticated one like binary,
sequential counter, or even our selective encoding, introduced in the next section.
In some rare cases, the sequential counter encoding generates the lowest number
of variables, especially for small k.

Formula Size. In this section, we quantitatively assess encoding performance
in terms of the number of generated literals. Motivated by these results, we
develop our new selective encoding by combining the evaluated methods. If two
encodings produced the same number of literals, we chose the encoding with
fewer total variables.

The commander encoding never generated the smallest formula. We hypoth-
esise the usage of the binomial encoding at the end of recursion to be the rea-
son. As expected, the binomial encoding produces the smallest formula for very
small n < 6, close to the suggested bound of n < 7 by Frisch and Giannaros [8].
Advanced encodings do not decompose to smaller formulas in those cases because
the overhead of introducing new variables is too big. Furthermore, binomial is
the most efficient encoding for k = n − 1, where it decomposes to a simple dis-
junction. Surprisingly, this näıve encoding produces the lowest number of literals
for k = n − 2, n < 40, too. To describe the cases, where the binomial encoding
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performs best, we introduce a function giving the lowest k for which it produces
the smallest formula:

kbinom(n) =

⎧
⎪⎨

⎪⎩

1 n < 6,
n − 2 6 ≤ n < 40,
n − 1 otherwise.

(11)

The remaining input pairs (k, n) are shared between the binary and sequential
counter encoding. The split between their areas consists of almost linear seg-
ments separated by little jumps, which are located at powers of two. When n
exceeds a power of two, the binary encoding needs another bit, i.e. another vari-
able. We hypothesise this to be the reason for the sequential counter encoding
producing less literals than the binary encoding at these jumps. To describe the
split, we consider the number of literals each encoding produces. For given n, the
split is located at k for which both encodings produce the same amount of liter-
als. Thereby, we derive a formula describing exactly the highest k for which the
sequential counter encoding still produces less literals than the binary encoding.

ksplit(n) =

⌊
b +

√
b2 − 4a
2a

⌋
, with

a = 1 + 2�log2(n)�
b = 2(�log2(n)�(n + 1) − 2n + 5)

(12)

Finally, we can define our selective encoding by choosing the encoding producing
the smallest formula in Eq. 2.

4.3 Branches Evaluation

We test our selective encoding by comparing its performance when generating
feature models for each branch of study at TU Braunschweig with the reviewed
encodings. The size of a feature model file in XML turned out to be a good initial
indication of a model being usable by our configurator, i.e., can be loaded and
handled in feasible time spans. We consider formula size and the total number of
variables for all compulsory elective constraints at once. The results are shown
in Fig. 8. We do not consider the commander encoding here because it never
produced the lowest amount of literals, as outlined in Sect. 4.2.

Indeed, our selective encoding always produces the lowest amount of literals
as highlighted in Fig. 9. Thereby, it is able to reduce the amount of literals by
up to 20% compared to the respective best of the reviewed encodings. Although
we developed it to optimise formula size, it also generates the lowest number
of variables in seven out of nine cases as visible in Fig. 10 (without consider-
ing the binomial encoding). For the branch Hardware-/Software-System Design
it even nearly halves the amount of variables. In the remaining two branches
Industrial Data Science and Networked Systems, it is also competitive, as it pro-
duces only 0.5% and 10% more variables respectively. If we compose all branches
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Binomial Binary Seq. Counter Selective

Branch of Study kB
#
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#
lit
.

kB

#
va
r.

#
lit
.

kB

#
va
r.

#
lit
.

kB

#
va
r.

#
lit
.

Δ
kB

%
Δ
#
va
r.
%

Δ
#
lit
.%

Automotive Informatics 82,682 32 895,347 1,414 1,159 6,541 1,694 2,107 10,135 1,295 1,007 6,287 8.42 13.11 3.88
Big Data Management 46 9 338 52 64 256 45 58 237 46 58 221 -2.22 0 6.75
H.-/S.-System Design 10,228 36 126,738 728 788 3,834 795 1,135 5,363 538 455 3,074 26.10 42.26 19.82
IT-Security 21 7 61 26 23 77 21 17 50 21 17 50 0 0 0
Industrial Data Science 2,223 22 28,052 170 202 1,018 153 246 1,095 145 203 930 5.23 -0.50 8.64
Medical Informatics 3,115 15 31,609 316 313 1,732 254 351 1,630 264 308 1,513 -3.94 1.60 7.18
Networked Systems 6,220 27 87,375 201 246 1,241 203 343 1,542 184 270 1,227 8.46 -9.76 1.13
Robotics 557 17 6,845 193 212 977 239 339 1,570 193 212 977 0 0 0
Visual Computing 108 14 1,205 98 124 547 84 131 560 88 124 524 -4.76 0 4.20
All Branches (Sum) 105,200 179 1,177,570 3,198 3,131 16,223 3,488 4,727 22,182 2,774 2,654 14,803 13.6 15.2 8.6

Fig. 8. For each branch of study at TU Braunschweig we encoded all its compulsory
elective constraints with each encoding to compare their performance in terms of model
file size, number of total variables, and literals. The minimal number of literals per row
is highlighted. The last three columns show the improvement of our encoding in percent
compared to the best of the single encodings. The binomial encoding is not considered
for Δ#var.%.

as necessary for the complete field of study model, binary performs best from
the reviewed encodings in each category. Selective encoding further reduces file
size, number of variables, and number of literals by 13.6%, 15.2%, and 8.6%,
respectively.

We developed our selective encoding in favour of formula size. Nevertheless,
the solving time is an important metric for efficiency of formula generation [15, p.
413]. We found branch models loaded to our configuration tool BroT to be config-
urable without any lags. However, the loading times for the models exceed several
minutes for most of the branches. This time span is mainly caused by the con-
figuration initialisation. As it is branch specific and only necessary a single time,
it could be pre-computed and stored on disk. Thus, BroT could enable instan-
taneous branch loading and configuration. Unfortunately, we were not able to
load the branches Automotive Informatics, Hardware-/Software-System Design,
and Medical Informatics yet as the configuration generation took too much time.
We suspect our resolving of different credit points (Eq. 8) to impair performance
immensely because the expression it generates is not in CNF.

4.4 Threats to Validity

In this section we reflect on our experiment design for evaluation of selective
encoding in Sect. 4.3. We compare its performance with the reviewed encodings
by generating the constraints for each branch of study at TU Braunschweig.
Although, this is a very special use case, it emerges from a real-world problem for
which a solution was even enquired at TU Braunschweig. At other universities
or institutions this problem may arise analogously. Furthermore, each branch
demands 5 to 45 atmostk formulas with k ∈ [0, 19] ⊂ IN and n ∈ [1, 20] ⊂ IN as
specified at the universities website and in our DSL files delivered with our tool.
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Fig. 9. Number of literals in compulsory elective constraints generated by each encoding
per branch.

Fig. 10. Number of total variables in compulsory elective constraints generated by each
encoding per branch.



142 P. M. Bittner et al.

The resulting formulas for each individual branch on which we count number
of literals and variables include various atmostk constraints. Nevertheless, our
usability results are unimpaired, as these branch specific descriptions are con-
stant for all encodings. Therefore, our compulsory elective formulas (see Eq. 8)
are fixed per branch, too. Particularly, the base feature model describing the
field of study computer science is equal for the whole evaluation. Thus, for each
branch the atmostk queries are the same for each encoding.

5 Related Work

This work is primarily based on two fields, namely feature-oriented software
development and SAT encodings of the atmostk constraint.

First, we describe the branches of study with feature models [1]. A feature
model can be converted directly to a propositional formula [3]. This enables anal-
ysis based on satisfiability queries [4,16,18,20]. We create these models with the
FeatureIDE Framework [17] and use its analysis and configuration tools for test-
ing and evaluating our results. We use the FeatureIDE library [13] to implement
the encodings independently from the main FeatureIDE plugin. We detected a
new application for feature models, as we use them for configuration of courses.
Cardinality-based feature models assign cardinalities to features, allowing them
to occur multiple times [6,7]. Our new selective encoding can be used to express
the bounds of group cardinalities and, thus, cardinality-based feature models
could profit from our encoding. Formulating alternative groups is the special
case of choosing atmost1 and is a common task for feature models. Hence, our
selective encoding could improve the generation of these constraints. Here, our
results exhibit the sequential counter encoding as a reasonable choice for n > 5.

Second, we are interested in encodings of the atmostk constraint. Frisch and
Giannaros present a convenient summary of the state-of-the-art encodings [8].
Additionally, they lift some of the encodings from their atmost1 form to atmostk.
We use their work compared with some of the original introductions [12,19] for
further detail as a reference for implementing and using encodings correctly.
The lifted version by Frisch and Giannaros of the product encoding by Chen [5]
requires a dedicated number sequence. Because the generation of such a sequence
is described only vaguely and informally, we have not considered this encoding.
Our new selective encoding of the atmostk constraint is useful in any application
the other encodings are used in, as it can replace them without any adaptions.

6 Conclusion and Future Work

We presented a new hybrid encoding, called selective encoding, for the atmostk
constraint by combining existing techniques. By construction, our encoding pro-
duces the lowest amount of literals and, nevertheless, introduces a comparatively
low amount of new variables.

We used selective encoding successfully for generating feature models that
can be used for configuring branches of study. We showed that choosing a suitable
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encoding for the atmostk constraint makes a difference of up to 20% in terms
of literals for our branch study. Furthermore, our tool BroT using our DSL as
input can be useful for universities and institutions facing similar problems. Our
approach for resolving different amounts of credit points can be generalised to
domains, where each element is weighted. Hence, it can be useful in any task
where a sum of weights has to be reached by choosing arbitrary elements.

To improve our selective encoding and results on compulsory elective con-
straint generation, further encodings like parallel sequential counter by Sinz [19]
or totalizer by Bailleux and Boufkhad [2] could be investigated, too. Especially
the second one is of interest, as it can handle atmost and atleast constraints
simultaneously, which could optimise our frequent exactly constraints in Eq. 9
when dealing with different amounts of credit points. Additionally, our selective
encoding could be tested on handling alternative groups in feature models as
these require the special case of atmost1. Furthermore, the question why the
encodings count for generated literals and variables split into distinct connected
areas that allowed deriving our encoding, is still open.
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