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Abstract. In this paper, we address the encoding into CNF clauses of Boolean
cardinality constraints that arise in many practical applications. The proposed
encoding is efficient with respect to unit propagation, which is implemented in
almost all complete CNF satisfiability solvers. We prove the practical efficiency
of this encoding on some problems arising in discrete tomography that involve
many cardinality constraints. This encoding is also used together with a trivial
variable elimination in order to re-encode parity learning benchmarks so that a
simple Davis and Putnam procedure can solve them.

1 Introduction

Many types of constraints that appear in real world problems have no natural expres-
sion in the propositional satisfiability. The cardinality constraint over a set of Boolean
variables (i.e., a constraint on the number of variables that can be assigned the value 1)
is one of these. The encoding problem that we address is: given a set E of Boolean vari-
ables (called input variables) subject to a cardinality constraint requiring that at least µ
and at most ρ of them can be equal to 1, build a CNF formula Ψ(E,µ,ρ) over a set of
variables including E such that Ψ(E,µ,ρ) can be satisfied by a truth assignment if and
only if the values assigned to variables in E by this truth assignment satisfy the cardi-
nality constraint. In this paper, we propose an efficient CNF encoding of the cardinality
constraint.
While there is no general definition of a good encoding, there are at least some com-
mon sense conditions that such an encoding must fulfill. The first one is that the size of
the formula must be kept relatively small with respect to E and the second one is that
the formula must be adapted to the kind of solver to be used. Our encoding requires
O(nlog(n)) variables and O(n2) clauses of length at most 3, where n = |E|. This en-
coding is also efficient in the sense that unit propagation restores the generalized arc
consistency on the variables in E .
The straightforward way of encoding of cardinality constraints is based on a bit adder
that adds one by one the variables in E , as in [6]. The result of the addition is rep-
resented in the usual binary representation of integers, and the Boolean variables that
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compose it are constrained by some clauses so that the integer they represent is in the
prescribed range. While the size of the CNF formula generated by this encoding re-
mains reasonable, its main disadvantage is that a SAT solver based on unit propagation
needs to have all the variables in E assigned a value in order to check the cardinality
constraint. Even if the constraint is violated by a partial assignment, unit propagation
alone does not generate an empty clause. In the encoding described in this paper, the
key feature is a unary representation of integer variables that can represent not only the
value, if known, of an integer but also the interval where it falls if the Boolean variables
in its unary representation are partially assigned. A bit adder based on this representa-
tion allows the derivation of the interval where a variable c falls, given the intervals of
variables a and b such that c = a+b. We obtain a CNF formula where unit propagation
derives all the consequences of every assignment with respect to the generalized arc
consistency. In particular, it derives an empty clause whenever a partial assignment to
the input variables is inconsistent with the cardinality constraint.
In order to subject this encoding to an application where there are these types of con-
straints, we have tested it on a problem arising in 2-D discrete tomography. The specific
problem that we address is the reconstruction of a pattern lying in a 2-D grid, given its
projections in four directions. The projection in some direction is the number of points
belonging to the pattern in that direction. The reconstruction problem is to find a pattern
that complies with the given projections in every direction. This amounts to finding an
assignment to the Boolean variables representing the cells of the grid given many car-
dinality constraints. Each one of these cardinality constraints, represents the fact that
the number of cells belonging to the pattern in some direction, is equal to the projec-
tion in that direction. This is a good test for our encoding scheme since each variable is
involved in four different cardinality constraints. We compared, using some instances
of discrete tomography, the performance of our encoding solved by the state of the art
SAT solver zchaff [15] versus a commercial constraint solver.
The cardinality constraints also appear in parity learning instances. These benchmarks
have been the center of a challenge to solvers. We show that they can be solved easily
using a basic DP procedure, by separating them into two parts: an XOR-CNF formula
and a formula containing a mixture of cardinality constraint and some XOR-CNF rela-
tions.
At this point, one may make some general remarks on the issue of encoding into CNF.
The benchmarks that are extensively used to assess the efficiency of SAT algorithms
are generally taken as they are. The issue of finding the best encodings or even the
pertinence of encoding them into SAT formulas is rarely brought up. In the challenges
that are organized for SAT, only two categories of submission are welcomed: solvers
and benchmarks. The issue of improving the proposed encodings in ignored. As the
most interesting benchmarks are the hardest ones, ignoring the encoding may have this
consequence: some intrinsically easy problems may be made hard by an inappropriate
encoding, and, as they are hard, they may be considered as interesting benchmarks. If
the final goal is the practical solving of hard real world problems and not only to make
solvers overcome inappropriate encodings by rediscovering in the CNF formulas some
deductions that are obvious in the original problem, then a careful encoding is crucial
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and must be considered as a third type of contribution beside solvers and benchmarks
in the challenges organized for SAT.
The paper is organized as follows. The encoding is described in Section 2, where cor-
rectness and efficiency are proved. Then in Section 3 the encoding is applied to the
discrete tomography problems after a brief description of these problems. In Section 4,
the learning parity instances are revisited in the light of this new encoding of cardinality
constraints.

2 Efficient CNF Encoding of Cardinality Constraints

We give first the notations that will be used throughout this paper. The truth values
TRUE and FALSE of propositional logic will be denoted 0 and 1. An instantiation or
a truth assignment I of a set V of propositional variables is a function that maps each
variable v ∈ V to a non empty set I(v) ⊆ {0,1}. A variable v is said to be fixed to 0 or
assigned the value 0 by an instantiation I if I(v) = {0}, fixed to 1 if I(v) = {1}, and free
if I(v) = {0,1}. In non-ambiguous contexts, v = 1 denotes I(v) = {1} and v = 0 denotes
I(v) = {0}. An instantiation I of V is said to be complete if it fixes all the variables in
V . The instantiations that are not complete are said to be partial.
For any CNF formula Φ and any instantiation I of a subset of the variables of Φ, Φ|I
denotes the formula obtained by replacing the variables that are fixed by I with their
truth values.
A unit clause is a clause that includes only one literal. Unit propagation denotes the
process that fixes each variable occurring in a unit clause in such a way as to satisfy this
clause, up until the empty clause is produced or no unit clause remains.

2.1 The Problem

The goal is to translate a cardinality constraint over a set E of Boolean variables into a
CNF formula. The cardinality constraint specifies that the number p of variables fixed
to 1 among a set E of Boolean variables is at least µ and at most ρ. The CNF formula
Ψ(E,µ,ρ) is defined on a set V ⊃ E of propositional variables. The variables in V \E
are called encoding variables.
The encoding must be correct in the sense that for any complete instantiation I of E ,
Ψ(E,µ,ρ)|I is satisfiable if and only if I satisfies the cardinality constraint.
The encoding must also be efficient in the sense that for any partial instantiation I of
E , unit propagation on Φ(E,µ,ρ)|I must restore the generalized arc consistency on the
variables in E , specifically:

– if more than ρ variables in E are fixed to 1 or if more than n−µ variables in E are
fixed to 0 then unit propagation produces the empty clause,

– else if ρ variables in E are fixed to 1 then unit propagation fixes to 0 all the other
variables in E ,

– else if n− µ variables in E are fixed to 0 then unit propagation fixes to 1 all the
other variables in E .
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2.2 Encoding Principle

The proposed encoding uses a unary representation of integers. The value of an integer
x such that 0 ≤ x ≤ n is represented by 1 x times followed by 0 n− x times. An integer
variable v with domain 0..n is represented by a set V = {v1,v2, . . . ,vn} of n proposi-
tional variables. Each possible value of v is encoded as a complete instantiation of V , as
described above. If v = x, then v1 = 1, v2 = 1, ..., vx = 1 and vx+1 = 0, ......., vn = 0. A
partial instantiation of V is said to be pre-unary if for each vi = 1, v j = 1 for any j < i
and for each vi = 0, v j = 0 for any j, i ≤ j ≤ n. A unary instantiation is then a complete
pre-unary instantiation.
The main advantage of such a representation is that the integer variable can be specified
as belonging to an interval. Indeed, the inequality x ≤ v ≤ y is specified by the partial
pre-unary instantiation of V that fixes to 1 any vi such that i ≤ x and fixes to 0 any v j

such that j ≥ y + 1.
Conversely, any partial pre-unary instantiation I of V is related to an integer interval.
The bounds of this interval will be denoted min(I) and max(I). We underline that the
classical binary representation of integers does not allow one to specify such member-
ship relations as our representation does.

Example: With n = 6, if I is a partial instantiation such that v1 = v2 = 1, v5 = v6 = 0,
and v3,v4 are free, then min(I) = 2 and max(I) = 4. Then the corresponding integer
variable v is such that 2 ≤ v ≤ 4.

The number of variables fixed to 1 by an instantiation I will be denoted N(I). When I
is the unary representation of an integer, N(I) is then the value of this integer.
The encoding of a cardinality constraint on a set E of variables is done in two parts: a
totalizer and a comparator.

The Totalizer. The totalizer is a CNF formula Φ(E) defined on 3 sets of variables:

– E = {e1, . . . ,en}: the set of input variables,
– S = {s1, . . . ,sn}: the set of output variables,
– a set L of variables called linking variables.

These sets of variables can be described by a binary tree built as follows. We start from
a isolated node labeled by the integer n and we proceed iteratively: to each terminal
node labeled by m > 1, we connect two children labeled by �m/2� and m−�m/2�,
respectively. This procedure produces a binary tree with n leaves labeled by 1. Next,
each variable in E is allocated to a leaf in a bijective way. The set S of output variables
is allocated to the root node. To each internal node labeled by an integer m, a set of
m new variables is allocated which will be used to represent a unary value belonging
to 1..m. The union of the set of variables allocated to the internal nodes is the set L of
linking variables.

Example: for n = 5, E = {e1,e2,e3,e4,e5}, and S = {s1,s2,s3,s4,s5} the following tree
is obtained:
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We will now define a set of clauses that ensures that in any complete instantiation of
the variables of the totalizer, the set of variables related to any non-leaf node r with
children a and b encodes the unary representation of α + β, where α and β are the
integers encoded by the sets of variables related to a and b.
Let r be an internal node related to children a and b. Let R = {r1, . . . ,rm} be the set
of variables related to r, A = {a1, . . . ,am1} be the set of variables related to a, and
B = {b1, . . . ,bm2} be the set of variables related to b. The following conjunction of
clauses is related to the node r:

∧

0≤α≤m1
0≤β≤m2
0≤σ≤m
α+β=σ

(C1(α,β,σ)∧C2(α,β,σ)) (1)

with the following notations:

a0 = b0 = r0 = 1,am1+1 = bm2+1 = rm+1 = 0

C1(α,β,σ) = (aα ∨bβ ∨ rσ)

C2(α,β,σ) = (aα+1 ∨bβ+1 ∨ rσ+1)

Notice that C1(α,β,σ) is the CNF representation of the relation σ ≥ α + β and
C2(α,β,σ) is the CNF representation of the relation σ ≤ α+ β.
The obtained formula is simplified by removing the clauses including the constant 1
and reducing the clauses including the constant 0. Notice that each clause includes at
most three literals.

Lemma 21 (forward propagation) Let Φ(E) be a totalizer with n input variables. If
p input variables are fixed to 1, q input variables are fixed to 0, and all the other
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variables of the totalizer are free then the partial instantiation IS of S obtained after
unit propagation in Φ(E) is pre-unary and such that min(IS) = p and max(IS) = n−q.

Proof: By induction on the number n of input variables.
For n = 1 the totalizer includes only one variable that is either the input and the output
variable. The property is then obvious. Now let us consider that the property is true for
any n < ν.
Let A = {a1,a2, ...,aνA} denote the set of the νA = �ν/2� variables associated to the first
child of the root and B = {b1,b2, ...,bνA} denote the set of the νB = ν−�ν/2� variables
associated to the other child. Considering the leaves of the tree below each child of the
root, we get a partition of the input set E into two disjoint subsets EA and EB. Let pA

denote the number of variables fixed to 1 in EA, pB denote the number of variables fixed
to 1 in EB, qA denote the number of variables fixed to 0 in EA and qB denote the number
of variables fixed to 0 in EB. Clearly, we have p = pA + pB and q = qA +qB. Let IA and
IB denote the instantiations of A and B obtained after unit propagation in Φ(E).
It follows from the induction hypothesis that IA and IB are pre-unary, min(IA) = pA,
max(IA) = νA −qA, min(IB) = pB, max(IB) = νB −qB.
It is easy to see that for every t such that 1 ≤ t ≤ p there exist tA, tA ≤ min(IA), and
tB, tB ≤ min(IB) such that t = tA + tB. Thanks to the clause atA ∨ btB ∨ st of the C1 type
associated to the root node, unit propagation fixes to 1 the variable st . Consequently, all
the variables s1 to sp are set to 1. Thanks to the clauses C2 associated to the root node,
we can prove by similar arguments that unit propagation fixes to 0 the variables sn−q+1

to sn.
For the variables st such that p < t ≤ n−q, it is easy to see that for every couple (tA,tB)
such that tA + tB = t, either tA > min(IA) or tB > min(IB). Consequently, at least one of
the variables atA or btB is not equal to 1. Then no clause atA ∨btB ∨ st can be reduced to
the unit clause st . The same arguments applied to the causes C2 can be used to prove
that the clause st can not be produced. Then the variables st such that p < t ≤ n−q are
all free. So IS is pre-unary, min(IS) = p, and max(IS) = n−q.
Then IS is the unary representation of the smallest interval containing N(IE).

Lemma 22 (backward propagation) Let Φ(E) be a totalizer with n input variables.
If:

– p input variables are fixed to 1, q input variables are fixed to 0 (p + q < n), the
remaining input variables being free,

– and the output variables sp+1 to sn−q are all fixed to the same value ε (0 or 1)

then all the input variables remaining free are instantiated to ε by unit propagation.

Proof: By induction on the number n of input variables.
For n = 1 the property is obvious. Now let us consider that the property is true for any
n < ν.
We use the same notations as in the proof of the previous lemma. If we consider solely
the assignment to the input variables, the unit propagation assigns to the output vari-
ables the values such that min(IS) = p and max(IS) = n−q. Suppose that sp+1 to sn−q

variables are assigned the value 0. Let t any integer such that 1 ≤ t ≤ n− p. Clearly, we
have sp+t = spA+pB+t = 0. If pA + t ≤ νA, there is a clause of type C1 apA+t ∨bpB ∨sp+t .



114 Olivier Bailleux and Yacine Boufkhad

By unit propagation, this clause assigns the value 0 to apA+t . Then every variable apA+t

such that pA + t ≤ νA is assigned the value 0. By the same argument we can prove that
every variable bpB+t such that pB + t ≤ νB is also assigned the value 0. By the induc-
tion hypothesis, all the free input variables below the nodes A and B (i.e. all free input
variables) are assigned 0.
Similar arguments using the clauses of type C2 allow the derivation of the conclusion
that all the free input variables are assigned 1, if the variables sp+1 to sn−q are assigned
the value 1.

The Comparator. The comparator is a set of unary clauses that are satisfied if and
only if the instantiation of the input variables of the totalizer represents an interval
that matches with the cardinality constraint. Then the constraint µ ≤ N(EI) ≤ ρ will be
specified as follows:

∧

1≤i≤µ

(si)
∧

ρ+1≤ j≤n

(s j) (2)

We denote by Ψ(E,µ,ρ), the conjunction of the CNF formula representing the totalizer
and the CNF representing the comparator.

2.3 Correctness and Efficiency of the Encoding

The correctness and the efficiency of the proposed CNF encoding of the cardinality
constraint follows directly from Lemma 21 and 22.

Theorem 23 The CNF encoding of a cardinality constraint described in the section 2.2
is correct and efficient.

Proof

1. Correctness: It follows from Lemma 21 that for any complete instantiation of the
input variables, unit propagation fixes all the other variables of the totalizer in such a
way that the instantiation of the output variables is the unary value of the number of
input variables fixed to 1. Then the conjunction of the totalizer and the comparator
is satisfiable if and only if the number of input variables fixed to 1 belongs to the
interval encoded by the unary clauses of the comparator.

2. Efficiency: Let p be the number of input variables fixed to 1, q be the number of
input variables fixed to 0 (p + q < n), µ be the lower bound and ρ be the upper
bound of the interval encoded by the comparator. It follows from lemma 21 that
unit propagation fixes s1 to sp to 1 and fixes sn−q+1 to sn to 0. In addition, the
clauses of the comparator allow unit propagation to fix sρ+1 to sn to 0 and to fix s1

to sµ to 1.
If p > ρ then unit propagation fixes sρ+1 to 1, which is in conflict with the clause
(sρ+1) of the comparator, thus the empty clause is produced.
In the same way, if q > n−µ then unit propagation fixes sµ to 0, which is in conflict
with the clause (sµ) of the comparator.
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If p = ρ then, because the n− p output variables sρ+1 to sn−q are fixed to 0 by
the unit clauses of the comparator, it follows from Lemma 22 that unit propagation
fixes the free input variables to 0 .
If q = n−µ then, because the n−q output variables s1 to sµ are fixed to 1 by the unit
clauses of the comparator, it follows from Lemma 22 that unit propagation fixes the
free input variables to 1.

2.4 Complexity Issues

The binary tree used to specify the totalizer has Θ(logn) levels. Each of these levels
requires n linking (or output) variables, thus the totalizer includes Θ(n logn) encoding
variables.
For sake of simplicity, let us consider that n is a power of 2. For each node related to
a set of m linking (or output) variables, there are less than 2m2 clauses. Let us number
the levels from 1 to l, where l is the number of the root level. For any i such that
1 ≤ i ≤ l, the level l− i includes 2i nodes, each related to n/2i variables. Then the level
n− i includes less than 2i(2(n/2i)2) = 2n2/2i clauses. So the totalizer includes O(n2)
clauses. Given that the root node of the totalizer requires Ω(n2) clauses, and that the
comparator requires n clauses, the encoding requires Θ(n2) clauses.
Clearly enough, if the cardinality constraint is ρ ≤ N(IE) ≤ µ, all the properties de-
scribed above remain true if any variable with rank upper than µ is initially fixed to
0. This allows one to simplify the formula, using unit propagation, and then reduce its
size. If µ is the same order of magnitude as n, this simplification does not change the
size complexity of the encoding.

In the worst case, because unit propagation must fixe all the encoding variables,
restoring the generalized arc consistency requires time Θ(n logn). This time complexity
is not optimal, given that a dedicated algorithm using the rules described section 2.1 can
restore the generalized arc consistency of a Boolean cardinality constraint in time O(n).

3 Discrete Tomography Problems

We apply the encoding of the cardinality constraints described in the previous section
to a problem arising in discrete tomography. Tomography is a non-destructive method
used to examine the interior of solid opaque objects. It consists of sending X-rays at
different angles through the object and recording the attenuation at the opposite side.
The attenuation reflects the density of the object in a given direction. The problem
is then to reconstruct the studied object’s image using the attenuation of the X-rays.
Tomography is used in many fields ranging from medical imagery to geology and as
described in Gardner et al [10] in the determination of the crystalline structure using
high resolution transmission electron microscopy. Several mathematical tools have been
developed for solving the reconstruction problem in the continuous case. We focus on
the reconstruction of 2-D objects given their discrete projections in 4 directions.
This problem have been investigated under various conditions in [17, 4, 19, 9, 13, 1, 21,
3]. Recently Gardner et al [10] proved the NP-Completeness of the problem of testing
the existence and the uniqueness of a pattern given its projections in at least 3 directions.
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In the 2-D discrete case, the pattern to be reconstructed lies in a grid having n rows
and m columns. Each cell of the grid, i.e. a unitary square [i, i+ 1]× [ j, j + 1], is either
black, filled, if it belongs to the pattern or white, empty, if it does not. We will denote
the cell located at the intersection of row i and column j by ci, j. The i-th row projection
and the j-th column projection of the pattern are the numbers of filled cells in the i-
the row and the j-th column respectively. The vertical and horizontal projections of
a pattern in a grid n×m are denoted by two vectors H = (h1, ...,hi, ...,hn) ∈ Nn and
V = (v1, ...,v j, ...,vm) ∈ Nm, hi and v j being the i-th row projection and the j-th column
projection respectively. Similarly, the k-th diagonal projection is the number of filled
cells among the cells ci, j such that i+ j = k + 1. The l-th antidiagonal projection is the
number of filled cells among the cells ci, j such that m + i− j = l + 1. Figure 1 shows
the projections of the pattern 6.
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Fig. 1. A pattern representing 6 and its projections, i.e. the number of black cells, in the
four directions, yielding the vectors H = {4,3,1,1,1,5,3,2,2,5} for the horizontal lines, V =
{5,5,3,3,3,4} for the vertical lines, S{0,0,2,3,2,2,2,3,1,2,2,1,2,2,2,0} for the diagonal 45
degrees directions ,T{0,1,2,1,1,0,3,3,2,2,2,3,2,3,1,0} for the diagonal -45 degrees direc-
tions.

We adresse specifically this NP-Complete [10] problem:
RECONSTRUCT: Given m,n∈ N, 4 vectors H = (h1,h2, ...,hm), V = (v1,v2, ...,vn), S =
(s1,s2, ...,sm+n−1) and T = (t1,t2, ...,tm+n−1), is there a pattern P falling in a m×n grid
such that the horizontal, vertical, diagonal, and antidiagonal projections are respectively
H, V , S and T?
We convert this problem into SAT. Every cell ci, j in the grid is represented by a Boolean
variable xi, j such that:

xi, j =
{

1 if ci, j is filled
0 if ci, j is empty
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An instance R (n,m,H,V,S,T ) of RECONSTRUCT is then encoded into a SAT instance
F (n,m,H,V,S,T ) that is the conjunction of cardinality constraints in every direction.
Namely, F = H (n,m,H)∧V (n,m,V )∧S(n,m,S)∧T (n,m,T ) where:

H (n,m,H) =
∧

i=1..n

Ψ({xi, j, j = 1..m},hi,hi)

V (n,m,V ) =
∧

j=1..m

Ψ({xi, j, i = 1..n},v j,v j)

S(n,m,S) =
∧

k=1..m+n−1

Ψ({xi, j, i+ j = k + 1},sk,sk)

T (n,m,T ) =
∧

k=1..m+n−1

Ψ({xi, j,m+ i− j = k + 1}, tk, tk)

In order to test the efficiency of encoding this problem into CNF formula, we have
used two types of instances, randomly generated instances and hand-crafted instances.
The latter are obtained by drawing a pattern as done for Figure 1 and computing the
projections in each direction in order to get an instance of RECONSTRUCT. Note that
by solving the instance obtained, we do not necessarily get the pattern used to generate
it. The uniqueness of the the pattern corresponding to some projections can be obtained
by augmenting their number, but this is not the purpose of this work. We have also used
test instances generated by randomly filling every cell with a prescribed probability p.
Not surprisingly, some of our experiments not reported here have shown that the most
difficult instances to reconstruct were the instances built using a probability p = 0.5.
The few experimental results presented in this section meet two aims. First, verify that
the CNF encoding can be competitive with a commercial constraint programming sys-
tem for solving hand-crafted instances of the discrete tomography problem. Second,
address the scalability of the CNF encoding on the discrete tomography problem. To
this end, we compare the efficiency of solving it with the CNF encoding against the
efficiency of solving it using a dedicated solver. All experiments concerning the CNF
encoding were done with the ”state of the art” SAT solver zchaff [15].

CNF Encoding versus CHIP. This comparison is based on two series of instances de-
rived from the hand-crafted images shown figure 2. Each instance of size n×n consists
of the n first lines and the n first columns of the related image.
Two solving methods are compared for each instance: CHIP V5 [5], the commer-
cial constraint programming system from COSYTEC, and zchaff. The cardinality con-
straints were translated into the CHIP language by using the ChipAmong constraint [2].
The default heuristic of CHIP was used. Table 1 gives the run times required for solving
each instance on a SUN workstation clocked at 450 MHz.
Clearly, thanks to the proposed CNF encoding of the cardinality constraints, our test
instances can be solved with zchaff in the same run time as CHIP.

CNF Encoding versus Dedicated Solver. The preceding results show that our CNF
encoding of cardinality constraints allows zchaff to outperform the general integer con-
straint programming system CHIP on some instances of the discrete tomography prob-
lem, but these results are restricted to a few test instances. In addition, CHIP is not
specialized in solving cardinality constraints over Boolean variables.



Fig. 2. The two patterns: mouse and letters, used in the comparison of CNF encoding plus zchaff
versus CHIP.

In order to give an idea of the scalability of the proposed encoding scheme, we will
now compare it with a solver dedicated to the discrete tomography problem. To this
end, we developed an enumerative solver that maintains generalized arc consistency at
each node in the search tree and uses the following heuristic to select the branching
variable and value:
For each projection, let P be the number of 1 not yet assigned, V be the number of 0 not
yet assigned and U be the number of free variables. Of course U = V + P. The weight
w1(v)w2(v) is assigned to each variable v, where

– w1(v) is the sum of the e(P/U) for the four projections related to v,
– w2(v) is the sum of the e(V/U) for the four projections related to v.

Table 1. CPU in seconds for solving instances of the discrete tomography problem with CHIP
V5 and zchaff.

Instance CHIP V5 zchaff
mouse-12 0.04 0.09
mouse-14 0.37 0.30
mouse-16 1.60 0.41
mouse-18 2.84 4.45
mouse-20 19.8 35.4
mouse-22 >3600 92.0
letters-12 0.06 0.60
letters-14 1.41 0.66
letters-16 242 66.1
letters-18 >3600 19.8
letters-20 >3600 620
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The branching variable v is chosen among those of maximum weight. The first branch-
ing value is 1 iff w2(v) > w1(v).
Figure 2 compares the run times of zchaff and the dedicated solver on a PC running at
2 GHz, for randomly generated instances of the discrete tomography problem. It is not
very surprising that the dedicated solver clearly outperforms the association of zchaff
and CNF encoding, but, interestingly, the ratio between the two run times does not
grow accordingly to the size of the problem. We think that such a result is extremely
promising in terms of scalability and tractability of cardinality constraints under CNF
encoding.

Table 2. Dedicated solver versus CNF-encoding+zchaff on random patterns (100 instances for
each row). The fact that the instances are satisfiable introduces great variations in the ratios. CPU
is given in seconds.

Size of the grid Dedicated solver CPU Encoding + zchaff CPU ratio
15×15 0.05 2.7 54
16×16 0.04 10.6 265
17×17 0.07 19 271
18×18 0.11 24 218
19×19 0.15 56 373
20×20 0.33 85 258
21×21 0.27 127 470
22×22 1.42 136 96
23×23 1.8 136 76
24×24 4.1 215 52
25×25 8.6 267 31

4 Parity Learning Instances Revisited

The instances arising from the parity learning problem on 32 bits have been proposed
by Crawford [6] for the DIMACS challenge [12]. These instances appeared to be very
challenging and none of the algorithms existing at that time were able to solve them.
Later, in a paper by Selman & al [18], developing efficient algorithms for these in-
stances is presented as one of the ten challenges in propositional reasoning and search.
Following this challenge, two algorithms that solve the par32 instances were published,
one by Warners and Van Maaren [20] and the other by Li [14]. The two algorithms do
some specific transformations exploiting the special structure of the par32 instances.
In short, we recall only the parity learning problem expression. The reader may refer to
[6] for a full and detailed description. We give the sketch of the encoding that we have
made for these instances and the experimental results.
Given m sets of subscripts Ai (1 ≤ i ≤ m) such that Ai ⊆ {1,2, ...,n} and m bits y1,
y2,...,ym find n bits, a1, a2, ..., an such that among the m bits bi defined as

bi = yi ⊕ak1 ⊕ak2 ⊕ ...

where k j ∈ Ai, at most e are equal to 1.



120 Olivier Bailleux and Yacine Boufkhad

When e = 0 or more generally in the case where all the bi’s are assigned a value, the
problem is reduced to find an assignment to an XOR-CNF formula which is known
to be polynomial. Even if XOR-SAT is polynomial, a straightforward encoding of the
XOR clauses, as it is done in [6], lead to a problem that is difficult for standard SAT
solvers. XOR-SAT is polynomial because variable elimination can be done without
adding any XOR clause. Indeed, by performing a trivial variable elimination all the
ai’s can be eliminated. For example, from bi = yi ⊕ ak1 ⊕ ak2 ⊕ ..., one can deduce
ak1 = bi ⊕ yi⊕ak2 ⊕ ... and then ak1 can be replaced everywhere by (bi ⊕ yi ⊕ak2 ⊕ ...).
When m > n all the ai’s can be eliminated. In general we have m > n, which is the case
of the most difficult instances of this problem, indeed in [6] m is empirically chosen
to be m = 2n. We obtain, then, an XOR-CNF formula, formed by the remaining m−n
equations, involving only the bi’s subject to the cardinality constraint that at most e of
them are equal to 1. We encode then, the XOR-CNF formula using the same method
described in [6] and the cardinality constraint using the method of Section 2. We denote
the resulting formula by FC. The n equations giving the ai’s are encoded as usual into a
formula FX .
It is easy to see that given the values of the bi’s, unit propagation on FX assigns all
the ai’s the correct values. Clearly, the satisfiability of the parity learning instance is
equivalent to the satisfiability of FC. The satisfiability of FC is the hard part. By finding
a solution that satisfies FC, if any, one can derive the correct values of the ai’s by a
straightforward unit propagation performed on FX after assigning to the variables com-
mon to FC and FX the values they have in this solution.
One may argue that the variable elimination used in the above encoding is partly a
solving procedure. An answer this argument is that an analogous preprocessing, simu-
lating this variable elimination done on the XOR equations, can be done by a specific
algorithm on the benchmarks as they were encoded by [6]. However while this variable
elimination is trivial on the initial problem, discovering it on the encoded formula with-
out knowing the initial problem, is much harder. The algorithm proposed by [20] uses
a two phase algorithm as we do by separating the problem into two formulas. However,
while they use a sophisticated techniques working on the CNF formulas, we use a trivial
method to separate the hard part from the easy one by working directly on the initial
problem. This fits with the idea, explained in the introduction, about the importance of
not taking the SAT benchmarks as they are but to try to improve their encoding.
We have re-encoded the parity learning instances of the DIMACS benchmark database
and we have used, to solve them, a simple Davis and Putnam procedure [8, 7] based on
unit propagation and mom’s heuristic for variable selection. The results are summarized
in table 3, the performances of the basic DP are compared to zchaff and Eqsatz [14].
The latter has been designed for solving these instances. The aim of these experiments
is to show that these instances are not intrinsically hard but their apparent hardness
comes from their intial encoding.

5 Related Work

The only example of polynomial size CNF encoding of Boolean cardinality constraint
that we found in the literature is the one used by Crawford to propositionalize parity
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Table 3. The performances of basic DP, Eqsatz and zchaff on the parity learning instances before
and after re-encoding them. The performances are given in terms of CPU time in seconds on a
Pentium 2Ghz PC under Linux.

Instance of parity Before re encoding After re encoding
learning Eqsatz DP zchaff Eqsatz DP zchaff

par32-1.cnf 308 - - 42 24 0.9
par32-2.cnf 11 - - 37 106 205
par32-3.cnf 1241 - - 2 49 806
par32-4.cnf 190 - - 60 150 2
par32-5.cnf 2771 - - 3 1 0.9

learning problem [6]. Like us, Crawford uses a set of clauses that totalizes the number
of bits set to 1. But because integers are represented in base two, this totalizer does not
allow unit propagation to restore generalized arc consistency.

In fact, encoding constraints into CNF in such a way that unit propagation restores
arc-consistency is a very recent research topic. To the best of our knowledge, the first
contribution in this field is the paper of Gent [11] on the CNF encoding of binary con-
straints. The results of Gent are not directly comparable with ours because we do not
address the same kind of constraints. It is however interesting to note that, unlike our
encoding, Gent’s encoding allows unit propagation to restore arc-consistency with an
optimal worst case time complexity.

6 Conclusion

In this paper we proposed a new CNF encoding scheme for Boolean cardinality con-
straints, which allows unit propagation to maintain generalized arc consistency of the
encoded constraints. We experimentally showed that, using this encoding method, a
SAT solver can address discrete tomography problems and be competitive with a gen-
eral constraint programming system (Cosytec CHIP), and even with a dedicated solver.
We also showed that, associated with a technique of trivial variable elimination, the pro-
posed encoding scheme allows one to drastically improve the efficiency of solving the
par32 problem. This problem was hitherto considered as very hard, essentially because
of its encoding.
These results confirm that in the area of solving problems under CNF encoding, the
encoding scheme is as important as the solver. Then it is very important to define which
properties a ”good” CNF encoding must verify. The encoding scheme proposed in this
paper connects generalized arc consistency in the input problem to unit propagation in
the encoded problem. As a research perspective, this could be extended to cardinal-
ity constraints on non-binary domains, like the among constraint of [2] or the global
cardinality constraint of [16].
We think it could be useful to revisit the encoding schemes currently used in the SAT
benchmarks and, in a more general way, to propose new tools for efficient CNF encod-
ing of usual global and arithmetic constraints, in the spirit of Gent’s work [11] on binary
constraints.
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