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Chapter 1

Introduction

A constraint satisfaction problem (CSP),
�

, consists of

1. A set of variables �������	�	�	�
������ .
2. For each variable ��� a domain of possible values ������� ����� .
3. A set of constraints �������	�	�	�
������ .
Each variable � can be assigned a value  , denoted by �"!# if and only if  %$&�����'� �(� .
Intuitively, we want to find an assignment of values to the variables subject to the condition

that the values satisfy all of the constraints. Each constraint is over some subset of the variables,
and imposes a constraint on the values they can be simultaneously assigned. Even if it is easy to
satisfy each individual constraint, it may be difficult to find an assignment that satisfies all of the
constraints simultaneously.

More formally we make the following definitions.
A feasible set of assignments is a set of assignments ���)�*!+ ,�-�	�	�	�
����./!+ �.� such that each

of the ��� is unique. That is, no variable can be assigned more than one value.
We will only be interested in feasible sets of assignments, so from here on we will assume

assignments are feasible. Let 0 be a set of assignments, associated with 0 is a set 1�2�354�6879� 0�� :
the variables that have been assigned values in 0 . Since a (feasible) set of assignments cannot
assign distinct values to the same variable, it can have at most : elements. When it contains :
assignments it is called a complete set of assignments.

Each constraint �;� is over some set of variables 1�2�354�687<� �;��� , and the arity of �;� is the car-
dinality of this set, =81�2�354�687<� �;���>= . Every constraint �;� is a set of sets of assignments: if the
arity of ��� is ? then each element of �;� is a set of ? assignments, one for each of the vari-
ables in 1�2�354�6879� ����� . Thus our notation implies that for all @A� and @�B in ��� we must have
1�2�354�687<� @/�C�EDF1�2�354�687<� @�B5�8DG1�2�354�6879� ����� .

We say that a set of assignments 0 satisfies a constraint �H� if 1�2�354�687<� �����;IJ1�2�354�687<� 0�� and
there exists an element of �;� that is a subset of 0 . Furthermore, we say that 0 is consistent (with
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respect to a particular CSP), if it satisfies all constraints � such that 1�2�354�687<� �(� I 1�2�354�687<� 0�� .
We denote this by � ��� 4 � 4������	��
 0� .

A solution (a satisfying solution) to
�

is a complete and consistent set of assignments 0 .
Observation Any subset of a solution is consistent.

In general we are interested in finding solutions to a CSP. More specifically, we might be
interested in

1. Finding any solution (the satisfaction problem).

2. Enumerating or counting all solutions.

3. Finding a solution that optimizes some objective function.

1.1 The Constraint Domain

Within this general framework there are many specialized types of constraints, or constraint do-
mains.

A constraint domain imposes certain restrictions on

1. The values the variables can take on (i.e., the �����'� � ��� sets).

2. The type and representation of the constraints allowed.

1.1.1 The Constraint domain � �
Here the variable domain is the set of real numbers, and the constrains are expressions composed
from real numbers, the functions � , � , � , and � , the predicates D , � , � , �D , � , � , and the logical
connective � (conjunction).

Example 1 Say you have a loan for 2 years. We have the variables � , the principle of the loan,���
the final balance after the first year,

���
the final balance after the second year,  the rate of

interest, ! � the repayment after the first year, and ! � the repayment after the second year.
There are two constraints:

1.
��� D"�#�$�%�& '�(! �

2.
��� D ��� � ��� �& '�(! �

There are an infinite number of solutions to this CSP, one of them is

��� ! �*)+) �, ! ) � � �-! � !/. ) � ��� !10 ) � ��� !10+0 �-! � ! )  �
A non solution is

��� ! �*)+) �, ! ) � � �-! � ! ) � ��� !10 ) � ��� !10+0 �-! � ! )  �
If we add the additional constraints:
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� ��� D ) ,  D ) � � , ! � �$! � D � )+) .
Then there are a whole set of solutions each with a different value of � and distribution between
! � and ! � .

It is not difficult to see that if we allow a more general set of functions in our constrains the
constraint domain  ! encompasses much of what has been studied in mathematics. Even without
additional functions, this domain allows us to specify problems like finding the roots of polynomi-
als:

Example 2 Let
�

and � be the two variables, and the constrains be

� � D �*)+) � � � � � � ���� � �$0
� � D )

There are at most three solutions—the three roots of this polynomial. Of course, not all of these
roots need be solutions, as only the real roots lie in the domain of

�
.

1.1.2 The linear constraint domain

Here the domains of the variables is once again the reals. However, now we restrict the constraints
to be linear equalities/in-equalities over the variables. For example the constraint could be the
system of equations:

� � � D � � ���
� � � D �
� ��� D . ���

One nice feature of this constraint domain is that it has been well studied, and we can easily find
a characterization of the complete set of solutions by simply solving this set of equations. Fur-
thermore, linear programming algorithms can even find points in this set of solutions that optimize
linear functions defined over the variables.

1.1.3 Linear constraints over Integer Domains

Here we have the same kind of linear equality/in-equality constraints as in the previous case, but
we restrict some of the variables to take on integer values. This case has been well studied in
operations research, it is the well known the integer linear programming problem.

3



1.1.4 The Finite Domain constraint domain

Here we restrict the domains of the variables to be finite sets. Once we do this we can include any
kind of constraints. We can represent these constraints either

Intensionally The constraint is represented by a expression or program that evaluates to true or
false dependent on whether or not the assignment satisfies the constraint.

Extensionally The constraint is represented explicitly as satisfying sets of assignments. (Note that
since the variable domains are finite, the constraints must also be finite). This representation
however can have size exponential in the number of variables the constrain is over.

Finite domain constraints have been the main subject of study in AI, and they will be our main
focus in the course.

1.2 Example Constraint Problems

1.2.1 E-Commerce

Combinatorial Auctions are an important opportunity for e-commerce. Say Company A manufac-
tures and sells a number of industrial products, products that are the essential inputs for a range of
industrial processes.

Say that company B is engaged in a manufacturing process that requires as input a number of
the products sold by company A. However, for company B these products are only useful together.
If they do not get all of the inputs the remaining inputs are worthless to them.

Company A may sell to a number of other companies besides company B, and some of these
other companies might also want to purchase some of the products that B wants, but they might
not want all of them. How is company A to maximize its income?

One way is for company A to set up a combinatorial auction. The bidders make bids on bundles
of goods, and the winners of these bids get their entire bundle. The question is how does company
A decide who wins the auction?

This can be set up as a CSP as follows:

� Variables � � �-�	�	�	�
� � �  . One variable per bid.

� Domains, every domain is the set � ) � �  . � �<! )
means that

� � wins their bid and gets the
product they requested.

� Constraints. We impose a constraint between every bid
� � , ��� whose bundle has a non-

empty intersection (i.e., these two customers both want the same item). The constraint pro-
hibits the joint assignment

� � �8! � � ��� ! ���
.
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Also we have an optimization criteria. Associated with each bid
� � is a price ��� , and the

auctioneer wants to maximize ��
���E� ���

� � �

(where by multiplying by
� � we mean that we are multiplying by the value of the variable).

1.2.2 The Golomb Ruler Problem

The Golomb ruler problem is the problem of finding the shortest ruler with marks at integer location
such that every pair of distinct marks can measure a different distance.

Consider a set of � natural numbers (including 0) such that if � , � , ? , � , are numbers in the set
such that � ��� , ?&�	� , and 

� ��� �'�D 
 ?E��� � , then 
� ����� �D 
�� � ? � . That is, the difference between
any pair of numbers is distinct. These numbers are the marks on the ruler.

The Golomb ruler problem is to find, for various values of � , a set containing � marks satis-
fying the condition above such that we minimize the maximum number in the set. That is we want
to find the shortest ruler.

The decision problem version is, given a fixed length � , and the number of marks � is there a
layout of the marks within the range

) ��� that forms a golomb ruler. This can be set up as a CSP
as follows:

� Variables, ��� �-�	�	�	�
�����H .
� ������� � � �8D ) , �����'� ��� �8D"� � �	�	�	�-���; .
� Constraints, for every � , � , ? , � , such that 

� ��� � �D1
 ?E��� � and 
� ����� �D 
 ?E��� � , we have the

constraint � � ����� �D�� ? ����� .
Now we can solve the optimization version of the problem by successively solving the problems

with increasing values of � until we find a problem that has a solution.

Question 1 What feature of the Golomb ruler problem allows us to solve the optimization problem
by iterating over this sequence of decision problem?

1.2.3 Satisfiability

The question as to whether or not a set of 3-SAT clauses are satisfiable is easily translated into
a finite domain CSP. Say that we have the boolean variables � � �-�	�	�	�
� � �  and the collection of
3-clauses ���/���	�	�	�
������ (an example 3-clause might be � � ��� � ����� � � � � ), we can construct the
following CSP:

� Variables, � � �-�	�	�	�-� � �� —we use the same set of variables.

� Domains. Each variable has � TRUE � FALSE  as its domain.
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� Constraints. Each 3-clause becomes a constraint over the three variables that appear in the
clause. The constraint prohibits the unsatisfying assignment. For example for the 3-clause
� � � � � ��� � � � � � ) there would be a constraint between

� � , � ��� , and
� � � which prohibits

the assignment � � �*! TRUE � � ���H! FALSE � � � �*! TRUE  .

1.3 Local Consistency/Constraint Propagation

For most CSPs, especially finite domain CSPs finding an assignment that satisfies a single con-
straint is not difficult. The difficulty lies in satisfying all of the constraints simultaneously.

The example of satisfiability shows that the question of whether or not a solution for a finite
domain CSP exists is an NP-complete problem, so in general finding a simultaneous assignment to
all of the constraints can be computationally difficult.

One useful way of reasoning with constraints is to apply local propagation to achieve local con-
sistency. This process does not usually solve the CSP, but it can provide some useful information
about it. Additionally, for some specialized problems achieving local consistency can solve the
problem.

There are a number of simple examples of propagation:

� Bounds propagation when dealing with real or integer valued variables. For example, if we
have that

) � � � � � � , ) � � � � � ) , and the constraint
� � � , then we can propagate this

constraint to restrict the domain of
�

to the range
) � � � ) . Many more elaborate “interval”

calculations can be identified, e.g., when
� � � � � and we have bounds on � and � .

� Often constraint problems contain functionally determined values. For example, in modeling
a combinatorial circuit as a constraint problem, we might have that the variable

�
is the

output of the AND of  �� and  
B . Thus if we know the value of  �� and  
B we can propagate
these values through the constraint to determine the value of

�
.

For finite domain constraints we can treat propagation more systematically.

1.3.1 Local Consistency in Finite Domain CSPs

First we restrict ourselves to binary CSPs. Binary CSPs are CSPs where every constraint is over at
most two variables. For binary constraints we can construct a constraint network from a constraint
problem.

The constraint network is a graph formed by making each of the variables a node and making
each binary constraint an edge between the two variables (nodes) it constraints.

On the constraint network 3 different types of local consistency can be defined.

� Node consistency.

� Arc consistency.
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� Path consistency.

First some notation. If � is a constraint between variables �)� and ��B we write it as ������� ��� , that
is we use the variables it is over as a subscript. Furthermore if the assignment ��� �*!	� ����B;! � 
satisfies �����
� ��� (i.e., ���8�*!	� ����B;! �  $ �����
� ��� ) we write ������� ���*
�� � � � . Note the order of the
values agrees with the order of the variables in the subscript. Note also that when considered to be
a set of set of assignments ���� � D ����� � , however due to our dependence on order in our notation
we have ����� � 
�� � � ��� ����� � 
 �E��� � .

Node Consistency

Node consistency is concerned with unary constraints only. It requires for every variable � , and
every value �'$ ������� � � , that � satisfy all unary constraints on � .

For example, if �����'� � �HDF� ) � � � � � � � �  and we have the unary constraint � � � , then the
CSP would not be node consistent.

We can make a CSP node consistent by simply removing all inconsistent domain elements. In
our example, we would simply remove the element � from the domain of � to obtain ������� � � D
� ) � � � � � �� .

Arc Consistency

Arc consistency is concerned with the local effects of each binary constraint. Say that �����
� ���
is a constraint (between variables �)� and ��B as per our notation). Then for every value �G$
�����'� �8� � there needs to be a value � $ ������� � B5� such that �����
� ��� 
�� � � � (i.e, we must have that
���8�*!�� ����B;! �  $ ������� ��� . If there is no such “supporting” value for � then it is clear that the
assignment ���A!�� can never appear in any solution of the CSP. Thus we may remove it. This
can be accomplished with the procedure Revise. Its inputs are two variables, � � and ��B and the
constraint between them ������ ���
Revise(V1,V2,C)

DELETE := false;
for x ������� [V1]

SUPPORTED := false
for y ������� [V2] while !SUPPORTED

if C(x,y)
SUPPORTED := true

if !SUPPORTED
����� [V1] := ����� [V1] - x
DELETE := true

return DELETE

We say that � $&�����'� �(� supports � $ ������� � � � if ���!� ��" 
�� � � � . Note that � supports � if and only
if � supports � .

If we run this procedure on the arc between �)� and ��B we will achieve consistency in one
direction only. That is every value in �����'� �)� � will have a support in �����'� � B � but there may still
be values � $ ������� � B5� for which there is no � $ �����'� ��� � such that �����
� ��� 
�� � � � . Furthermore,

7



by deleting values from �����'� ��� � we may now cause values in the domains of other variables to
become unsupported.

To achieve arc consistency we must ensure that we achieve a stable state where every value
has a support in every constraint. This can be achieved by an iterative process that converges to
stability.

Consider what happens when we remove �'$&�����'� �)� � . All variables that are constrained with
�8� may now contain values that are unsupported. However, say that we have just run Revise( � � , ��B ),
it is also clear that the removal of � from ������� �)� � will not affect any value in ������� � B5� — � was
removed because it had no supporting value in �����'� �EB � , hence no value in �����'� � B � depends on
� for support. These observations allow us to restrict the amount of work we need to do to achieve
arc-consistency, and they yield the algorithm AC-3:

AC-3()
EnforceNodeConsistency()
Queue := � (Vi,Vj) | there is an arc (vi,vj) (i �� j)
while Queue is not empty

(V1,V2) := remove an arc from Queue
if Revise(V1,V2)

Queue := Queue � (vi,V1) | there is an arc (vi,V1),
vi �� V1,
vi �� V2

Note that in the algorithm Queue is viewed as being a set, an arc is only added to it if that arc was
not already present.

Example 3 Consider the CSP:

� Variables: ���8���	�	�	�
�����
 .
� Domains: �����'� �8� �8D �����'� ��B �8D"� � � � � �� and ������� ���5�ED ������� �����8D �����'� ���;D � � � �  .
� Constraints: �	� � �8� , ��� � ��B , ��� � ��� , ��� � ��� , and ��� � ��� .

Question 2 Draw the constraint network and achieve arc consistency in it.

Observation If arc-consistency reduces the domain of some variable to the empty set, the CSP
has no solution. If arc-consistency reduces the domain of each variable to a single value, these
values are a solution. Otherwise the CSP might still have no, one, or many solutions.

AC-4 A number of improved algorithms for achieving arc-consistency have been developed.
They revolve around the idea of using improved data structures that allow one to avoid having to
scan and rescan all of the variable domains. AC-4 is a worst case optimal algorithm (although in
practice it often does not perform as well as AC-3).

We use two data structures. First, Supports[ � , � ], this is a set associated with each value of
each variable. The set contains triples, 
 � �C� �E�����!� � " � , specifying the values supported by � of � .
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For each value � supported by � the triple notes the value, the variable whose domain contains
the value, and the constraint between the variables. Second, SupportCount[ � , � , ���!� � " ], a support
count for each value of each variable. We maintain a separate support count for each constraint
that � participates in. If any of these support counts drops to zero we know that � now has lost all
of its support on the domain of � � , and that we must now delete � .

AC-4()
EnforceNodeConsistency()
Set all Supports[V,x] = �
Set all SupportCount[V,x,C] = 0
;;
;;Set up supporting values.
;;
for all arcs (Vi,Vj) (in both directions)

for x ������� [Vi]
for y ������� [Vj]

if Cij(x,y)
SupportCount[Vi,x,Cij]++
Supports[Vj,y] := Supports[Vj,y] � (Vi,x,Cij)

if SupportCount[Vi,x,Cij] == 0
FailList := FailList � (Vi,x)
����� [Vi] := ����� [Vi] - x

;;
;;Remove unsupported values
;;
while FailList is not empty

(V,x) := remove an unsupported value from FailList
for (y,V’,C) � Supports[V,x]

SupportCount[y,V’,C]--
if SupportCount[y,V’,C] == 0

FailList := FailList � (V’,y)
����� [V’] := ����� [V’] - y

As with AC-3, FailList is being treated as a set (i.e., no duplicates are allowed).
It can be noted by keeping a count we know when we have to trigger more extensive processing.

AC-4 has been the basis for the algorithms AC-6 and AC-7 which embody certain optimizations
over and above AC-4.

However, it should also be noted that the space requirements for the Supports sets is
� 
 :���� �

where : is the number of variables, � is the maximum domain size, and � are the number of edges
in the constraint graph (number of constraints). For some CSPs this can be excessive.

AC-2000 and AC-2001 Recently simple modifications that make AC-3 asymptotically optimal
(i.e., of the same order of complexity as AC-4) have been identified (Refining the Basic Constraint
Propagation Algorithm, by Christian Bessiere and Jean-Charles Regin. IJCAI-2001 pages 309–315
).

1.3.2 Generalized Arc Consistency GAC

The previous definition of arc consistency was specific to binary constraints. However, arc consis-
tency is easily generalize to the non-binary case.
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Definition 1.3.1 [Generalized Arc Consistent (GAC)]

A value � of a variable � is generalized arc consistent in a constraint � if either
� �$#1�2�354�687<� �(� , or � $+1�2�354�687<� �(� and there exists an assignment for all of the
other variables in � such that �"!�� along with these assignments is consistent.

A value � of a variable � is generalized arc consistent if it is generalized arc consistent
along every constraint.

A CSP is generalized arc consistent if all of its values are generalized arc consistent.

It is not difficult to see that if the constraint � is binary, then this definition is identical to the
previous defintion of binary arc consistency. GAC can be enforced by pruning all values that are
not GAC using an algorithm very similar to AC3. However, in this case the time complexity of the
algorithm grows exponentially with the arity of the constraint. An algorithms like AC4 can also be
developed, but then space complexity (specifically the size of the support sets) grows exponentially
with the arity of the constraint.

1.3.3 Path Consistency

Once again in the case of binary constraints we can define a higher form of arc consistency, called
path consistency.

Observation If there is no constraint between �)� and ��B we can view the constraint as being
the universal constraint. That is, we can view the “constraint” as permitting all possible values.

The next level of local consistency that has been studied in the literature, but that has not
seen much practical application is path consistency. It is the condition that for every pair of values
�'$&�����'� �8� � and � $&������� ��B5� such that ������� ���*
�� � � � , and third variable �	� there must exist a value
� $&�����'� ��� � such that �����
� ���*
�� � � � and ����� � ��� 
 �E� � � . Note that if there is no constraint between � �
and either of ��� or ��B the condition is either vacuous or it reduces to simple arc-consistency.

However, to achieve path-consistency we must remove pairs of values 
�� � � � that do not have a
path-support � . This cannot be done by removing values from the domains of variables, rather we
must augment the binary constraints so that they rule these inconsistent pairs.

In practice path consistency has limited use since

� It is computationally cumbersome to augment constraints, whereas removing domain values
can be done efficiently.

� The complexity of achieving path-consistency is cubic, rather than quadratic. This often
makes it more expensive that is worthwhile.

� Augmenting constraints has less computational value than pruning domain values.

Note that this condition over triples of variables implies the following condition (which is
where the name path consistency comes from).
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A path of length � through the nodes 
 � �	���8���	�	�	�
����� � is path consistent if and only
if for any values � $ ������� � � � and �'$ ������� ��� � , such that ���� � ��� 
�� � � � there exists
a sequence of values � � $ ������� �8� � �	�	�	�
� � ����� $ ������� ��� � such that ����� � ����
�� � � �,� ,
������� ���*
 � ��� � B�� , �	�	�
����� ��� �
� ��� 
 � �����-� � � .

Question 3 Prove that if the above condition on triples of variables holds then this notion of
consistency along any path also holds. (Note that this only makes sense when dealing with binary
constraints).

1.3.4 (
�
,	 ) consistency

A generalization of node, arc, and path consistency is the notion of ( � ,� ) consistency. It is defined
quite simply:

A CSP is ( � ,� ) consistent if whenever we choose consistent values for any set of �
variables, we can find values for any set of � additional values such that the values for
all of the � � � variables are consistent.

Remember that “consistent” means that every constraint all of whose variables are fully instantiated
is satisfied. Note that this definition is not limited to binary constrains as were the previous notions
of arc and path consistency.

� Binary Arc-Consistency is (1,1) consistency.

� Path-consistency is (2,1) consistency.

� ( � ,� ) consistency for � � � requires us to augment the constraints in the CSP to achieve it.

� (1, � ) which is called � inverse consistency can be achieved by pruning domain values only.
This case will prove to be useful when we talk about backtracking search.

We will revisit � -� consistency when we discuss graphical properties of the constraint network.
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Chapter 2

Backtracking

There are various ways of finding solutions to CSPs, and these techniques fall into two categories:
systematic, and non-systematic. Systematic techniques search for a solution systematically, thus
once they have completed their search we know whether or not the CSP has a solution. That is,
these techniques can be used to prove that a CSP is unsolvable. Similarly, systematic techniques
can also be used to enumerate all solutions and as a basis for branch and bound search that can be
used to find provably optimal solutions.

Non-systematic techniques, on the other hand employ search techniques that may or may not
find solutions, and these solutions may or may not be optimal. Thus non-systematic techniques are
solving an easier problem: they are not required to prove that their solution is optimal, and if they
can’t find a solution this does not constitute a proof that a solution does not exist. The advantage
of non-systematic techniques is that since they are solving a much easier problem, they can often
be much faster than systematic techniques.

Backtracking forms the basis of most systematic techniques. In this chapter we will describe
backtracking on finite domain CSPs.

2.1 Backtracking—Tree Search over sets of Partial Assignments

The Search Tree. The basic idea of backtracking is quite simple. It involves searching in the
space of sets of feasible variable assignments. This search space is explored by searching in a
tree in which every node makes an assignment to a variable. In particular, starting at the root
where no variables have been assigned, each node : makes a new variable assignment. The set
of assignments make from the root to : defines a sub-space that must be searched in the sub-tree
below : . Say that at the set of assignments made at node : is � D"��� �*!# ,���	�	�	�
����./!+ �.� . Then
the sub-space of assignments that must be explored below : are all the feasible sets of assignments
that extend � .

The children of : must partition the sub-space below : . Thus, if we find all of the solutions
that exist in each of the sub-spaces defined by : ’s children, then the union of these sets of solutions

12



will be all of the solutions that exist in the sub-space below : . Hence, by searching below each
child of the root, we can find all of the CSP’s solutions. Of course, we can stop the search as soon
as we find one solution, if that is all we want to find.

There are many ways of partitioning the search space below : . But the most common method
is to pick an uninstantiated variable, and partition the space by branching on each possible as-
signment to that variable. Note that we must pick an uninstantiated variable, otherwise the set
of assignments will no longer be feasible. Thus, for example, if � � is an uninstantiated vari-
able, and ����� � ���  are its possible values, we could define the children of : to be the nodes
: � , :8B , and : � where the assignments � � !�� , � � ! �

, and � � !�� respectively are made.
Hence, below : � , for example, we would explore the sub-space of feasible assignments that extend
���8�*!+ ,�-�	�	�	�-����./!# �.���� � !��� D �	� ��� � !��� .

The sub-CSP There is another way of viewing the sub-space below each node of the search tree.
Each node : has an associated set of assignments, the assignments made at : and along the path
from the root to : . The sub-space below : can also be viewed as solving a sub-CSP.

Let 0#D ���8�*!+ ,�-�	�	�	�-����./!# �.  be any set of assignments. This set of assignments gen-
erates a sub-CSP that is a reduction of the original CSP. Say that the original problem was

� D��
 �� ��� � where



is a set of variables �������	�	�	�
������ , � is a set of domains for these variable
� ������� �8� � �	�	�	�
�-������� �����  , and � is a set of constraints �������	�	�	�
������ . Then the reduction of

�
by

0 ,
���

, is a new CSP
��� D ��
 � �� � ��� � � where:

1.

 � D 
 � 1�2�354�687<� 0�� , i.e., the unassigned variables.

2. � � the domains of the unassigned variables.

3. � � : for each constraint � some of whose variables include assigned variables, i.e., � such
that 1�2�354�6879� �(���"1�2�354�6879� 0�� �D�� , we replace � with a reduction of � , and for each con-
straint none of whose variables have been assigned, we leave unchanged.

The reduction of � by 0 is simply the constraint � � which is over the unassigned variables
of � only (thus we reduce the arity of the constraint by the number of its variables that
have been assigned by 0 ). A set of assignments � (over the unassigned variables of � ) is a
member of the reduced constraint � � if and only if ��� 0 was a member of � .

For example, say that 1�2�354�687<� �(�8D"�����-����B	�����	�����	 and that 0 D"���8�*!��������H! �  . Then
1�2�354�687<� � � �HDG�����	�����	 and a set of assignments ��� B;!�� �����;! �  $ � � if and only if
���8�*!�������B;!�� �����;! �E������! � �$ � .

It should be noted that the constraints that are fully instantiated by 0 are removed (their arity is
reduced to zero). Furthermore, many unary constraints may well be created in the sub-CSP.

Constraint Checking The key idea behind searching a tree of partial sets of assignments is that
CSPs typically involve constraints over subsets of the variables. That is, although the CSP may
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well contain a constraint � such that 1�2�354�687<� �(� is the entire set of variables (such constraints are
sometimes called global constraints), it will usually also contain constraints � � where 1�2�354�6879� � � �
is a much smaller set of variables.

We can take advantage of this during the tree search by checking constraints as soon as we
have made an assignment to some or all of its variables. Suppose that at node : we have made the
set of assignments �����*!��������H! � �����;!��  , and that there is a constraint ����
� ��� between �8� and
��� which does not contain the assignments ���)�*!���������!��  . Then we know that no extension
of this set of assignments can possible satisfy all of the CSP’s constraints—all such extensions
will violate ������� ��� . Thus we do not need to explicitly explore the sub-space below node : , and
since this sub-space can have size exponential in the number of unassigned variables we can save
a considerable amount of work in the search.

Checking constraints in order to avoid searching sub-trees is the essential component of back-
tracking search, and it makes backtracking much more efficient that the naive approach of system-
atically testing all possible complete sets of assignments (a method sometimes called “generate
and test”).

Optimizations Generic Backtracking (BT) is the simplest form of backtracking search. It em-
ploys the simple technique of checking constraints only when they have been fully instantiated.
In particular, it checks whether or not the set of assignments at a node : is consistent.1 However
generic backtracking can easily be improved. Furthermore, these improvements yield such perfor-
mance gains that generic backtracking is hardly ever employed in practice. The improvements to
BT fall into two categories: constraint propagation, and intelligent backtracking.

Constraint Propagation Constraint propagation involves enforcing local consistency in the sub-
CSP below a node. This can can reduce the size of the sub-CSP, and sometimes it can
provide an immediate demonstration that the sub-CSP contains no-solutions thus allowing
us to completely avoid searching the tree below a node.

Intelligent Backtracking During our search below a node : we can keep track of the “reasons”
the search failed to find a solutions. Sometimes these reasons have nothing to do with the
assignment made at : , and thus there is no need to search below : ’s siblings—the reason
for failure remains valid in the sub-spaces below these siblings nodes as the only difference
between them and : is the assignment made at : . Thus by tracking these reasons for failure
we can sometimes backtrack to a level above : where the reason we discovered for failure is
no longer valid.

Improvements to BT have been developed in the CSP literature over a long period of time. Simi-
larly it has taken sometime to understand the structure of these improvements and the relationships
between them. In this chapter we present a uniform way of looking at all of these improvements.
However, this means that our presentation of some of these improved algorithms is often quite
different from their original presentations.

1Remember that consistency is defined as satisfying all fully instantiated constraints, see Chapter 1.
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2.2 No-Goods

The key notion used to unify these improvements is that of a no-good, or a conflict. A no-good is
simply a set of assignments that is not contained in any solution. A CSP will have many no-goods,
in general the number of distinct no-goods is exponential in the number of variables. Some of these
no-goods are obvious, e.g., the complement of every constraint is a set of no-goods. However, some
of these no-goods are very hard to find. The most obvious case is the question of whether or not
the empty set is a no-good. It is a no-good if and only if the CSP has no solution. Since finding
a solution to CSPs is an NP-complete problem, showing that a CSP has no solution is co-NP, and
hence it is highly unlikely to be solvable in less that exponential time.

In finite domain CSPs we can also view no-goods to be propositional assertions. In particular,
for any finite-domain CSP we can define a propositional language in which the atomic propositions
are all the individual variable assignments. For example, “ � �*!�� ” becomes an atomic proposition.
The meaning of these propositions is obvious—“ �)�9!�� ” asserts that ��� has the value � .

Once we have a symbol in the propositional language for each of the atomic propositions, we as
usual, are then allowed to form sentences using conjunction � , disjunction � , and negation � , and
implication � . For simplicity of notation, however, we will denote the negated atomic proposition
� 
 ����!�� � by the simpler ��� �!	� .

2.2.1 Propositional Encoding of a Finite Domain CSP

With the propositional language so defined, we can then encode any finite domain CSP directly
as a collection of propositional formulas. In particular, the CSP is encoded as the conjunction of
three sets of formulas:

Primitive Constraints We convert each constraint of the CSP into a propositional formula. Let �
be a constraint. We create a conjunction from each element of � . Let � be an element of � ; �
is a set of assignments, say � D �����*!	� � � �	�	�	�
����./!�� �.  . From � we create the conjunction

 �8�*!	� � � � �������*� 
 ��./!	� �. � . Then we disjoin together each of these conjunctions. Hence,
each constraint of the CSP � is translated into a formula of the form


 �8� !	� � � � ������� � 
 ��./!	� �. �
� 
 �8� !	� �� � ������� � 
 ��./!	� �. �
...
� 
 �8� !	�

�
� � ������� � 
 ��./!	�

�
. �

Exclusivity Each variable can only be assigned a single value. Let � be a variable of the CSP
with �����'� �(�9D � ���-�	�	�	�-��� .� . Then for � we create ? propositional formulas � ! � ���

 � �! � B �������	� � �! � .*� , � ! � B�� 
 � �! ��� � � �! �	�	�����	� � �! � .*� , . . . ,
�"!�� .
� 
 � �!���� ������� ��� �!�� . ��� � .
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Exhaustiveness In a solution each variable must be assigned a value. This yields a formula for
each variable. For example, for the variable � used in the previous example we would obtain
the formula �"!��)� �'�"!�� B ������� �'�"!�� . .

Let us call these three collections of formulas � ,
�

and � respectively. Together these formulas
capture all of the structure in a finite domain CSP, and the soundness of propositional reasoning
can be used to observe a number of things.

First the set of solutions to the CSP is implied by these formulas. That is,


 �#� � ��� � � 
 �8� !	� � � ������� �����A!�� �� �
� 
 �8�*!�� �� �������*�'��� !	� �� �
�����
� 
 �8�*!��

�
� �������*�'��� !	�

�
� �

Where each clause represents one of the � distinct solutions.
Second, the CSP has no solution if and only if �#� � ��� is unsatisfiable.
And third, the negation of every no-good is implied by � � � ��� . For example, � � � ��� �

� 
 �8�*!	��������B;!�� B�� if and only if the set of assignments ���)�*!	���-����B�!	� B
 is a no-good.
Of course, it is no easier to reason with the propositional encoding that it is to reason directly

with the original CSP encoding. The main purpose of the propositional encoding is that it can
make various properties of CSPs easier to demonstrate. Among these properties are various ways
in which no-goods can be combined to create new no-goods.

2.2.2 No-good Reasoning

Using this propositional view of the CSP we can make some simple observations about how no-
goods can be manipulated. In particular, the propositional view shows that we can compute new
no-goods by some simple reasoning steps.

Unioning a Set of No-goods Given a collection of no-goods which cover all values of a variable,
we can resolve these with an exclusivity clause to produce a new no-good. This is best illustrated
in an example.

Let � be a variable of the CSP with ������� � �8D ����� � ��� � �� . And suppose we have the following
four no-goods:

1. ��� !������8�*!�����
2. ��� ! � ����B;!�� B �����H!���� 
3. ��� !�� ������!	�	�	
4. ��� ! ��������!��	� �����H!���� 
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Since these no-goods cover all the possible assignments to � , we can union them together, remov-
ing all assignments to � , to obtain the new no-good

5. ���8�*!	��������B;!�� B �����;!��	� �����H!����  .
This operation can be easily justified by the following propositional reasoning. The four no-

goods yield the four formulas

1. � 
 � !�� ���8�*!	��� �
2. � 
 � ! � �'��B�!	� B �����H!	�����
3. � 
 � !�� �'���;!��	��� .
4. � 
 � ! � �'���;!��	� �'���H!������
These simplify to the clauses

1. � �!�� �'�8� �!����
2. � �! � ����B'�!�� B �'��� �!����

3. � �!�� �'���'�!��	� .

4. � �! � �����'�!	�	� ����� �!	���

The exhaustiveness clauses for � yields the formula

5. � !�� �'�"! � �'�"!�� �'�"! �

So we can resolve clause 5 against clauses 1-42 in a sequence of steps (including factoring out
duplicate literals) to produce the new clause

6. �8� �!	��� ����B'�!	� B �����'�!��	� �'��� �!����

This is equivalent to the formula

6. � 
 �8� !���� �'��B;!�� B �'����!	�	� �����H!	�����
And is clearly equivalent to the no-good produced by set union.

2Resolution in the propositional case is the sound rule of inference that combines two clauses together to produce
a third. In particular, we can resolve the two clauses ���������	�
�
������ and �������������
�
������� , to produce the new
clause �������
�
����������������
�
������� , where we have removed the conflicting proposition and disjoined the remaining
propositions. In addition we can remove duplicate literals from the new clause in a process called factoring.
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Constraint Filtered Unioning of no-goods We can refine the first case if we happen to have a
constraint between two variables. Say that we have a constraint � ���
� ��� between variables ��� and
��B . Furthermore, say that the supports for �)� ! � on ��B are ��B'! � and ��B�! �

(i.e., only
these assignments satisfy the constraint given that �)�H! � ). Then suppose we have the following
collection of no-goods:

1. ����B;! ��������!	�	�	
2. ����B;! � �����;!��	� �����H!���� 
3. ����B;! � ������!	�	�

4. ����B;! ��������!��	� �����;!����	
Then a new no-good is

5. ���8�*! ��������!	�	� �����;!	���	
In other words, if the set of no-goods cover the supports for an assignment, e.g., � � ! � we

can union these no-goods together, removing the assignments to the supporting variable, adding
the supported assignment, to obtain a new no-good.

Again we can use the propositional encoding to justify the operation. In particular, we have
from the constraint between ��� and ��B the formula ���H! � � ��B�! � � ��B�! �

. In clause form
this is �8���! � � ��B(! � � ��B ! �

. We can resolve this against the two clauses produced by the
first two no-goods:

1. ��B'�! � �'���'�!��	�

2. ��B'�! � �'���'�!��	� �'��� �!����

To obtain the no-good

1. �8� �! � �'���'�!��	� ����� �!	��� .

This is the same as the no-good computed by set manipulations.

Other no-goods It is clearly possible to produce other no-goods as in general all no-goods can
be generated by propositional reasoning. However, these no-goods will have to be produced during
the tree search, and thus we can only utilize easily computed no-goods. Both types of no-goods
mentioned here will be utilized in the tree search algorithms developed in this chapter. It is an open
question as to whether on not other useful types of no-goods can be produced to aid tree search
algorithms.

18



2.3 Depth-First Search

Typically the tree of partial assignments is searched depth-first. Breadth-first, best-first, and other
types of search algorithms could be utilized. However, the best performing algorithms need to
store a fair amount of data at every node (this extra data is used to optimize various computations),
and the best-first algorithms can require storing a large number of nodes.

Depth-first search will only ever need to store a linear number of nodes (linear in the number of
variables of the CSP), and thus have a clear space advantage. Furthermore, best-first and breadth-
first search have their most significant advantage of depth-first search when the search space has
many cycles. In such search spaces depth-first search may visit the same node an exponential
number of times, significantly degrading its performance.3 The search space of feasible partial sets
of assignments, on the other hand, has no cycles. At each node we generate an partition of the
remaining search-space (partitions are exclusive and exhaustive), thus the sub-space below each
node is exclusive of all the other sub-subspaces in the search tree. It is perhaps for this reason that
all of the backtracking algorithms developed have utilized depth-first search.

The Current Node During the search we visit various nodes in the tree, sometimes we descend
to visit the children of a node, and sometimes we backtrack to return to visit one of the nodes
ancestors or one of its siblings. We call the node that the search is currently visiting the current
node and we call the set of assignments made at the current node, i.e., the assignments made along
the path from the root the current node the current assignments. We call the set of uninstantiated
variables at the current node the future variables, and the set of instantiated variables the past
variables. Sometimes we call the variable assigned at the current node the current variable.

2.3.1 The No-goods encountered during Search

As we perform the depth-first search three different types of no-goods are frequently encountered.

1. During search the algorithms will check the consistency of the current assignments.4. If we
find that this set of assignments is inconsistent because it fails to satisfy a constraint, say � ,
we have discovered a no-good that lies in the complement of � . For example, if � is over
the variables ��� and ��B , and the current set of assignments makes an assignment to � � and
��B that violates � , then the this pair of current assignments is a no-good.

2. Search allows us to discover no-goods that cover every value of a variable. We can then
union these no-goods together to obtain a new no-good as described above. Say that the
children of a node : cover all assignments to the variable � (i.e., for each of � ’s possible
values there is a child of : that assigns � that value). Then after we have completed the
search of all of : ’s children we will have computed a set of no-goods that cover all of � ’s

3Depth-first search has no memory of the nodes it has previously visited.
4More generally, we may check the consistency of a set of assignments that extend the current assignments
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possible values. We can union together these no-goods, discarding the assignments to � , to
obtain a new no-good. This no-good can be viewed as having been produced by resolving
together the no-goods produced by the search. If we have a constraint between two variables,
we can also resolve together no-goods filtered by the constraint, as described above.

3. Many of the backtracking algorithms perform constraint propagation as they perform search.
The idea here is that as we make new assignments a reduced CSP is produced. The search
algorithm can then enforce some degree of local consistency in the reduced CSP. Enforcing
local consistency in this way is called constraint propagation. As we have seen many forms
of local consistency can be achieved by pruning values. In this case these values will be
pruned from the domains of the future variables.

There is an implicit no-good involving each of these pruned values. In particular, the value
is pruned because given some subset of the current assignments the value cannot participate
in any solutions. Hence, if we can identify the subset of the current assignments that were
the “reason” for the value pruning, we will be able to construct a new no-good consisting of
that subset and the pruned value.

The problem we encounter is that an exponential number of no-goods are encountered during
search. Furthermore, many of these no-goods will not be useful in any other part of the search.
However, many of the improvement to generic backtracking can be viewed as mechanisms for
identifying and storing no-goods that can be use to optimize the remaining search.

Even with these mechanisms, however, we can still accumulate an exponential number of no-
goods. Hence, some scheme is needed to delete many of these no-goods. A common technique
used in conjunction with depth-first search is to remember no-goods that contain assignments from
the current set of assignments (they might also contain a small number of assignments to the future
variables). In this case we can employ automatic-forgetting on backtrack. That is, we automatically
delete the no-good as soon as one of the current assignments it contains is undone by backtracking.

No-Goods stored as Sets of Levels The no-goods tracked by the algorithms we will discuss in
this chapter contain at most one assignment to a future variable. The rest of their assignments are
totally contained in the current assignments. Thus a common organizational scheme is to associate
these no-goods with the value of the future variable they assign. That is, if the no-good contains
the assignment � ! � where � is a future variable, we will associate it with the value � of �
(in the implementation this will mean that � of � will contain a pointer to this no-good). Then
since the remaining assignments in the no-good are all contained in the current assignments, we
will store these assignments as a set of integer levels. Each of these current assignments was
made at a particular level along the current path (counting the root where no assignment has been
made as level 0), thus the backtracking trail contains sufficient information to recover the particular
assignment associated with each level.

We can union together these sets of levels in exactly the same fashion as unioning together
sets of assignments—it is easy to map the operations on sets of levels to operations on sets of
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assignments. We can also quite easily delete the no-good as soon as we backtrack to the maximum
level it contain (once we backtrack to that level the search will undo the assignment at that level).
Finally, this method of storing no-goods as sets of levels also gives us more flexibility when dealing
with dynamic variable orderings (see Chapter 3).

2.3.2 No-goods over Unenumerated Solutions

In some cases we want to use depth-first search to enumerate all solutions. The search will uncover
a solution when it finds a consistent complete set of assignments at depth : of the search tree
( : is the number of variables in the CSP). Once a node containing a solution has been visited
the algorithm can “enumerate” it—this might involve printing it out or performing some other
operation on it. Since the depth-first search proceeds left to right in the tree, we will never find this
solution again.

One way in which we can capture this is to redefine no-goods as being sets of assignments
that cannot appear in any unenumerated solution. Once we enumerate a solution it becomes a
no-good—it cannot appear in another unenumerated solution. By manipulating these no-goods
in the same manner as the other no-goods (e.g., unioning collections of enumerated solution no-
goods together) we can obtain a uniform treatment of the two cases where we want to find the first
solution and where we want to find all solutions.

The algorithms described in this chapter do exactly this. They view the enumeration of a solu-
tion as the discovery of a new no-good. That no-good then plays exactly the same role as the other
no-goods discovered during search (how these no-goods are used depends on the backtracking
algorithm). Thus all of these algorithms can be used for both purposes.

2.4 Backtracking Algorithms

As mentioned above, tree search depends on being able to partition the sub-space below a node.
There are many conceivable ways of partitioning this space, but the typical method is to split on
all possible values of one of the future variables.

This is the method used in all of the algorithms we describe here, and it is the standard method
used in the CSP literature. The choice of which future variable to split on is critical to performance,
and we will discuss this choice further in Chapter 3.

2.4.1 Using No-goods

Above we described the different types of no-goods depth-first search encounters during search.
Different backtracking algorithms are generated by different ways in which these no-goods are
stored and used. The manner in which the no-good is stored is also critically related to how it can
be subsequently used, as will become apparent later.
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However, there are two generic ways in which the no-goods discovered during search can be
used to improve backtracking.

Using No-goods for Intelligent Backtracking No-goods can be used to justify intelligent back-
tracking. Some backtracking algorithms always backtrack to the previous level. This is called
chronological backtracking. However, by doing more explicit manipulation of no-goods other
(non-chronological) backtracking algorithms are often able to backtrack many levels in one step.

Say that during search we are at level 11 of the search tree. We have completed searching all
of the children of the current node, and by unioning together the no-goods we discovered in each
of these sub-spaces we generate the new no-good (represented as a set of levels) � � � � � .  . This
no-good means that no solution can contain the assignments made at levels 1, 3 and 5. Thus there
is no need to continue searching at level 11. In fact, this no-good justifies backtracking all the way
to level 5, and undoing the assignment made there.

Using No-goods for Domain Pruning The second important use of no-goods is for pruning
domain values. Say that during search we have discovered the no-good � � � � � ����� !��� , i.e., the
assignments made at levels 1, 2, and 4 along with the assignment � ! � to the future variable
� is a no-good. Then clearly there is no need to try the assignment � ! � below level 4 of the
current path. By pruning this value from � ’s domain, and then restoring it once we backtrack to
level 4 and retract the assignment made there, we can improve the efficiency of the search of the
subtree below level 4. In particular, if we did not prune the value � of � we might have to consider
this assignment many times in this subtree even though we already know it to be invalid given
that the assignments at level 4 and above remain intact. It should also be noted that each time we
consider this assignment we might have to do a considerable amount of work to demonstrate that
no solution extends it.

When is it legitimate to prune a value of a variable to a particular level of the search tree? We
make the following definition.

It is sound to prune a value � of variable � to level � if there exists no unenumerated solutions
in the subtree below level � (of the current path) that contains �"! � .

Observation. It is not difficult to demonstrate that it is sound to prune value � of variable � to
level � if and only if there exists a no-good containing only assignments made at level � or above
along with � !�� .

2.4.2 Backtracking Algorithm Template

The backtracking algorithms can be viewed as particular instantiations of template shown in Fig-
ure 2.1.

The algorithm performs a DFS of the tree of partial assignments by invoking itself recursively.
The search is initiated at level 1 by the call TreeSearch(1). If all of the variables have been
assigned the set of current assignments is a solution, and we can enumerate that solution.
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TreeSearch(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

set � 1,...,level-2 � as a new no-good for assignment
at level-1

return(level-1)
else

return(0)

V := pickNextVariable()
BTLevel := level
for x � CurrentDom[V]

assign(V,x,level)
if checkConsistent(V,x,level)

propagateConstraints(V,x,level)
BTLevel := TreeSearch(level+1)

undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTlevel := computeBackTrackLevel(V,level)
setNoGoodOfAssignmentatBTLevel(BTLevel,V,level)
return(BTLevel)

Figure 2.1: TreeSearch Algorithmic Template

The global variable FINDALL is set to true if we want to find all solutions. If we do then since
we have just enumerated the solution, we know that no unenumerated solution can contain the set
of assignments made at levels 1 through level-2 along with the assignment made at level-1.
Thus, the set � 1,...,level-2  is a new no-good for the assignment made at level-1.5 That
is, the last assignment made, at level-1, cannot be used again until at least one of the previous
assignments made is undone. Otherwise we would simply obtain the same solution.

Otherwise, if we only want to find the first solution, we can backtrack to level 0, thus unwinding
the recursion.

If there are unassigned future variables, we call the subroutine pickNextVariable to de-
termine which future variable to split on next. pickNextvariable uses heuristics to decide
which variable would be best to split on next, given the set of assignments that have already been
made so far. There are, however, two special cases:

1. There is some variable with an empty CurrentDom. Then pickNextVariable must
return one of these variables. The presence of such a variable indicates that the current path
is a deadend—there is no compatible assignment that can be made to the variable with the
empty domain. By returning the variable that has had a Domain Wipeout, TreeSearch can
compute a suitable backtrack level as determined by the wipeout variable.

5By stating that a set is a no-good for an assignment ����� , or for a particular value � of a variable � we mean
that if we add ����� to this set we obtain a no-good.
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2. If the first case does not hold, and there is a variable with a single value in its Current-
Dom, then pickNextVariable should return one of these variables. This is simply an
optimization—the assignment to this singleton value variable is forced, so we may as well
make the assignment so that we can immediately propagate all of its consequences.

3. If neither of the first two cases hold, then pickNextVariable can decide which of the
future variables to choose next using some heuristic ranking.

Once we have chosen the variable to split on, we then explore the subtree generated by each of
its remaining values. For each value, we assign the variable that value and check the consistency of
the newly augmented current set of assignments (checkConsistent). If the new set of current
assignments is consistent we can then perform any necessary local propagation entailed by this
new assignment (propagateConstraints) and then recurse to the next level.

After this we must undo the assignment and all of its consequences prior to trying the next
value. For example, if the assignment caused us to pruned values from the domains of the future
variables we must now restore those values.

If the value was consistent and we called TreeSearch recursively it could have been that in
the subtree below, TreeSearch found a reason to backtrack above the current level. In this case
BTLevel would have been set to a higher level, and we will prematurely terminate the examina-
tion of values of the current variable and return to the previous level (where we will continue to
return until we reach the proper backtrack level).

Finally, if we ended up examining all values of the current variable the for loop would terminate
normally. At this point in the search there would be some (perhaps implicit) no-good containing
each of the values in the current variables domain. (Note that we would have no-goods for all of the
values of the variable’s original domain, not just for the values in the current domain). We will then
use these no-goods to compute a level we can soundly backtrack to. That is, the highest level we
can backtrack to while provably not missing any solutions. Once this backtrack level, BTLevel is
computed by computeBackTrackLevel, we have a (perhaps implicit) no-good that contains
the assignment made at BTLevel, so we record this no-good, as it is the no-good for one of the
values of the variable that was split upon at BTLevel. Thus, once we try all of the values of the
variable at BTLevel we will have a no-good for each of them, and we can recursively apply this
same computation to backtrack from BTLevel.

The last thing TreeSearch does is return BTLevel as the backtracking level, which will cause
the recursion to unwind up to this level.

2.4.3 Generic Backtracking (BT)

The earliest and simplest instantiation of TreeSearch is the generic backtracking algorithm BT.
The BT algorithms is distinguished by the fact that it does perform any explicit storage of no-goods
nor does it perform any constraint propagation. Rather it simply iterates over the variable domain
with the implicit knowledge that some no-good exists for all of the values already iterated over.
The algorithm is given in Figure 2.2. Once BT has chosen a variable � to split on it examines all
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BT(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

return(level-1)
else

return(0)

V := pickNextVariable()
BTLevel := level
for x ������� [V]

assign(V,x,level)
if checkConsistent(V,x,level)

BTLevel := BT(level+1)
undo(V,x,level)
if BTLevel < level //Only occurs when BTLevel == 0

return(BTLevel)

return(level-1)

Figure 2.2: Generic Backtracking (BT)

of the values in � ’s original domain, ������� � � . In particular, since it does not perform any domain
pruning, CurrentDom will always be equal to the original domain. For each of these values �
it checks the consistency of the current set of assignments when augmented by the assignment
�G! � (checkConsistency). If this augmented set of assignments is inconsistent then BT
has “discovered” a no-good. However, since BT does not explicitly store this no-good, all that we
know once checkConsistency returns is that the entire set � � �	�	�	�-� level-1 ��� ! �� is a
no-good.

Suppose that at level � we split on the variable � finding that every value of � is incon-
sistent with the prior assignments. We call such a node where the search does not recurse to a
deeper level a leaf node. Suppose that �����'� �(� D � �-�	�	�	�
��� . . At this point we know the no-
goods � � �	�	�	�
� level-1 ���"!��)�� , . . . , � � �	�	�	�
� level-1 ���"!��E.� . Thus we can union these
no-goods (Section 2.2.2) to obtain the new no-good � � �	�	�	�
� level-1  . This no-good means that
we must (1) backtrack to the previous level, and (2) the no-good of the value assigned at that
previous level must be � � �	�	�	�-� level-2  .

We can then argue inductively that at every level � of the search tree, once we have examined
all of the values of the variable � assigned at level � we will find one of two things

1. Some of the values � of � were inconsistent with the prior assignments, and thus we have
the implicit no-good associated with them � � �	�	�	�-� � � � ��� !	�) .

2. Some of the values � of � generated searchable subtrees but that once we backtracked from
those subtrees the implicit no-good associated with them � � �	�	�	�
� � � � ���"! �  .

Hence, at the end of the for loop, the implicit union over these no-goods will the no-good � � �	�	�	�
� � � �  ,
and we must always backstep to the previous level.

25



In sum, BT must always backstep to the previous level due to the nature of the no-goods it
discovers during search. Furthermore, since these no-goods are so uniform (they always contain
all of the previous levels), there is no need to explicitly record or manipulate them.

2.4.4 Backjumping (BJ)

One early empirical observation is that BT often displays a behavior called thrashing. Thrashing
is where BT explores multiple copies of a subtree in which it is doomed to discover the same flaw
time and time again. This lead to early mechanisms for allowing BT to escape some instances of
thrashing.

The Backjumping (BJ) algorithm was one early improvement over BT. The idea in BJ was to
keep some additional information about the no-goods discovered during consistency checking. To
provide the details of BJ we must examine more closely the manner in which consistency checking
is performed.

We can check whether or not the set of assignments made at levels 1 through ? , 0 D ��� �/!
��� , . . . , ��. ! � .� is consistent by checking whether or not it satisfies each of the constraints
it fully instantiates. Now consider what happens when, as in BT, we incrementally increase 0
by descending to a new level. Say that 0 is known to be consistent, and we add to it the new
assignment � � ! ��� . Clearly, we do not need to recheck all of the constraints that were over
the previous variables �����	�	�	�
����. . Rather, we simply need to check all those constraints � such
that � �%$ 1�2�354�687<� �(� and 1�2�354�6879� �(� I 1�2�354�6879� 0�� � � � . Furthermore, as soon as we find
one violating constraint we can stop with the knowledge that the augmented 0 � � � ! ��� is
inconsistent.

BJ organizes these constraint checks in a different manner so that it can detect the earliest level
at which � �E! ��� became inconsistent. In particular, it works level by level down the search tree,
at each level � checking the consistency of the set of constraints � such

� � $"1�2�354�687<� �(� and 1�2�354�6879� �(�)I ���8�-�	�	�	�-��� �  �

where ��� is the variable that was assigned at level � .
At the first level � at which there exists a constraint � which 0 � ��� ��!����C fails to satisfy, BJ

knows that � � �	�	�	�-� ����� ��!����C is a no-good.
To track this information, BJ stores the maximum level over all of the values of each variable

of the no-good discovered for that value. After it has examined all of the values of the variable it is
able to backtrack to that maximum level, say � . However, since it has only stored the maximum
level of all of its value no-goods, when it backtracks to level � the no-good it passes back for the
value assigned at that level is � � �	�	�	�-��� � �  . And, as we will see, this means that once BJ has
made a backjump it must subsequently backstep to the previous level.

The algorithms is given in Figure 2.3.
Like BT, BJ does no domain pruning, so we examine all values in � ’s original domain,

�����'� �(� , and for each of these values it checks consistency of the current set of assignments when
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BJ(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

maxBJLevel[level-1] = level-2
return level-1

else
return(0)

V := pickNextVariable()
BTLevel := level
maxBJLevel[level] := 0
for x ������� [V]

assign(V,x,level)
if (M := checkConsistentBJ(V,x,level)) == level

BTLevel := BJ(level+1)
else

maxBJLevel[level] = max(maxBJLevel[level], M)
undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := maxBJLevel[level]
maxBJLevel[BTLevel] := max(maxBJLevel[BTLevel],BTLevel-1)

// Note that this max is equal to BTLevel-1.
return(BTLevel)

checkConsistencyBJ(V,x,level)
for i := 1 to level-1

forall C such that
1. V �����������
	 [C]
2. All other variables of C are assigned at level i or above

if !checkConstraint(C) //Check agains current assignment.
return(i)

return(level)

Figure 2.3: BackJumping (BJ)

augmented by the assignment � ! � . However, unlike BT, BJ’s consistency checking routine
returns the minimum level at which it detects an unsatisfied constraint. BJ stores the maximum
over all of its values of the no-good detected for these values.

Suppose that at level � splitting on � yields a leaf node. Then BTLevel = maxBJLevel[ � ]
will be some level less than � . Since each of � ’s values was discovered to be inconsistent, and
BTLevel is the maximum level of all of these inconsistencies, we know that for every value
�'$ ������� � � , � � �	�	�	�-� BTLevel ���"!	�) is no-good. Note that a shorter no-good might exist for
some of these values � , but since BJ only stores the maximum, this is the only no-good that we
know for certain applies to each of the values of � .

The union of these no-goods yields the new no-good � � �	�	�	�-� BTLevel  , and we can legiti-
mately backtrack to level BTLevel. Furthermore, the no-good of the value assigned at BTLevel
becomes � � �	�	�	�-� BTLevel � �  , and this value must be considered when computing the max-
imum no-good level of the variable assigned at BTLevel. Hence, when we backtrack from
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BTLevel, and we union together the no-goods of the values of the variable assigned at that
level, we will obtain the new no-good � � �	�	�	�
� BTLevel � �  and we will have to backstep from
BTLevel.

Hence it is not hard to see that at any non-leaf node where we recurse on at least one value of
the current variable, the maximum backtrack level will be set to be the previous level. In particular,
it is only at leaf nodes that we can have non-trivial backjumps.

2.4.5 Conflict-Directed Backjumping (CBJ)

The reason that BJ can only backjump once lies in its representation of no-goods. It only stores
the maximum level of the no-good. Thus, all that it is able to conclude is that all of the levels from
level 1 down to this maximum is the no-good, and once that maximum has been used to generate
a backjump, the rest of the levels in the no-good force it to subsequently backstep.

CBJ stores the no-good explicitly. In particular, it stores a dynamic updated union of the no-
goods associated with each of the variables values. As a no-good is found for each value this union
is augmented. Hence, once all of the values have been examined, the stored set is the new no-good,
and CBJ can make direct use of it to guide backjumping and it can be passed on as a no-good for
the value we backjump to.

CBJ gets some of its no-goods from checking constraints, and like BJ it organizes these con-
straint checks so as to detect the earliest level at which the current assignment became inconsistent.
In particular, if the current assignment � � !���� fails to satisfy a constraint � , then the levels at
which the other variables of � were instantiated along with � �<! ��� is a no-good. Thus we can
union this no-good into the single no-good maintained by CBJ for the variable � � . The no-goods
for the values that are consistent will be passed back by a lower level of the search tree when we
backtrack to undo the assignments generated by these values.

The algorithm is given in Figure 2.4
Consider CBJ’s behavior at a leaf node at level � where it has split on the possible values of

� . Each value of � will have a no-good returned for it by checkConsistentCBJ, and these
no-goods will be unioned together into the set NoGoodSet[ � ]. Note that level � will be removed
from each no-good added to this set. Hence, at the end of the for loop there will be some set of
previous levels in NoGoodSet[ � ], BTLevel which is the maximum of this set, will be above � ,
and CBJ will backtrack to some prior level.

Suppose � � is the variable assigned at this backtrack level. Then just prior to backtracking
CBJ will add the new no-good it computed into the set of no-goods for � � . Again, however, it
will delete BTLevel from this set prior to unioning it into the no-good set of � � . So recursively,
once we have examined all of the values of � � , CBJ will again be able to compute a no-good and
backtrack again.

Since only a subset of the levels are passed back as a no-good to � � , once we exhaust all of the
values of � � it may well be that the no-good for � � allows once again for a non-trivial backjump.
Hence, CBJ is able to perform non-trivial backtracks at non-leaf nodes as well as at leaf nodes.
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CBJ(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

NoGoodSet[level-1] := � 1,...,level-2 �
return level-1

else
return(0)

V := pickNextVariable()
BTLevel := level
NoGoodSet[level] := �
for x ������� [V]

assign(V,x,level)
if (NoGood := checkConsistentCBJ(V,x,level)) == �

BTLevel := CBJ(level+1)
else

NoGoodSet[level] = NoGoodSet[level] � (Nogood - � level � )
undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := max(NoGoodSet[level])
NoGoodSet[BTLevel] := NoGoodSet[BTLevel] � (NoGoodSet[level]- � BTLevel � )
return(BTLevel)

checkConsistencyCBJ(V,x,level)
for i := 1 to level-1

forall C such that
1. V �����������
	 [C]
2. All other variables of C are assigned at level i or above

if !checkConstraint (C) //Check agains current assignment.
return(Levels ���������
	 [C] were assigned)

return( � )

Figure 2.4: Conflict Directed Backjumping (CBJ)

2.4.6 Value Specific CBJ (vSCBJ)

One more improvement can be made to CBJ. CBJ maintains only one no-good for each variable,
dynamically unioning together all of the no-goods it discovers for the variable’s values. Value
specific CBJ instead maintains an explicit no-good for each variable. Then, when it backtracks,
if there exists a constraint between the variable we are backtracking to and the variable we are
backtracking to, vSCBJ can apply constraint filtered unioning of the no-goods. Potentially, this
can allow us to pass smaller (more powerful) no-goods back up the tree when backtracking. This
in turn can lead to longer backjumps.

The algorithms is given Figure 2.5

29



vSCBJ(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

NoGoodSet[VarAt[level-1],ValAt[level-1]] := � 1,...,level-2 �
return level-1

else
return(0)

V := pickNextVariable()
BTLevel := level
for x ������� [V]

assign(V,x,level)
if (NoGood := checkConsistentCBJ(V,x,level)) == �

BTLevel := vSCBJ(level+1)
else

NoGoodSet[V,x] = Nogood - � level �
undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := max ���������
	 �� (NoGoodSet[V,x])
C := Constraint between VarAt[BTLevel] and V

//C is the universal constraint if there is no constraint
//C, such that ���������
	 [C] = � VarAT[BTLevel],V � ,
//between these two variables exists.

NoGoodSet[VarAt[BTLevel],ValAt[BTLevel] :=
����� ���������
	 ���������������� � !#"$	 %�&('*),+-)$� �/. �10 NoGoodSet[V,x] - � BTLevel �

return(BTLevel)

Figure 2.5: Value Specific CBJ (vSCBJ)

2.4.7 Adding Domain Pruning

Value specific Conflict directed backjumping makes an inefficiency that all of the previous algo-
rithms possess apparent. Consider the example where at level 10 we have split on the variable � ,
and tried each of the values in its domain ������� � �/D ����� � ���  . Say that for each value we had
found the following no-goods (perhaps via consistency checking, perhaps via search in the subtree
below): for � , �32 
�� � D � � � � �-0� (i.e., � � � � �-0 ��� !��� is the no-good), �32 
 � � D � � � � � �� , and
�32 
����ADG� � � �  . vSCBJ would then decide to backtrack to level 6. Say that there was no con-
straint between the variable at level 6 and � , thus we pass back the union over all of the no-goods
(minus the backtrack level), � � � � � �� as the no-good for the value assigned at level 6. Now we try
a different value at level 6, and search the subtree below that value.

In the new subtree below level 6, we might again try to split on variable � . And again we would
attempt all of the values � ��� � ���  . However, we already know that there is still a valid no-good for�

and for � —we backed up far enough to make � a possibility again, but not far enough to make
�

or � valid again. The vSCBJ algorithm will ignore these no-goods, proceed to rediscover perhaps
new no-goods for these values, and then overwrite the old no-goods. This is potentially wasted
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work. Furthermore, it could have been that the previous no-good for
�

or � was discovered only
from searching a large subtree below these values. Hence, the rediscovery of a no-good for these
values could require a lot of computation.

We can take better advantage of the no-goods for specific values discovered during search by
doing domain pruning. To accomplish this we need some simple data structures and subroutines.

1. currentDom[V], for every variable we maintain a domain of current values. The original
set of values is stored in the set ����� [V].

2. prunedVals[i], for every level of the search tree (from 0 through : where : is the
number of variables of the CSP) we have a set of variable value pairs, (Var,val). A pair

 � ��� �;$ prunedVals[i] means that � has been pruned back to level � .

3. prunedLevel[V,x], for every variable and value we set this array entry to be � if that
value has been pruned to level � . If the value is unpruned the value of this array entry will
not matter.

4. prune(V,x,i). This subroutine removes x from currentDom[V], places the pair
(V,x) into prunedVals[i], and sets prunedLevel[V,x] to be i.

5. undo(V,x,level). Now this subroutine not only undoes the assignment � ! � it
also restores all of the values that are in the set prunedVals[level], and for each of
these values it empties their associated NoGoodSet entry. That is, for every pair (V,x) $
prunedVals[level] it puts x back into currentDom[V] and sets NoGoodSet[V,x] D
� .

2.4.8 Domain Pruning Algorithms

With these data structures in place we can give domain pruning versions of the previous algorithms.
As we had noted before a value � of a variable � can be pruned to level � whenever � is the
maximum of the no-good discovered for � .

Value specific CBJ with domain pruning is given in Figure 2.6 Note that in vSCBJ+P we iterate
over the values in currentDom[V]. This occurs in all of the algorithms that do domain pruning.

It should be noted that once we prune every value back to the maximum of the no-good we
discover for it, we can compute the backtrack level BTLevel by simply taking the maximum of
these pruning levels. An alternate way of looking at this is that we need to backtrack to a level at
which at least one value of V will be restored, and BTLevel is precisely this level.

Even though CBJ does not keep value specific no-goods we can still use the value no-goods as
soon as we discover them. Once these no-goods have been unioned into the variable’s no-good set,
we lose the value specific information. The algorithm is specified in Figure 2.7

And finally we can even obtain some advantage from domain pruning in the Backjumping
algorithm (Figure 2.8).
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vSCBJ+P(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

NoGoodSet[VarAt[level-1],ValAt[level-1]] := � 1,...,level-2 �
prune(VarAt[level-1],ValAt[level-1],level-2)
return level-1

else
return(0)

V := pickNextVariable()
BTLevel := level
for x � Currentdom[V]

assign(V,x,level)
if (NoGood := checkConsistentCBJ(V,x,level)) == �

BTLevel := vSCBJ+P(level+1)
else

NoGoodSet[V,x] = Nogood - � level �
prune(V,x,max(NogoodSet[V,x]))

undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := ����� ���������
	 �� prunedLevel[V,x]
C := Constraint between VarAt[BTLevel] and V

//C is the universal constraint if no constraint
//exists between these two variables

NoGoodSet[VarAt[BTLevel],ValAt[BTLevel] :=
����� � ������� 	 �� ������������� � !#"$	 %�&('*),+-)$� �/. �10 NoGoodSet[V,x] - � BTLevel �

prune(VarAt[BTLevel],ValAt[BTlevel],
max(NoGoodSet[VarAt[BTLevel],ValAt[BTLevel]]))

return(BTLevel)

Figure 2.6: Value Specific CBJ with Pruning (vSCBJ+P)

Although the surface form of BJ+p is quite different, this algorithm is a version of what has
been called BackMarking plus backjumping (BMJ).6

2.4.9 Algorithms that perform Constraint Propagation

One flaw in the backtracking algorithms presented above is that often when we instantiate a vari-
able the reduced CSP may have an “obvious” flaw. For example, it might fail to be node consistent
or arc consistent. However, because we never explicitly compute the reduced CSP the search might
not notice this.

For example, it could be that once we assign a value to two variables, there is no value re-
6In these algorithms it can sometimes be possible to optimize when we prune values to the previous level. Often

we need not do the actual pruning, rather it can be possible to keep track of these “single-level” pruned back values by
simply using the state implicitly contained in the for loop that iterates over the variables domain. The counter for this
loop tells us which values of the variable have already been processed.
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CBJ+P(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

NoGoodSet[level-1] := � 1,...,level-2 �
prune(VarAt[level-1],ValAt[level-1],level-2)
return level-1

else
return(0)

V := pickNextVariable()
BTLevel := level
NoGoodSet[level] := �
for x � currentDom[V]

assign(V,x,level)
if (NoGood := checkConsistentCBJ(V,x,level)) == �

BTLevel := CBJ+P(level+1)
else

prune(V,x,max(Nogood- � level � ))
NoGoodSet[level] = NoGoodSet[level] � (Nogood - � level � )

undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := max(NoGoodSet[Level]) //This is = �����*���������
	 �� prunedLevel[V,x]
NoGood := NoGoodSet[level]- � BTLevel �
prune(VarAt[BTLevel],ValAt[BTLevel],max(NoGood))
NoGoodSet[BTLevel] := NoGoodSet[BTLevel] � NoGood
return(BTLevel)

Figure 2.7: CBJ with Pruning (CBJ+P)

maining in the domain of a third variable that is consistent with these assignments. If the above
algorithms were to choose this third variable as the next variable to split on, then they would imme-
diately detect the inconsistency. This would immediately terminate the search below the first two
assignments. However, the choice of which variable to instantiate next is made heuristically, and it
could be that we choose some other variables first. Hence, the above algorithms could spend a lot
of time searching a subtree in which there was an obvious failure. This work could be avoided if
only they were clever enough to find the failed variable. Unfortunately, it turns out to be a compu-
tationally hard problem to choose the “best” next variable, so it is as hard to be clever in choosing
the next variable to assign as it is to do the search with an non-optimal choice of next variable.

Algorithms that employ constraint propagation enforce a certain degree of local consistency on
the reduced CSP (we never compute this reduced CSP explicitly). Hence, they attempt to detect
obvious failures by performing certain checks on all of the future variables.7 Sometimes, this
checking is fruitful, in that it detects a failure, and sometimes this checking simply wastes time.

In fact, the enforcement of local consistency on the reduced CSP does not usually waste time
(at least as long as we confine ourselves to enforcing a relatively low level of local consistency), as

7Thus even constraint propagation algorithms make no attempt to single out specific future variables.
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BJ+P(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

maxBJLevel[level-1] = level-2
prune[VarAt[level-1],ValAt[level-1],level-2)
return level-1

else
return(0)

V := pickNextVariable()
BTLevel := level
maxBJLevel[level] := 0
for x � currentDom[V]

assign(V,x,level)
if (M := checkConsistentBJ(V,x,level)) == level

BTLevel := BJ+P(level+1)
else

prune[V,x,M]
maxBJLevel[level] = max(maxBJLevel[level], M)

undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := maxBJLevel[level]
maxBJLevel[BTLevel] := max(maxBJLevel[BTLevel],BTLevel-1) // = BTLevel-1
prune[VarAt[BTLevel],ValAt[BTLevel],BTLevel-1)
return(BTLevel)

Figure 2.8: Backjumping with Pruning (BJ+P)

even if a failure is not detected, various values of the future variables can be pruned. This yields a
simpler CSP to solve in the subtree below the current assignment. The varying sizes of the domains
of the future variables also provides valuable information for variable ordering heuristics.

2.4.10 Forward Checking (FC)

Forward checking is the simplest of the constraint propagation algorithms. It involves enforcing
node consistency (i.e., 
 ) � � � consistency) at every node : on the sub-CSP below : (see Section 2.1
for a specification of the sub-CSP). The standard node consistency algorithm simply involves re-
moving all domain values that are inconsistent with the unary constraints.

Consider how one would enforce node consistency on the sub-CSP in the sub-space below a
node in the search tree. The unary constraints in this sub-CSP are those constraints that have all
but one of their variables assigned by the current assignments. We do not want to generate an
explicit representation of this unary constraint—we would have to discard the representation as
soon as we backtrack. However, we can still enforce node-consistency by pruning the domain of
the single uninstantiated variable of the constraint. In particular, we can determine for each value
of the uninstantiated variable whether or not each value taken along with the set of current as-
signments satisfies the constraint. Checking the constraint using the current assignments to fix the
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forwardCheck(V,level)
//Restore Node consistency given that V
//has just been assigned at level.

forall (C, ��� ) such that
1. ��� �����������
	 [C]
2. All variables of C except for ��� have been assigned
3. V � ���������
	 [C]
// ��� is the sole unassigned variable of C.

A := � � � � � ����������� ���
	 � � ���
	 � �
where ��� is the current assignment of each assigned ��� � ���������
	 � ��

for x � CurrentDom[ ��� ]
if A � � ��� � � � does not satisfy C

prune( ��� , x, level)
if CurrentDom[ ��� ] == � �

return
//There is no need to check any other constraints
//the next level will instantiate ��� and will then
//immediately backtrack to undo the current assignment to V.

Figure 2.9: Forward Check all New Unary Constraints

values of the other variables of the constraint is clearly equivalent to checking the unary constraint
that arises from reducing the constraint by the current assignments. This process of enforcing
node-consistency on the new unary constraints is called forward checking these constraints. The
forwardCheck algorithm for forward checking all newly generated unary constraints at a node in
the search tree is given in Figure 2.9.

With the forwardCheck subroutine, the rest of the FC algorithm is easy to specify. It is given
in Figure 2.10. There are two things to note about FC.

1. FC does not check whether or not the new assignment � !�� is consistent with the current
set of assignments.

2. FC does not do any intelligent backtracking.

Question 4 Let 0 denote the current set of assignments. 0 starts out being the empty set. When-
ever FC executes the statement assign(V,x,level) � !�� is added to 0 , and whenever FC
executes the statement undo(V,x,level) � !�� is removed from 0 .

Prove that in FC 0 is always consistent. (Hence, FC need not explicitly check its consistency
after making a new assignment).

That FC does not do any intelligent backtracking follows from the manner in which FC pro-
cesses the no-goods it discovers during search. Every time FC detects that a value � of a future
variable � fails to be node consistent in the sub-CSP, it has detected a no-good. The no-good
consists of the assignment �+! � along with all of the levels the other variables of the failed
constraint were assigned. FC uses this no-good to prune � from the domains of � .
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FC(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

return(level-1)
else

return(0)

V := pickNextVariable()
for x � currentDom[V]

assign(V,x,level)
forwardCheck(V,level) //This is propagateConstraints of TreeSearch.
BTLevel := FC(level+1)
undo(V,x,level) //Undo will restore all pruned values of

//the future variables.
if BTLevel < level

return(BTLevel) //Only occurs when BTLevel == 0.

return(level-1)

Figure 2.10: Forward Checking

As with the previous set of algorithms the no-goods that FC discovers can be stored in var-
ious ways, and the manner in which they are stored affects how they can be used later on in
the search. For each value � of variable � that is pruned by constraint propagation, FC re-
members only the maximum level of the no-good used to prune it. This maximum is stored in
prunedLevel[V,x], i.e., the level at which � has been pruned is this maximum, by the for-
wardCheck subroutine.

Looking at the FC code we can see that the (non-solution) leaf nodes in the search tree are
those nodes where pickNextVariable has returned a variable with an empty Currentdom.
Any variable with a non-empty Currentdom will cause FC to descent at least once to the next
level. Given that pickNextVariable always returns a variable with an empty current domain
if one exists, it must be the case that at the leaf node the variable returned has just had its current
domain reduced to the empty set. That is, at least one value in its domain must have been pruned
at the previous level.

Hence, if the current node is a leaf node at level � , then, when FC computes a backtrack level
by unioning together the no-goods of the values of the current variable, at least one of these no-
goods must be the set � � �	�	�	�
� � � �  . (Since it only has the maximum it must assume that all
of the previous levels are in the no-good. Furthermore, one of the maximums is � � � .) Thus,
FC must backstep to the previous level. Furthermore, the no-good that FC passes back for the
value assigned at the previous level will be � � �	�	�	�-� � � �  , i.e., the complete set of previous levels.
Hence, by induction at every non-leaf node there will be value whose no-good is the complete set
of previous levels, and FC must always backstep rather than backjump. This also means that, like
BT, FC need never keep explicit track of the no-goods it discovers during search, they all have the
same structure. It need only keep track of the levels at which values have been pruned.
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2.4.11 Forward Checking with CBJ

To allow FC to perform intelligent backtracking it becomes necessary to store more information
about the no-goods it discovers. This can be done in two simple ways. First, like CBJ we can
maintain a single conflict set for each variable, updating this set by unioning in the no-goods we
discover for the values of the variable as we discover them. Or we can maintain separate no-goods
for each value.

The first option, where we maintain a single conflict set for all of the values of a variable yields
an algorithm called FC-CBJ.8 In this algorithm we must alter the forwardCheck subroutine so
that it updates the variable’s conflict set with the full no-good it discovers for each pruned value.
The new version of forwardCheck is given in Figure 2.11. The resulting new search algorithm
FCCBJ is given in Figure 2.12.

There are a few things worth noting about the algorithm. First, we have the slight change that
instead of indexing the data structure NoGoodSet by level (as was done in the previous CBJ
algorithm) we must now index it by variable. This is necessary since forwardCheck updates the
NoGoodSet of future variables; i.e., variables that have no assignment level associated with them.
Second, the restoration process required when we backtrack is slightly more complex.

In particular, the subroutine updateConflictSets(level) must remove level from
the NoGoodSet of all variables. Consider the variable � � whose value � has been pruned by
the current assignment made at level � . Together, � �<! � , the current assignment, and some set
of assignments made at levels above � , falsified some constraint � , thus causing � to be pruned
to level � . We are about to undo the current assignment, thus the no-good for � ��! � is going
to become invalid. This no-good must be removed from the set of no-goods associated with � � ,
������������	�
�� � � � � . More generally, the current level can no longer be a part of the reason any value
of the variable was pruned. Removing the current level from these conflict sets is what update-
ConflictSets(level) does.

Note that for any particular level in the set NoGoodSet[ � � ] there is no record of the value(s)
of � � that caused it to be added to NoGoodSet[ � � ]. However, we do know that � was the max-
imum level added to NoGoodSet[ � � ], thus we can remove this level. (Even if � was added by
multiple values of � � , all of the no-goods of these values will be invalid when we undo the current
assignment). The remaining levels to NoGoodSet[ � � ] that were added when we computed the
no-good for � must remain—there is no record of which ones were added. However, after a no-
good has been computed for every value of � � , NoGoodSet[ ��� ] will still be a valid no-good. It
will in general contain many “garbage” elements left over from when values of � � were restored
and then later new no-goods learned for them. But the superset of a no-good is itself always a
no-good. On the other hand, these extra garbage elements can degrade the backjumping potential
of the algorithm.

8The standard version of FC-CBJ does not prune values it backtracks to. That is, it does not use the no-goods
discovered during by search to do domain pruning, it uses these only for intelligent backtracking. It uses only the
no-goods it discovers during constraint propagation for domain pruning. So this version of FC-CBJ is a slight im-
provement.
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forwardCheckCBJ(V,level)
forall (C, ��� ) such that

1. V � ���������
	 [C]
2. All variables of C except for ��� have been assigned
3. V �����������
	 [C]
// ��� is the sole unassigned variable of C.

A := � � � � � ����������� ���
	 � � ���
	 � �
where ��� is the current assignment of each assigned ��� � ���������
	 � ��

for x � CurrentDom[ ��� ]
if A � � ��� � � � does not satisfy C

NoGood := set of levels assignments in A were made
NoGoodSet[ ��� ] := NoGoodSet[ ��� ] � NoGood
prune( ��� , x, level)

if CurrentDom[ ��� ] == � �
return

Figure 2.11: Forward Check all New Unary Constraints and Record Conflicts

FCCBJ(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

NoGoodSet[VarAT[level-1]] := � 1,...,level-2 �
prune(VarAt[level-1],ValAt[level-1],level-2)
return level-1

else
return(0)

V := pickNextVariable()
for x � currentDom[V]

assign(V,x,level)
forwardCheckCBJ(V,level)
BTLevel := FCCBJ(level+1)
updateConflictSets(level)
undo(V,x,level)
if BTLevel < level

return(BTLevel)

BTLevel := max(NoGoodSet[V])
NoGood := NoGoodSet[V]- � BTLevel �
prune(VarAt[BTLevel],ValAt[BTLevel],max(NoGood))

//Standard FC-CBJ does not do this pruning step.
NoGoodSet[VarAT[BTLevel]] := NoGoodSet[VarAT[BTLevel]] � NoGood
return(BTLevel)

Figure 2.12: Forward Checking with CBJ
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The second option, where we maintain a separate no-good for each value, does not suffer from
this flaw (but it does require more storage to maintain these separate no-goods). These separate no-
goods are emptied as soon as a backtrack to the maximum level they contain occurs (this maximum
is also equal to the pruneLevel of the value). It yields an algorithm which we can call CFFC.9

As before it requires an updated version of forwardcheck. This is given in Figure 2.13, and the
new search algorithm CFFC is given in Figure 2.14.

2.4.12 MAC

Maintain Arc Consistency (MAC) is an algorithm that like FC does contraint propagation. How-
ever, it enforces a higher level of local consistency in the sub-problems it encounters during search.
In particular, it enforces (1,1) consistency in the sub-problem. The “maintain” component of the
algorithm comes from the fact that MAC first establishes (1,1) consistency and then continues to
maintain (1,1) consistency as we instantiate variables.

To enforce (1,1) consistency we must (1) enforce node consistency over all constraints that
have been reduced to unary as with FC, and (2) enforce arc consistency over all constraints that
have been reduced to binary. The algorithm looks much like FC, the only difference being (1)
we enforce (1,1) consistency prior to starting search, and (2) we perform different processing
during the constraint propagation phase. The constraint propagation subroutine for MAC is given
in Figure 2.15. This subroutine reestablishes arc consistency given that a new variable has been
instantiated at level. Since the sub-CSP was arc consistency just before the new instantiation,
we need first to prune the values of the future variables that have become node inconsistent. This
is done using the same processing as forward checking. Then for all future variables that have
had their domains reduced by this step, we need to check to see of the binary constraints they
participate in generate any additional arc inconsistent values. We also have to check the newly
created binary constraints to enforce arc consistency over them.

With acCheck the MAC algorithm becomes easy to specify—it is identical to FC. Figure 2.16
gives the algorithm.

Since MAC like FC remembers only the maximum of the no-goods it discovers during con-
straint propagation it is incapable of doing intelligent backtracking, for exactly the same reasons
as FC.

2.4.13 MAC with CBJ

Hence, like FC-CBJ if we keep track of more information about the no-goods discovered we can
implement intelligent backtracking with MAC. Again, we have two options (1) store all of the
nogoods discovered for the values of a variable in one set, removing levels as we backtrack, or (2)
store a separate nogood for each value and do constraint filtered unioning of nogoods on backtrack.
The first option yields the algorithm MAC-CBJ, while the second yields the algorithm CFAC. They

9Called CFFC 	 in a previous publication.
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forwardCheckCF(V,level)
forall (C, ��� ) such that

1. V � ���������
	 [C]
2. All variables of C except for ��� have been assigned
3. V � ���������
	 [C]
// ��� is the sole unassigned variable of C.

A := � � � � � ����������� ���
	 � � ���
	 � �
where ��� is the current assignment of each assigned ��� � ���������
	 � ��

for x � CurrentDom[ ��� ]
if A � � ��� � � � does not satisfy C

NoGood := set of levels assignments in A were made
NoGoodSet[ ��� ,x] := NoGood //The only change from forwardCheckCBJ.
prune( ��� , x, level)

if CurrentDom[ ��� ] == � �
return

Figure 2.13: Forward Check all New Unary Constraints and Record Value Specific Conflicts

CFFC(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

NoGoodSet[VarAt[level-1],ValAt[level-1]] := � 1,...,level-2 �
prune(VarAt[level-1],ValAt[level-1],level-2)
return level-1

else
return(0)

V := pickNextVariable()
for x � currentDom[V]

assign(V,x,level)
forwardCheckCF(V,level)
BTLevel := CFFC(level+1)
undo(V,x,level) //Now undo must set NoGoodSet[V’,y] = � �

//for all values y of variables V’ it restores.
if BTLevel < level

return(BTLevel)

BTLevel := ����� ���������
	 �� prunedLevel[V,x]
C := Constraint between VarAt[BTLevel] and V

//C is the universal constraint if there is no constraint
//C, such that ���������
	 [C] = � VarAT[BTLevel],V �

NoGoodSet[VarAt[BTLevel],ValAt[BTLevel] :=
����� � ������� 	 �� ������������� � !#"$	 %�&('*),+-)$� �/. �10 NoGoodSet[V,x] - � BTLevel �

prune(VarAt[BTLevel],ValAt[BTlevel],
max(NoGoodSet[VarAt[BTLevel],ValAt[BTLevel]]))

return(BTLevel)

Figure 2.14: Conflict Forward Checking CFFC
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acCheck(V,level)
//Restore (1,1) consistency over the new binary constraints given that V
//has just been assigned at level.

Queue := � �
forall (C, ��� ) such that

1. ��� �����������
	 [C]
2. All variables of C except for ��� have been assigned
3. V �����������
	 [C]
// ��� is the sole unassigned variable of C.

A := � � � � � ����������� ���
	 � � ���
	 � �
where ��� is the current assignment of each assigned ��� � ���������
	 � ��

for x � CurrentDom[ ��� ]
if A � � ��� � � � does not satisfy C

prune( ��� , x, level)
forall � ��� � ��� � ����� such that

1. ��� is a future variable.
2. ��� , and ��� are both constrained by ���
3. These are the only two unassigned variables of ���

Queue := Queue � ��� ��� � ��� � ����� �
if CurrentDom[ ��� ] == � �

return

forall C such that
1. C has only two unassigned variables remaining.

� � := first unassigned variable of C
�	� := second unassgined variable of C
Queue := Queue � � ( � � , �	� , C)

� � � ( �	� , � � , C)
�

while Queue != � �
( � � � ��� � � � ) := remove element from Queue
if Revise( � � � ��� � � � ,level)

forall � � � � � � � � � � � � such that
1. ��� � is a future variable.
2. ��� , and ��� � are both constrained by ��� �
3. These are the only two unassigned variables of ��� �
4. ��� ���� ���

Queue := Queue � ��� ��� � � ��� � ��� �
� �

Revise( � � ��� � � ,level)
DELETE := false
A := � � � � � ��� ������� ���
	 � � ���
	 � �

where ��� is the current assignment of each assigned ��� � ���������
	 � ��
for �	� CurrentDom[ � ]

SUPPORTED := false
for � � CurrentDom[ ��� ] while !SUPPORTED

if � � � � � � ��� � � � satisfies �
SUPPORTED := true

if !SUPPORTED
prune( � , � , level)
DELETE := true

return DELETE

Figure 2.15: Arc Check all New Binary Constraints
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MAC(level)
//We have established (1,1) consistency at level 0.
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

return(level-1)
else

return(0)

V := pickNextVariable()
for x � currentDom[V]

assign(V,x,level)
acCheck(V,level)
BTLevel := MAC(level+1)
undo(V,x,level)
if BTLevel < level

return(BTLevel)
return(level-1)

Figure 2.16: MAC

have structure as FC-CBJ and CFFC except that the no-goods discovered during constraint propa-
gation are different because we are doing arc consistency rather than node consistency. Figure 2.17
gives an updated version of acCheck that stores the nogoods discovered during arc consistency
processing.

With acCheckCBJ we can write the algorithm MAC-CBJ easily: it has the same structure as
FCCBJ except that it utilizes acCheckCBJ rather than forwardCheckCBJ.

Notice that in acCheckCBJ when we prune a value � of � because it fails to have support on
the domain of � � (given the settings of the other variables in the constraint � ), the nogood we have
discovered for � is the union of the set of nogoods of � ’s supports on � � (given the setting of the
other variables in the constraint � ) along with the levels the other variables in � were assigned.
Since in MAC-CBJ we do not maintain the nogoods for the individual values of � � we must take
all of the nogoods associated with � � as part of � ’s new nogood. (This set of nogoods is stored in
NoGoodSet[ � � ].

Using this observation we can implement option (2), where each value has its own no-good
quite easily. The resulting algorithm CFAC has the same structure as CFFC, and a new version
of the acCheckCBJ that updates value specific nogoods. In particular, in acCheckCF it becomes
feasible to compute a better nogood for a value � that has been pruned because it has become arc
inconsistent. The new subroutine acCheckCF is given in Figure 2.18.

2.4.14 N-ary Constraints and the GAC Algorithm

The FC algorithm waits until a constraint has all but one of its variables assigned until it checks the
constraint. MAC waits until the constraint has all but two of its variables assigned. We can instead
apply GAC (Generalized arc consistency).
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acCheckCBJ(V,level)
Queue := � �
forall (C, ��� ) such that

1. ��� �����������
	 [C]
2. All variables of C except for ��� have been assigned
3. V �����������
	 [C]
// ��� is the sole unassigned variable of C.

A := � � � � � ����������� ���
	 � � ���
	 � �
where ��� is the current assignment of each assigned ��� � ���������
	 � ��

for x � CurrentDom[ ��� ]
if A � � ��� � � � does not satisfy C

NoGood := set of levels assignments in A were made
NoGoodSet[ ��� ] := NoGoodSet[ ��� ] � NoGood
prune( ��� , x, level)
forall � ��� � ��� � ����� such that

1. ��� is a future variable.
2. ��� , and ��� are both constrained by ���
3. These are the only two unassigned variables of ���

Queue := Queue � ��� ��� � ��� � ����� �
if CurrentDom[ ��� ] == � �

return

forall C such that
1. C has only two unassigned variables remaining.

� � := first unassigned variable of C
�	� := second unassgined variable of C
Queue := Queue � � ( � � , �	� , C)

� � � ( �	� , � � , C)
�

while Queue != � �
( ��� � ��� � ��� ) := remove element from Queue
if ReviseCBJ( ��� � ��� � ��� ,level)

forall � ��� � � ��� � ��� ��� such that
1. � � � is a future variable.
2. � � , and � � � are both constrained by � � �
3. These are the only two unassigned variables of � � �
4. � � � �� ���

Queue := Queue � ��� � � � � � � � � � � � �

ReviseCBJ( � � ��� � � ,level)
DELETE := false
A := � � � � � ��� ������� ���
	 � � ���
	 � �

where ��� is the current assignment of each assigned ��� � ���������
	 � ��
for �	� CurrentDom[ � ]

SUPPORTED := false
for � � CurrentDom[ ��� ] while !SUPPORTED

if A � � � � � � ��� � � � satisfies �
SUPPORTED := true

if !SUPPORTED
NoGood := set of levels assignments in A were made
//The key difference between acCheck and acCheckCBJ
NoGoodSet[ � ] := NoGoodSet[ � ] � NoGood � NoGoodSet[ ��� ]
prune( � , � , level)
DELETE := true

return DELETE

Figure 2.17: Arc Check all New Binary Constraints and Set Conflicts
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acCheckCF(V,level)
Queue := � �
forall (C, ��� ) such that

1. ��� �����������
	 [C]
2. All variables of C except for ��� have been assigned
3. V �����������
	 [C]
// ��� is the sole unassigned variable of C.

A := � � � � � ����������� ���
	 � � ���
	 � �
where ��� is the current assignment of each assigned ��� � ���������
	 � ��

for x � CurrentDom[ ��� ]
if A � � ��� � � � does not satisfy C

NoGoodSet[ ��� ,x] := set of levels assignments in A were made
prune( ��� , x, level)
forall � ��� � ��� � ����� such that

1. ��� is a future variable.
2. ��� , and ��� are both constrained by ���
3. These are the only two unassigned variables of ���

Queue := Queue � ��� ��� � ��� � ����� �
if CurrentDom[ ��� ] == � �

return

forall C such that
1. C has only two unassigned variables remaining.

� � := first unassigned variable of C
�	� := second unassgined variable of C
Queue := Queue � � ( � � , �	� , C)

� � � ( �	� , � � , C)
�

while Queue != � �
( ��� � ��� � ��� ) := remove element from Queue
if ReviseCF( ��� � ��� � ��� ,level)

forall � ��� � � ��� � ��� ��� such that
1. ��� � is a future variable.
2. ��� , and ��� � are both constrained by ��� �
3. These are the only two unassigned variables of ��� �
4. ��� ���� ���

Queue := Queue � ��� � � � � � � � � � � � �

ReviseCF( � � � � � � ,level)
DELETE := false
A := � � � � � ��� ������� ���
	 � � ���
	 � �

where ��� is the current assignment of each assigned ��� � ���������
	 � ��
for �	� CurrentDom[ � ]

SUPPORTED := false
for � � CurrentDom[ ��� ] while !SUPPORTED

if A � � � � � � ��� � � � satisfies �
SUPPORTED := true

if !SUPPORTED
NoGoodSet[ � � � ] := set of levels assignments in A were made
for � ������� [ ��� ]

if A � � ��� � � ��� � � � satisfies �
NoGoodSet[ � � � ] := NoGoodSet[ � � � ] � NoGoodSet[ ��� � � ]

prune( � , � , level)
//level must be equal to max(NoGoodSet[ � � � ]), since
//all of � ’s supports on ��� were pruned at higher levels.

DELETE := true
return DELETE

Figure 2.18: Arc Check all New Binary Constraints and Set Value Specific Conflicts
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GAC can be enforced by pruning all values that are not GAC using an algorithm very similar
to AC3. We can develop tree search algorithms that maintain GAC, which means that every con-
straint is checked after each assignment is made. In particular, it is possible to develop an algorithm
MGAC, which maintains GAC but does no intelligent backtracking just like MAC; MGAC-CBJ,
which maintains no-goods stored at the level of variables and does intelligent backtracking and
pruning using the variable no-goods unioned together during search, just like MAC-CBJ; and CF-
GAC, which maintains no-goods stored at the level of individual values and does even more power-
ful intelligent backtracking and pruning using the value nogoods unioned together with constraint
filtering during search.
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2.5 Notes

If we use the no-goods discovered during search (i.e., the no-goods passed up the search tree after
we have exhausted all values of a variable) to prune domain values, then it is possible to prune
values that are ? -inverse inconsistent for arbitrary ? .10

A good example of this phenomenon comes from the pigeon hole problem. Let � ������B	�����	�����
be four variables each with domain � � � � � �� and a not equal constraint between every pair (i.e.,
��� �D � � , �'�D � , � ��� $ � � � � � �� . Let ���	�	� � � ��. be some set of additional variables with some other
set of constraints between them.

First we can note that all values of �����	�	�	�
����� are (1,1) consistent, and also the are PIC (path
inverse consistent) (1,2). But no value is (1,3) consistent.

Consider a node in the search tree where some set of previous variables have been assigned, we
are at level 5, and the next four variables to be assigned are � � , ��B , ��� and ��� in that order. If one
examines the search tree using any of the algorithms that compute explicit no-goods and use them
to prune values, we will see that an empty no-good will be computed for each of the values � of � �
after we search the subtree below it. This empty no-good means that � ��! � cannot participate in
any solution with no extra conditions. That is, �)�/! � cannot participate in any solution, and we
can prune � back to level 0. By pruning � to level 0 we remove it from consideration from the rest
of the search. It can also be noted that an easy way of implementing the test for an empty no-good,
is simply to add 0 to all no-good sets. The if we obtain a no-good with only 0 in it, then we can
process it in the standard way by pruning the value involved to the maximum of its no-good set 0.
(Or if we are using the no-good to backtrack, by backtracking to level 0 thus ending the search).

10 �
-inverse consistent is (1,

�
) consistency, as defined in Chapter 1.3.4. A value � of � is

�
-inverse consistent if

��� � can be extended to a consistent assignment over any
�

additional variables.
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Chapter 3

Dynamic Variable Ordering

Besides the various improvements one can make to generic backtracking, discussed in the previous
chapter, the component that has the most dramatic effect on the efficiency of problem solving is
variable ordering. That is, given that the search is at some node : , which of the future variables
does pickNextVar select as the next variable to split on.

If there is some fixed ordering over the variables and pickNextVar always chooses the
uninstantiated variable that is next in this ordering (ignoring for now the fact that pickNextVar
is forced to choose variables with empty or singleton domain first), then there will be a fixed
mapping from level of the search tree to the variable assigned at that level. (At level � the � variable
in the ordering will always be chosen, unless there was a variable with a singleton domain that
has displaced the order). In this case we say that a static variable ordering is being used. There
was some early work on choosing good static variable orderings, but it is now acknowledged that
dynamic variable orderings are much superior in practice to even the best static ordering.

In dynamic variable ordering the next variable chosen depends on the current set of assign-
ments. Thus along each branch of the search tree the variables could be chosen in a different order.
Given that we are going to employ dynamic variable ordering the question is: how do we choose
the next variable. There is no computationally tractable way of determining the best next variable,
so we must employ a heuristic to make the choice.

3.1 Increasing the Flexibility of Search Order

Dynamic ordering as defined above still has the property that the siblings of each node assign
(different) values to the same variable. Thus there is not complete flexibility in choosing the
variable ordering: once we choose a variable to split on we are committed to trying all of that
variable’s values.

Suppose we employ domain pruning in the tree search and furthermore we guarantee that each
value � of a variable � that is attempted at level � during the search is pruned back to at least level
�	� � after the subtree under it is searched. (If we use the no-good passed back by the subtree search
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FlexTreeSearch(level)
if all variables are assigned

current assignments is a solution, enumerate it
if FINDALL

� 1,...,level-2 � is a new no-good for assignment
at level-1

prune(VarAt[level-1],ValAt[level-1],level-2)
return(level-1)

else
return(0)

NEXT:
(V,x) := pickNextVarVal()

//V is unassigned, and x is from CurrentDom[V].
//Furthermore,
// 1. If there is a variable with an empty CurrentDom
// return such a variable and NIL as value x.
// 2. Otherwise if there is a variable with a singleton
// CurrentDom, then return such a variable with x
// set to its single remaining value.

if(x != NIL)
assign(V,x,level)
BTLevel := level
if checkConsistent(V,x,level)

propagateConstraints(V,x,level)
BTLevel := FlexTreeSearch(level+1)

undo(V,x,level)
if BTLevel < level

return(BTLevel)
goto NEXT

//We drop out here only if we have a variable with an empty domain.
NoGood := ComputeNoGoodFromExhaustedVariable(V)
BTlevel := max(NoGood)
setNoGoodOfAssignmentatBTLevel(BTLevel, NoGood- � BTLevel � )
prune(VarAT[BTLevel],ValAT[BTLevel],max(NoGood- � BTLevel � ))
return(BTLevel)

Figure 3.1: A more Dynamic TreeSearch Algorithmic Template

to prune � , then we will always satisfy this condition.) Then we can in fact use a more flexible
scheme of variable ordering, a scheme where sibling nodes do not have to assign to the same next
variable.

The pseudo code for a tree search algorithm achieving this flexibility is shown in Figure 3.1.
In this code the routine pickNextVarVal returns a variable value pair, rather than just a

variable to split on. Thus in separate iterations of the loop it could assign values to different
variables. That is, sibling nodes could assign to different variables. The key to the algorithm is that
if one loop attempts, e.g., � ! � , � will then be pruned from the current domain of � (to at least
the previous level) by the time we backtrack to execute another iteration of the loop. Hence, on the
next loop if � ��! � is attempted, in the subtree explored below � ��! � various assignments to �
might well be attempted, but � ! � will never be: � is not in ����35�����'� �(� in this subtree. Thus
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the search will never visit the same node twice (i.e., no two nodes in the search tree will ever have
the same set of current assignments).

The reason for “switching in mid-stream” between splitting on � and � � might be that in the
search of the subtree below �+! � we end up pruning many values of � � to levels above the
current level. If this occurs, it might be the case that when we backtrack to the current level we
find that now � � has a smaller domain than � (even though we have removed � from ����35�����'� � � ),
and that now it is more sensible to split on � � than on � .

Once we have exhausted all of the values of some variable, we can, as before, use the no-goods
discovered for that variable’s values to compute a backtrack level and a new no-good to pass back
to the backtrack level.

The empirical performance of this more flexible version of tree search needs to be tested.

3.2 Current Practice

The variable ordering heuristic that is most commonly used in current practice is based on the
Brelaz heuristic first developed for graph coloring. In graph coloring we want to assign a color
to each node so that no two adjacent nodes have the same color. The optimization version of the
problem is to determine the graph’s chromatic number—the minimum number of colors required
to color the graph. The decision version of the problem would be to determine whether or not the
graph could be colored using ? colors for a specific value of ? .

To encode a graph coloring problem as a CSP we would have a variable for each node, and the
domain of values for each variable would be the set of ? different colors. Finally, there would be
an inequality constraint between every two variables whose corresponding nodes are connected.

Given a partial coloring of a graph, the saturation of a vertex is the number of different colored
vertices connected to it. The Brelaz heuristic (Bz) first colors the vertex of maximum degree.
Thereafter Bz selects an uncolored vertex of maximum saturation, and tie-breaks on the degree of
the vertex in the uncolored subgraph.

In the context of the CSP, this corresponds to the heuristic where (1) we choose the variable
with minimum remaining consistent values (i.e., values that are consistent with the assignments
already made so far), (2) breaking ties by the number of constraints the variable has with the set
of unassigned values. Note that these two steps will agree with Bz on the choice of the very first
variable only if we start out with a set of variables all of which have the same domain size.

Except for some cases discussed below this heuristic works about as well as anything else that
can be quickly computed.

3.3 Some Attempts to Understand the Choice of Heuristic

Current knowledge of the why this heuristic works, and more importantly how to design better
heuristics, is still inadequate. But there have been a couple of studies on the subject. We describe
two of them.
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The first is due to Smith and Grant, and it revolves around the idea of Fail First.

3.3.1 The Fail First Principle

The fail first principle dates back the work of Haralick and Elliott in the late 70’s. They used the
principle

The best search order is the one that minimizes the expected length or depth of each
branch.

So one should always select next the variable that is most likely to fail—fail first. By doing this, and
making an assumption that the failure of each variable is independent of the others, we minimize
the expected length of each branch.

We can immediately detect a problem with this reasoning. Search effort depends on the number
of nodes explored, and this is influenced by both the length of each branch and on the number of
branches. Smith and Grant’s study confirms that neglecting the branching factor and concentrating
solely on failing early can lead to worst performance.

Now we turn to a description of the study they performed, providing some simple generaliza-
tions of their analytical results as we proceed.

We restrict our attention to Binary CSPs. Assume that there are : unassigned variables,
���8���	�	�	�
�����  , that the set of constraints are known, and that each variable has � � values consistent
with the current set of assignments. The heuristics studied require knowledge of these parameters
at every point of the search. For algorithms that do no constraint propagation, e.g., CBJ, the �'�
values are not known to the algorithm. To compute these values would require that we perform
node consistency on the sub-CSP at every point of the search. If we go to the effort to do this, we
may as well use this information to prune values of the future variables. That is, we may as well use
an algorithm that does at least as much constraint propagation as FC. Hence, we will assume that
we are in fact using such an algorithm, and thus for each future variable �E� , ����35�����'� ����� contains
only values consistent with the current set of assignments. Thus we will have ����D � ����35������� ����� � .

Given a constraint between ��� and � � , we can measure the tightness of the constraint.

Definition 3.3.1 [Tightness of a Constraint] Given that there are � values for the variable �8� and
: values for � � , then the tightness of the constraint �H� � � between them is

� �
�
�
� � 
�� � � ��� �'$&�����'� ��������� � � $&�����'� � � ����� � ��� � � 
�� � � ��

�
�
�

� �':
That is, the tightness is the proportion of pairs (of consistent values) that fail to satisfy the con-
straint.

Given that some set of assignments 0 have been made, we define the current tightness of a
constraint ��� � that is between two future variables � � and � � , as being the tightness of �;� � with
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respect to the current domains of the variables it constraints. That is, the proportion of pairs of
unpruned values that satisfy �;� � :

� �
�
�
� � 
�� � � ��� �'$ ����35�����'� ��������� � � $ ����35�����'� � � � ��� � ��� � � 
�� � � ��

�
�
�

� � � � �

We use ��� � to denote the current tightness of �H� � . As we do the search, and make more as-
signments these numbers will change. In particular, there will be fewer consistent values so the
values � � are non-increasing. The current tightness of the different constraints might, however,
increase or decrease, dependent on whether or not more consistent pairs have been pruned or more
inconsistent pairs have been pruned.

The fail-first principle says that we should choose the unassigned variable that is most likely to
produce an immediate failure after it is forward checked. We want to adopt a probabilistic model
so that we can compute this as a probability of failure. Then if we assume that the failure of each
variable is independent the length of each branch will be minimized by always splitting next on
the variable that has highest failure probability.

Of course given any particular CSP,
�

, and some point in the search space (i.e., some set of
current assignments, 0 ) each future variable either will or will not produce a failure after forward
checking, so we need an event space from which to compute the probabilities. For this purpose
we build an ensemble of problems with a distribution over them, and we will assume that the sub-
CSP generated from

�
by the current assignments,

� � � was drawn randomly from that ensemble.
Then the probability of failure for each future variable in this sub-CSP can be computed from the
distribution over the ensemble (coupled with the assumption that

� � � was drawn randomly).
For this to give answers useful for

� � � the ensemble needs to contain problems that are as
similar as possible to

� � � . To specify a distribution over the ensemble we use a generative prob-
ability model: the probability of any particular problem in the ensemble is the probability it was
generated.

In particular, we generate random CSPs such that, (1) they have the same set of variables as� � � (i.e., the future variables), each with the same domain (i.e., the current domains of these
future variables), and constraints over the same pairs of variables. However, each constraint is
generated randomly. For the constraint �H� � we examine each pair of values � $ ����35�����'� � ��� and
� $ ����35�����'� � � � and include the set of assignments ��� ��!�� ��� � ! �  with probability

� � ��� � .
Thus each constraint is constructed independently of the others, and each pair of assignments is
allowed by the constraint independently of the other pairs.

It is not hard to see that in this distribution that for any two constraints ��� � , �;. � , and pairs
of values ( � , � ) ( � $ ����35�����'� ����� and � $ ����35������� � � � ) ( � , � ) ( �#$ ����35������� ��.-� and � $
����35�����'� � � � ), � 
 ��� � 
�� � � � and �;. � 
��A� � �*D � 
 ��� � 
�� � � � � � � 
 �;. � 
��A� � � � .1

1Remember our notation that if � � ��� � � � � means that the constraint � � � is satisfied by the set of assignments
� � � � � � ��� � � � .
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Now we compute in this distribution the probability that a variable �E� will generate an imme-
diate failure after its values have been forward checked.

� 
 ��� fails �*D � 
 every �'$ ����35�����'� ����� fails � D � 
 �"!	� fails � ��� �
where � ��D � ����35������� ����� � .

That is, due to the strong independence assumptions of our model, each value of �8� will fail
independently, and will have an identical probability of failing.

Let � � be another future variable, and let �H� � be the constraint between ��� and � � . If there is
no constraint between them then let �H� � be the universal constraint, in which case � � � D )

: no
tuple falsifies the constraint. Now consider the probability that �E��!�� fails because it generates a
domain wipe out of � � (i.e., it is inconsistent with every value in � � ’s current domain.

� 
 �"!	� is inconsistent with every value of � � �*D�� ���� �
����!�� fails under forward checking if it causes any of the other future variables to experience

a domain wipe out.

� 
 ����!�� fails �*D � � �
�����	��
��
�����������
� ���� �


� � � ���� � � (3.1)

Putting it all together. ��� will fails with probability

� 
 ��� fails � D�� � � �
�����	��
��
�����������
� ���� �


� � � ���� � ��� ��� (3.2)

Smith and Grant study four heuristics generated by different approximations to this probability.
(Always choosing the variable with maximum failure probability).

1. FF. The first model is the fail first model of Haralick and Elliott. Choose next the variable
with minimal current domain. This corresponds to assuming that term (3.1) is the same for
every value of every variable. Thus (3.2) will be minimized by choosing the variable with
minimum � � .

2. FF2. In term (3.1) instead of using the current tightness �E� � of each constraint, they use
the original tightness of the constraint, and the original domain sizes as an estimate for the
current domain size of each future variable.

3. FF3. In term (3.1) instead of using the current tightness �E� � of each constraint, they use the
original tightness of the constraint. But they do use the current domain sizes of the future
variables.

4. FF4. They compute the current tightness � � � of each constraint and use (3.2).
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They find that contrary to the fail first principle FF4 does not perform better than FF. Rather
it performs worse. It does have significantly shorter branches than FF, but sometimes it chooses
to branch on a variable with a larger current domain, if that variable has tighter and or more
constraints with the future variables. Thus in the search the tree tends to be wider albeit shorter,
and the number of nodes explored with FF4 is higher than with FF.

3.3.2 Least Constrained Subproblem

In another study by Gent et al. they devised heuristics that yielded least constrained sub-CSPs.
These heuristics also had the side effect that they tended to choose the most constrained variable
next (as by instantiating the most constrained variable, the set of remaining future variables were
least constrained). Thus their heuristics also have much in common with the fail first principle.

3.3.3 Open Questions

It is clear that to reduce the search cost one wants to reduce the size of search tree explored during
backtracking. Thus failing early, i.e., having short branches is important. However, not having to
many branches is also important, perhaps even more so.

This seems to be why the smallest current domain works so well, and why breaking ties by the
number of constraints with future variables as a tie breaker is also valuable. The first influences
the number of branches most strongly (and has some effect on depth of the branches, under cer-
tain probabilistic models of the CSP). The second influences the depth of the branches under the
assumption that each constraint is equally tight.

In Gent et al. studies in which the constraints have different tightness were shown to fool the
Bz heuristic, as in this case a simple count of the constraints can provide incorrect information
about the probability of failure.

Some of the questions that remain in this area are

1. Obtaining a better formal model that can be used to develop heuristics that use some in-
formed tradeoff between the number of branches, and length of these branches.

2. The depth and length of branches ignores the possibility of guiding the search to regions
where it can learn powerful no-goods. For algorithms that use no-goods to do intelligent
backtracking, it is possible that these powerful no-goods would allow skipping large parts of
the search space.

3. Heuristics that can take advantage of the possibility of changing the variable being split on,
as allowed in the more flexible version of tree search described above.

4. Heuristics that can work with algorithms that do not do constraint propagation, and thus do
not know the number of consistent values in the domains of the future variables.
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5. The choices made at the first levels of the search tree have the most impact on the ultimate
size of the explored space. Yet at the top of the search tree we have the least information—
fewer variables have been assigned and less constraint propagation has been performed.
Hence, it would be useful to experiment with adaptive heuristics that do more work when
they know less information.

With respect to item 4 there are at least two possibilities. First, in algorithms like CBJ+P that
do domain pruning we do get varying domain sizes as search progresses. So we could use these
domain sizes to compute heuristics. The drawback of this approach is during the early stages of
the search we have very little information. Second, one could adapt the probabilistic analysis of
Smith and Grant to predict the likelihood of failure of a new variable against the current set of
assignments.
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Chapter 4

Davis Putnam Procedures for SAT

A special type of CSP problem is to determine whether or not a propositional theory expressed as
a set of clauses is satisfiable. Of course, satisfiability has a much longer history than constraint
satisfaction, and specialized techniques have been developed for solving the satisfiability problem.
Nevertheless, there is much in common between these techniques and the techniques used to solve
CSPs.

Another point of interest for studying satisfiability is that there are many things that it can tell
us about solving CSP, and vice versa.

First we define the satisfiability problem more formally. Let �FD#���)�-�	�	�	�
� ���  be a set of
boolean variables (propositional symbols). These variables can take on the value true (1) or false
(0). A truth assignment � over � is a mapping from the � � to � ) � �  .

Corresponding to each variable � � is its negation � ��� (we sometimes write the negation as � � � ).
��� and � ��� are called literals. ��� is a positive literal while � ��� is a negative literal. We extend the
truth assignment over the ��� to a truth assignment over the literals by setting � 
 � � � �;D � ��� 
 ��� � .
We say that a literal � is true under � if � 
�� �*D � .

A set of literals is called a clause, and a set of clauses is a formula in conjunctive normal form
(CNF). A clause is interpreted to be the disjunction of the literals in it, and a formula is interpreted
to be the conjunction of the clauses in it. A clause with only a single literal in it is called a unit
clause. Thus, if � is a clause, � 
 �'� D � , (i.e., � is true under � or � is satisfied by � ) if and only
if � 
�� �(D �

for some literal ��$ � ; and if � is a formula, � 
��'� D �
if and only if � 
 �'� D �

for
all clauses in � . It is well know that any formula of a propositional logic defined over the symbols
���8���	�	�	�
� ���� is equivalent to a CNF formula, and there are systematic ways of converting arbitrary
formulas into CNF.

Under this interpretation, if a clause contains both � � and � ��� for any variable ��� , then it will
be true under any truth assignment. Hence, it will play no role in determining whether or not a
formula � is satisfiable, and we may discard all such clauses from � .

Given a formula � the satisfiability question is “does there exists a truth assignment under
which � is true.” If there is then � is called satisfiable, otherwise it is unsatisfiable. This problem
corresponds to finding an assignment of 0 or 1 to every boolean variable in � such that the assign-
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DavidPutnam(F)
for I = 1 to NumberOfVariablesIn(F)

V := pickNextVariable()
Resolvants := � �
forall (C1,C2) such that

1. C1 � F and C2 � F
2. V � C1
3. � V � C2
Resolvants := Resolvants � resolve(C1,C2)

//Don’t generate tautological resolvants.
ClausesWithV := � C : C � F and V � C

�
F := F - ClausesWithV
F := F � Resolvants

//V is not in any clause in Resolvants. So now V is not in F.
if F == � �

return(FALSE)
else

return(TRUE)

Figure 4.1: The original Davis Putnam Procedure

ment satisfies all of the constraints, where the constraints are specified by the fact that each clause
in � must be satisfied. It is the problem first shown by Cook to be NP-Complete.

There are many restrictions one can impose on � , and these restrictions generate sub-classes
of the satisfiability problem, some of which are easier than the general problem. If we restrict the
clauses in � to contain no more than ? literals we have the ? -SAT problem. For ? D � this problem
can be solved in polynomial time (linear in fact), for ? � � the problem is still NP-Complete. There
are various other restrictions, e.g., Horn-Sat is the class where every clause in � contains at most
one positive literal.

Given two clauses ��� , �;B , such that ����$ �/� and � ����$ �;B , we can generate a new clause by
resolution. This new clause is ��� � �;B � ����� ��� ���  and is called the resolvant.1 It can be shown
that � is unsatisfiable if and only if there is a series of resolutions (where each step may use the
clauses produced by any of the previous steps or may simply resolve two clauses in � ) that yields
the empty clause.

The original algorithm for solving satisfiability problems was due to Davis and Putnam. The
algorithm is shown in Figure 4.1. This algorithm is an example of a bucket elimination algorithm,
which we will discuss later.

The procedure captures all of the ramifications of each variable by computing all of the re-
solvants that could be generated using that variable. Then all of the clauses with that variable can
be discarded. The end result is an empty clause if and only if there are a sequence of resolution
steps that could produce an empty clause. So if an empty clause results the procedure returns
FALSE indicating that the original formula is unsatisfiable. (Otherwise the formula is satisfiable).

1Again if the new clause contains both the positive and negative instances of a literal we can discard it. So we
will assume that resolution is restricted so that it is not allowed to operate on two input clauses that would generate a
tautological resolvant.
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DPLL(F)
if F is empty

return(TRUE)
//The truth assignments made along this branch
//satisfy the original formula F.

if F contains an empty clause
return(FALSE)

if there is a pure literal l � F
return(DPPL(Reduce(F,l)))

if there is unit clause � l � � F
return(DPPL(Reduce(F,l)))

v := pickNextVariable()
if DPPL(Reduce(F,v)) == TRUE

return(TRUE)
return(DPPL(Reduce(F, � v)))

Reduce(F,l)
F’ := � �
forall C � F

if � l, � l ���
C == � �

F’ := F’ � � C �
else if � l ��� C

F’ := F’ � � (C - � l)
�

return(F’)

Figure 4.2: Davis Putnam Logemann Loveland Procedure

Unfortunately, the original Davis Putnam procedure has serious problems with the amount of
space it consumes (although, to the best of my knowledge, there has no serious attempt to build and
test a modern implementation). It could potentially generate a quadratic (quadratic in the number
of variables in the current formula � ) number of new clauses at every stage.2

This leads to a modified procedure due to Davis, Logemann, and Loveland, DLL.3 This proce-
dure is essentially the same as forward checking in CSPs. The only difference is that the algorithm
utilizes special processing to check the constraints—these constraints all have a particular struc-
ture so one does not need to use the standard (generic) checking algorithms. Like FC it chooses a
variable, splits on the two possible values of the variable, and explores the subproblem under each
split. The algorithm is shown in Figure 4.2.

In the algorithm there are two special cases that are tested for prior to selecting the next variable
to split on. First we test to see if there is a pure literal in the current formula F. A pure literal is
a literal � such that � � does not appear in any clause of F. We can immediately assign � the value
1, with no ramifications on the satisfiability of F. The other special case is that if we have a unit
clause, we can immediately assign the literal it contains the value 1. This is the only assignment
that will satisfy the unit clause. Finally, if neither of these special cases hold, we select a variable

2Nevertheless, recent studies have show that some degree of this style of “bottom up” resolutions are useful in
quickly solving a satisfiability problem.

3Although in the literature, DLL is commonly referred to as Davis Putnam.
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to split on and then recursively examine the formula that arises from setting that variable to true
(1) and to false (0).

When we assign a literal � the value 1 the algorithm reduces the input formula by removing
from it all clauses that have been made true by this assignment. This is the set of clauses that
contain � ; if we can make the rest of clauses in the formula true, then these clauses will also be
true. Furthermore, it reduces all the clauses that contain � � by removing � � from them. For these
clauses setting � � to be true is no longer an option for making these clauses true. The search must
now find some other literal in the clause to set to 1.

4.1 The relationship with CSPs

The DPLL algorithm looks a bit different from backtracking CSP search. In particular, there is
no consistency checking, nor any constraint propagation. However, these components do exist,
they are simply disguised by the fact that DPLL is taking special advantage of the nature of the
constraints, and the manner the constraints are represented.

The most obvious translation between a SAT problem and a CSP is to retain the set of boolean
variables and their � 0,1  domains, and to translate the clauses into constraints. Each clause be-
comes a constraint over the variables in the constraint. Under this translation we can examine the
processing DPLL performs and see what its analogue would be when solving the problem as a
CSP.

First, when DPLL splits on a variable and searches the sub-Formula generated by the different
values of the variable, this corresponds the same event in the CSP—splitting on the variable and
recursing examine the consequences of each of the value assignments to that variable.

In backtracking search when we make a sequence of variable assignments we are conceptually
reducing the original CSP to form a sub-CSP.4 In generic CSP search, the sub-CSP generated by
the assignments at a node is never explicitly represented. Rather the sub-CSP is accessed implicitly
while searching the subtree below the node. For example, if � is a constraint over variables � � , ��B ,
and ��� , then when we make the assignment �)�H! � , � will be reduced in the sub-CSP generated
to a “new” constraint � � over ��B and ��� such that � ���� � ��� 
�� � � � is true if and only if ������ ��� � ��� 
������ � � �
is true. A representation of � � is never explicitly generated. Rather we can simply test whether or
not a pair of values 
�� � � � satisfies � � by simply testing whether or not the triple of values 
������ � � �
satisfies the original constraint � .

When the constraints are clauses, however, it becomes easy to generate an explicit representa-
tion of the reduced constraints, and this is what DPLL does when it reduces the formula to generate
a sub-formula.

If we make the assignment � ! �
, and we have a constraint that arose from the clause


 � ��� ���	�	�	�
��� � � , then it will no longer matter what values we subsequently assign to � ���	�	�	�
��� � ; the
constraint will always be satisfied in the subtree below this assignment (it has been reduced to
the universal constraint). Thus we could legitimately remove this constraint from the sub-CSP, as

4See Chapter 2.1 for a definition of the sub-CSP.
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does DPLL. However, the standard CSP algorithms do not remove constraints as they search the
backtracking tree. DPLL has the advantage that due the special structure of clauses it can detect
immediately that the constraint has been reduced to a universal constraint, and hence that it can be
deleted.5

On the other hand, say that we have a constraint that arose from the clause 
 �*� ��� �-�	�	�	�
��� � � . It
is not hard to see that the reduced constraint is simply the clause 
�� �-�	�	�	�-��� � � . So by rewriting the
clause DPLL is simply generating the reduced constraint.

Finally, recall that forward checking is simply enforcing node-consistency in the sub-CSP. Thus
it need only worry about newly generated unary constraints. These are precisely the unit clauses
generated by the above clause reduction process. Each of these unit clauses, will under forward
checking reduce the domain of the variable to a single value. It is always a good idea to instantiate
variables with forced values, and this is what the special case for unit clauses accomplishes.

The only other case to consider it the special rule for pure literals. For this case there are a few
things to notice

1. DPLL as specified simply tests for satisfiability. It is easy to modify it so that it enumerates
all satisfying truth assignments. In this case the pure literal rule cannot be used, as it could
remove some satisfying truth assignments from the search space.

2. Otherwise if we are only searching for the first solution, the pure literal rule again is simply
an exploitation of the special nature of the constraints to detect a case where an assignment
can be forced without effect on whether or not a solution can be found.

3. In practice the pure literal rule is usually not employed, as it generally it offers no significant
savings.

4.1.1 Intelligent Backtracking

The core DPLL algorithm does not perform any intelligent backtracking. But it can be made to do
so by importing ideas from CSPs. This was first done by Baryardo and Schrag. The idea is quite
simple.

First, let us associate a level with every call to DPLL. So starting with level 1, every time we
recurse we increment the level. Furthermore, let us remove the pure literal rule. Now we consider
all the cases where no-goods (represented as sets of levels) are discovered by the algorithm.

� When splitting. Every time we split on variable at level � , we first assign it one of its two
values (in the pseudo code we always choose the value 1 first). This means that the value 0
for that variable has become invalid (a variable can only have one value). Thus � is a no-good
for the other value.

5Standard CSP algorithms do not have a representation of the constraint that permits a quick detection of the fact
that the reduced constraint has become universal. This leads to an interesting research question: how to represent � -ary
constraints so that when we assign variables of the constraint during search we can quickly update the representation
and use it to detect when the constraint has become universal.
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� When unit propagation is perform. Say that we have a clause reduced to an unit clause.
Originally it may have contained other literals. Say that originally the clause was 
�� �-�	�	�	�-��� � � ,
and say that it has been reduced to the unit clause 
��C� � . Then by induction we can assume
that each of the literals � ���	�	�	�
��� � ��� has an associated no-good. But then the union of these
no-goods is a no-good for � ��� .
That is, the union of the no-goods for the other literals in the original clause is a reason why
none of these literals could be true. Thus it is a reason why � � must be true, and a reason
(i.e., a no-good) why � ��� cannot be be true.

� When we reach a dead end because we have an empty clause in F. If this clause was originally
the set of literals 
�� �-�	�	�	�
��� �+� then by induction we will have a no-good associated with each
of these literals. We can union these no-goods together, backtrack to the maximum level in
the union, and set the remaining levels in the no-good as a new no-good for the value that
was assigned at the backtrack level.

Putting these things together we obtain an intelligent backtracking version of DPLL (this is
essentially the relsat algorithm developed by Bayardo and Schrag) shown in Figure 4.3. Note
that, although the algorithm does not specify it, the nogood sets associated with each literal are,
as normal, stored as sets of levels, and it is necessary to keep track and empty nogood sets that
become invalid as we backtrack above their maximum level.6

Note that we could also quite easily add domain pruning to this algorithm,7 and also constraint
filtered no-good unioning. But no one has reported trying these ideas in the literature as yet.

4.1.2 Implementation

In practice the DPLL algorithm needs to be able to examine millions on nodes during a search, and
perform 100s of millions of unit propagations. This leads to some practical requirements.

1. We cannot implement the reduction of the formula as actually making a new copy. This
would take too much time and space.

2. We do not want to compute no-goods as specified in the Figure 4.3. Specifically we want to
compute the unions only as we need them.

The basic processing of DPLL is very simple. Only two things occur. First, a literal is valued,
either because it was choosen during backtracking, or because it was forced by a unit clause. When
a literal is valued we need to detect whether or not a contradition has occured and whether or nto
any new unit clauses have been generated. The first is easy, a contradition is generated if and only
if the literal’s negation was previously valued. The second is only sightly involved.

6The original algorithm contains some optimizations where by all unit propagations are performed prior to recurs-
ing to the next level.

7With binary variables, domain pruning generates singleton values. These need to be treated in the same way as
unit clauses—we must force the algorithm to instantiate the remaining value before trying anything else.
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RelSat(F,level)
if F is empty

The current assignments are a satisfying truth assignment
return(0)

if F contains an empty clause and the original clause is C
NoGood := ��� � � NoGoodSet[

�
]

BTLevel := max(NoGood)
NoGoodSet[LiteralAt[BTLevel]] := NoGood - � BTLevel �
return(BTLevel)

if there is unit clause � l � � F and the original clause was C
NoGoodSet[ � l] := ��� � ��. ������ NoGoodSet[

�
]

BTLevel := DPPL(Reduce(F,l), level+1)
if BTLevel == level

NoGood := NoGoodSet[l] � NoGoodSet[ � l]
BTLevel := max(NoGood)
NoGoodSet[LiteralAt[BTLevel]] := NoGood - � BTLevel �

return(BTLevel)

v := pickNextVariable()
NoGoodSet[ � v] := � level �
BTLevel := DPPL(Reduce(F,v), level+1)
if BTLevel < level

return(BTLevel)

BTLevel := DPPL(Reduce(F, � v), level+1)
if BTLevel == level

NoGood := NoGoodSet[l] � NoGoodSet[ � l]
BTLevel := max(NoGood)
NoGoodSet[LiteralAt[BTLevel]] := NoGood - � BTLevel �

return(BTLevel)

Figure 4.3: DPLL with intelligent Backtracking

A simple implementation for detecting new unit clauses would be to have a counter and a flag
associated with every clause, and an index from each literal to the set of clauses it appears in.
Initially all of the flags are false, and the counters are set to be equal to the clause length. When
we value a literal, we mark the flag of every unmarked clause it appears in—these clauses are
not satisfied. Then we examine all of the clauses that the literal’s negation appears in. For every
unmarked clause, we decrement the clause length. If the new length is one (1), we then search
the clause to find the single unfalsified literal it contains, and unit propagate that literal. When
we backtrack we must undo any changes we made to the clause length counters, and to the clause
flags.

The new (and recent) standard in DPLL implementations is due to the work of Sharad Malik
and his group at Princeton University. Using ideas from previous work (notably Zhang and Stickel)
they have developed a very efficient SAT solver called ZCHAFF.

They have developed a much more efficient way of detecting unit clauses. Their method is
choose two literals from each clause to link to the clause. None of the other literals index into the
clause. These literals become the “watch” literals for the clause. We could instantiate other literals
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in the clause, but this will not invoke any tests on the clause. The only time we check to see wether
or not a clause has become unit is when one of its watch literals is falsified. At that time we look
for another watch literal (distinct from the sole remaing watch literal). If during this search we
detect a true literal, we do nothing—the clause is already satisfied, similarly if during the search
we fail to find an new watch, we know that the other watch is to be forced by unit propagation.

Furthermore, on backtracking we need not modify the watch variables, even if we had moved
them while descending down the current search path—any pair of watch variables is equally good.

This process reduces the work required to detect unit propagation by a factor equal to the length
of the clause. Furthermore, there will often be many clauses that are never touched along any single
path of the search tree.

The second part of a good implementation is a better way of manipulating no-goods. Rather
than pre-computing the union of the no-goods that generated a unit propagation, it is easier to
compute that union only when required. Thus when we find a contradition, which is a case where
both a literal � and its negation have been forced by unit propagation, we recursively compute the
no-goods associated with each of the literals in clauses that forced them.

4.2 Branching Heuristics

Given the simplicity of the DPLL algorithm an interesting component of the work on building
faster DPLL based satisfiability testers centers around the development of better variable selection
heuristics. These branching heuristics invariably try to branch into the most constrained formula.
In particular, they try to pick a variable that generates the most new clauses of shortest length (after
unit propagation).

One system called satz, uses extensive one step look ahead to choose its next variable. In
particular, it has a series of filters that it employs. Each filter lets more unassigned variables
through. It finds the first filter that lets at least � variables through, where � is an empirically
determined parameter.

Once it this sufficiently large set of filtered variables, it proceeds to test each one by succes-
sively assigning the variable true and then false. After each assignment it performs unit propa-
gation, and then it counts the number of newly produced binary clauses. Let � be the number of
new binary clauses produced by setting the variable to true, and : be the number of binary clauses
produced by setting the variable to false. The heuristic score of the variable then becomes

���;:�� �*) � � � � � :
Note that this score penalizes those variables that generated good sub-formulas under one assign-
ment but not under the other: it tends to promote balanced trees.8 The procedure then branches on
the variable with highest heuristic score.

8The success of this approach would seem to argue that a possible tie breaker for the simple minimum current
domain heuristics used in CSPs, would be to estimate the effect of each of the possible values with a preference for
balance between the values.
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One other effect of this look ahead is that the procedure can detect failed literals. These are
literals � such that assigning true to them and then doing unit propagation yields a contradiction.
For such variables, we can immediately assign them the value false. For example, in the formula

�

���� � ��� ����� 
 � ����� ����� 
 � � ��� �����

� is a failed literal.
The ZCHAFF system uses a different heuristic, and it does clause learning as well and random

restarts as well. These will be discussed later.
Recently, a good heuristic based on backbones has been developed (see the readings). Back-

bones will be discussed later.

4.3 DPLL and Resolution Proofs

Consider a formula that is unsatisfiable. DPLL will be able to prove that this formula is unsatis-
fiable. What is interesting is that the search tree explored by DPLL contains a resolution proof of
unsatisfiability. If one starts at the leaf nodes and works back up the search tree, one can construct
a resolution refutation of the formula.

A leaf node is one where we tried a variable and found that both of its values generate an empty
clause. It could be that the value of the variable at the leaf node was set by a unit clause. But in
that case, the other value, if it has been used, would have generated an empty clause. In particular,
it would have cause the unit clause to become empty. In general, then there will be two empty
clauses, one generated by each of the values of the variable at the leaf. These two empty clauses
must contain complementary values of the variable (else, they would have appeared higher up in
the tree and we would not have reached this leaf node). So we can resolve together each of these
clauses. If we do this an pass the resolvant back to the parent, we can examine the other value
of the parent, and by induction it also will have a resolved clause passed back to it if we work
from the leafs of the search tree it generated. It can be shown that these two clauses must have
complementary literals, and we can do another resolution and again pass the resolvant back up the
tree.

In fact, one can show that this is exactly what the unioning of no-goods accomplishes. If one
proceeds in this manner, one will obtain a tree structured collection of resolvants that derives the
empty clause from clauses (at the terminal branches) in the original formula. Thus it is a resolution
proof of the unsatisfiability of the original formula.

This has important ramifications about the complexity of DPLL, and thus of CSP backtracking
search. In particular, the size of this resolution refutation is polynomial in the size of the explored
search tree. Yet it is know that for many formulas there is no resolution refutation that is less than
exponential in size. Note that this is a rather stronger result than NP-Completeness. It is a result
that says that DPLL, and thus CSP backtracking must have exponential complexity in the worst
case, irrespective of the question � D	� � .
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