
9/15/2005 Fahiem Bacchus 1

SAT Solving
and its

Relationship to CSPs

Fahiem Bacchus

University of Toronto

9/15/2005 Fahiem Bacchus 2

Overview

Tremendous gains have been achieved over the
last 5 years in SAT solving technology.

Systematic backtracking based systems have
become the best method for solving structured
SAT instances.

New theoretical insights have been gained into
the behaviour of backtracking SAT solvers via
their close relationship with resolution proofs.

These insights have direct relevance to finite
domain CSP solvers.

9/15/2005 Fahiem Bacchus 3

Resolution Proofs

All (complete) backtracking algorithms
for CSPs are implicitly generating

resolution proofs.

On problems with solution, still have
to backtrack out of failed subtrees.

Baker (1995), Mitchell (2002)

9/15/2005 Fahiem Bacchus 4

Resolution (SAT)

A complete proof procedure for
propositional logic that works on
formulas expressed in conjunctive
normal form. (Robinson 1965)

Conjunctive Normal Form (CNF)

Literal: a propositional variable p or its
negation ¬p

Clause: a disjunction of literals (a set).

CNF theory: a conjunction of clauses.

9/15/2005 Fahiem Bacchus 5

Resolution

From two clauses (A, x) (B, ¬x) the
resolution rule generates the new clause
(A, B), where A and B are sets of literals.

(A,B) is the resolvant.

x is the variable resolved on

duplicate literals are removed from the
resolvant

denote by C = RR(C1,C2)

9/15/2005 Fahiem Bacchus 6

Resolution

A resolution refutation of a CNF theory is

a sequence of clauses C1, C2, …, Cm such that

each Ci is either a member of or

Ci is a resolvant of two previous clauses in the proof:
Ci = R(Cj,Ck) j,k < I

Clauses arising from resolution are called the derived
clauses of .

Cm = () the empty clause.

is also called a resolution proof.

The SIZE of is the number of resolvants in it.

9/15/2005 Fahiem Bacchus 7

Resolution DAG

Any resolution proof can be represented
as a DAG.

nodes are clauses in the proof.

Every clause Ci that arises from a resolution
step has two incoming edges. One from each
of the clauses that were resolved together to
obtain Ci.

The arcs are labeled by the variable that was
resolved away to obtain Ci.

Clauses in have no incoming edges.

9/15/2005 Fahiem Bacchus 8

Resolution Dag

()

¬X X

¬Y Y, ¬X

Z,¬X ¬Z,Y Q,¬Z,X ¬Q,X

Z

X

Y

Z

¬Z,X

Z

QY

[(¬Y), (Z,¬X),(¬Z,Y),(Y,¬X),

(¬X),(Z),(Q,¬Z,X),(¬Q,X),

(¬Z,X),(X),(¬X),()]

9/15/2005 Fahiem Bacchus 9

Restrictions of Resolution

A number of restricted forms of
resolution can be defined, where, e.g.,
we require the DAG to be a tree.

The reason the restricted forms have
been developed is that the restrictions
can make it easier to find a proof.

9/15/2005 Fahiem Bacchus 10

Tree Resolution

Tree resolution

The DAG is required to be a tree.

Clauses derived during the proof can only be
used once.

Work must be duplicated to rederive clauses
that need to be used more than once.

9/15/2005 Fahiem Bacchus 11

Tree Resolution

C4

C1

C4

C2 C3

C5

C2 C3

C5

C2
C1

9/15/2005 Fahiem Bacchus 12

Ordered Resolution

The variables resolved on along any path
in the DAG to the empty clause must
respect some fixed ordering of the
variables.

9/15/2005 Fahiem Bacchus 13

Ordered Resolution

()

¬X X

¬Y Y, ¬X

Z,¬X ¬Z,Y Q,¬Z,X ¬Q,X

Z

X

Y

Z

¬Z,X

Z

QY

Not ordered

9/15/2005 Fahiem Bacchus 14

Regular Resolution

Along any path in the DAG to the empty
clause the sequence of variables resolved
away cannot contain any duplicates.

9/15/2005 Fahiem Bacchus 15

Regular Resolution

Q,Z,Y,P

¬X,Z X,Q,Y,P

H,P,YQ,¬H,X

X

H

¬X,YP,H,X

X

Q,Z,Y,P

¬X,Z
H,P,Y

Q,¬H,X

X

H

¬X,YP,H,X

X

Z,Q,¬H,

Not Regular Regular

9/15/2005 Fahiem Bacchus 16

Negative Resolution

One of the clauses in each resolution
step must contain only negative literals.
(a negative clause)

This is complete!

Note must contain at least one negative
clause else the “all true” truth assignment is
a satisfying model.

9/15/2005 Fahiem Bacchus 17

Relative Power

A general formalism for comparing the
power of different proof systems was
developed by Cook and Reckhow 1997.

For our purposes we simply look at the
minimal size refutation proof (the
number of clauses in the proof).

9/15/2005 Fahiem Bacchus 18

Relative Power
#R(F)—the minimal size R-refutation of among all

possible R-refutations of .

For a family of formulas i we look at how #R(i)
grows with i.

Let S and T be two restrictions of resolution. S
p-simulates T if there exists a polytime computable
function f such that:

For any S-refutation of a formula , f() is a T-refutation

of .
Note that this means that f() can’t be more than polynomially
longer than #T(F) no more than polynomially larger than
#S(F) for any formula F.

9/15/2005 Fahiem Bacchus 19

Relative Power Known Results

Buresh-Oppenhiem, Pitassi (2003) many
new results and a summary of previously
proved results.

9/15/2005 Fahiem Bacchus 20

Relative Power Known Results
Regular Negative Ordered Tree

Regular No Yes Yes

Negative No No Yes

Ordered No No No

Tree No No No

Regular always yields shorter proofs than
either Ordered or Tree

Negative and Regular are incomparable

Ordered and Tree are incomparable.

9/15/2005 Fahiem Bacchus 21

Relative Power Known Results

It is also known that none of these
restrictions can p-simulate general
resolution.

9/15/2005 Fahiem Bacchus 22

Solving Sat

9/15/2005 Fahiem Bacchus 23

DP & DPLL (DLL)

Two earliest algorithms for solving SAT
actually predate resolution.

DP: Davis-Putnam (1960) a variable
elimination technique.

DPLL: Davis-Logemann-Loveland (1962)
a backtracking search algorithm.

9/15/2005 Fahiem Bacchus 24

DP

Pick a variable ordering (one that has a low
elimination width if possible): X1, X2, …, Xn

Starting with the original set of clauses

At the i-th stage:
Add to all possible resolvants that can be
generated by resolving on Xi.

Remove from all clauses containing Xi or ¬Xi.

If the empty clause is generated stop

The input set of clauses (the formula) is
UNSAT iff this process generates the
empty clause.

9/15/2005 Fahiem Bacchus 25

DP

[a] [b] [c]

(a,b,c)
(¬a,b,c)
(¬b, c)
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c)
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()

9/15/2005 Fahiem Bacchus 26

DP

[a] [b] [c]

(a,b,c)
(¬a,b,c)
(¬b, c)
(a,¬b,¬c)
(¬a,¬b,¬c)
(b,¬c)

(b,c)
(¬b, c)
(¬b,¬c)
(b,¬c)

(c)
(¬c)

()

Potentially many redundant clauses are
generated, but an ordered resolution is
contained in these clauses.

9/15/2005 Fahiem Bacchus 27

DP

Every DP proof contains an ordered
resolution, and thus it can never be shorter
than an ordered resolution refutation.

Note lower bounds are wrt any possible ordered
resolution (i.e., any ordering).

In practice, DP’s space requirements are
prohibitive

Although some attempts using ZBDDs to represent
the clauses compactly.

Still not competitive with current best techniques.

9/15/2005 Fahiem Bacchus 28

DP Ordered Resolution

Note also that every ordered resolution
can be found inside of a DP refutation:

just follow the same order.

Since DP generates all possible ordered
refutations along that order, it might
terminate before completing the specified
ordered refutation (by finding a shorter
ordered refutation).

DP can also waste a lot of time generating
clauses that are not needed for the
refutation.

9/15/2005 Fahiem Bacchus 29

DPLL

Developed shortly after DP, DPLL is based
on backtracking search. The connection
to resolution was realized later.

One picks a literal (a true or false variable)

simplify the formula based on that literal

recursively solve the simplified formula.

if the simplified formula is UNSAT, try using
the negation of the literal chosen.

9/15/2005 Fahiem Bacchus 30

DPLL Simplification

Given a clausal theory , we can simplify

it by a literal as follows:

| =

Remove from all clauses containing

Remove from all of the remaining clauses.

9/15/2005 Fahiem Bacchus 31

Unit Propagation

In addition DPLL employs unit propagation:

if | contains any unit clauses, e.g. (¬x) then

further simplify | by the literal in the unit clause,

i.e., generate (|)|¬x

Unit propagation is the iterative application of this
simplification until the resultant theory has no unit
clauses (or contains the empty clause).

More powerful forms of propagation examined
in Bacchus (2002)

9/15/2005 Fahiem Bacchus 32

DPLL
(a,b,c)

(¬a,b,c),(¬b, c)

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

C ¬C

(a,b,c)

(¬a,b,c),(¬b, c)

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

(a,b,c)

(¬a,b,c),(¬b, c)

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

b

a

¬b

a

9/15/2005 Fahiem Bacchus 33

DPLL(a,b,c)

(¬a,b,c),(¬b, c)

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c)

b: (b,¬c) (¬b,¬c)

a: (a,¬b,¬c)

(¬a,¬b,¬c)

¬C (C)

¬b: (¬b, c) (b,c)

a: (a,b,c)

(¬a,b,c)

()

C (¬C)

A tree refutation is embedded in every DPPL
proof of UNSAT.

every resolvant consists of literals negated by the
prefix of assignments.

9/15/2005 Fahiem Bacchus 34

DPLL

Every DPLL proof contains an tree
resolution, and thus it can never be
shorter than an tree resolution
refutation.

Note it need not be ordered. So the
minimal size DPLL tree can be bigger or
smaller than the minimal size DP proof.

9/15/2005 Fahiem Bacchus 35

DPLL Tree Resolution

Note also that every tree resolution can
be found inside of a DPLL refutation:

Make the DPLL search mimic a depth first
search of the tree refutation.

always instantiate the negation of the literal that
was resolved on in the child node.

9/15/2005 Fahiem Bacchus 36

DPLL Tree Resolution

(a,b,¬c,¬d)

(a,b,x,¬c) (¬x,¬d)

X

¬x x

Corresponding node of

DPLL search
Node of tree resolution

9/15/2005 Fahiem Bacchus 37

DPLL Tree Resolution

In general DPLL search will also do a lot
of extra work not required for the tree
resolution since it did not employ
intelligent backtracking.
Hence, DPLL in its original form is a
pretty poor algorithm. Although is
“reasonable” for proving UNSAT for
random problems.

9/15/2005 Fahiem Bacchus 38

Resolution and Intelligent
Backtracking

If we keep track of the refutation being
generated, we can use the derived
clauses to perform intelligent
backtracking.
Keeping track of the resolution
refutation is precisely what CBF (conflict
directed backjumping) does.

9/15/2005 Fahiem Bacchus 39

DPLL(a,b,c)

(¬a,b,c),(¬b, c)

(a,¬b,¬c)

(¬a,¬b,¬c)

(b,¬c,x,f)

b: (b,¬c,x,f) (¬b,¬c)

a: (a,¬b,¬c)

(¬a,¬b,¬c)

¬c (c)

¬b: (¬b, c) (b,c)

a: (a,b,c)

(¬a,b,c)

(x,f)

c (¬c,x,f)

¬f

¬x

9/15/2005 Fahiem Bacchus 40

Resolution and Intelligent
Backtracking

If instrumented to keep track of the
resolution refutation and thus perform
“intelligent backtracking” (non-moronic
backtracking), it can find tree
resolutions fairly effectively.
Still some inefficiencies

can spend time in subtrees that don’t
contribute to final refutation.

Still limited to relatively weak tree
resolution.

9/15/2005 Fahiem Bacchus 41

Resolution and Intelligent
Backtracking

Modern Techniques move DPLL beyond
the limited power of tree resolution.

9/15/2005 Fahiem Bacchus 42

Solving Finite Domain CSPs

9/15/2005 Fahiem Bacchus 43

Translation to Propositonal Logic

Set of variables Vi and constraints Cj

Each variable has a domain of values
Dom[Vi] = {d1, …, dm}.

Consider the set of propositions Vi=dj

one for each value of each variable.

Vi=dj means that Vi has been assigned
the value dj.

9/15/2005 Fahiem Bacchus 44

Translation to Propositonal Logic

¬ Vi=dj means that Vi has not been
assigned the value dj

perhaps not been assigned any value, or has been
assigned a different value.

True when dj has been pruned from Vi’s domain.

9/15/2005 Fahiem Bacchus 45

Translation to Propositonal Logic

For simplicity

Write Vi=dj instead of Vi=dj

Vi dj instead of ¬ Vi=dj

But be aware that these are actually
propositional variables that can be assigned
true or false.

9/15/2005 Fahiem Bacchus 46

Translation to Propositonal Logic

Each constraint C is over some set of
variables X1,…,Xk: C(X1,…,Xk)

Typically a constraint is defined to be a
set of tuples of assignments to its
variables that satisfy the constraint.

Equivalently, we look at the complement

The set of tuples of assignments that falsify
the constraint.

E.g., (X1=a,X2=b,…,Xk=h) falsifies C(X1,…,Xk)

9/15/2005 Fahiem Bacchus 47

Translation to Propositonal Logic

A falsifying tuple is typically called a
nogood: a set of assignments that cannot
be extended to a solution of the CSP.

If the tuple falsifies a constraint of the CSP, it
can’t be extended to a solution of the CSP.

Nogoods are clauses.

A nogood (X1=a,X2=b,…,Xk=h) asserts

¬(X1=a X2=b … Xk=h)

(X1 a X2 b … Xk h) (a clause).

9/15/2005 Fahiem Bacchus 48

Translation to Propositonal Logic

So each constraint is a set of clauses.

All of the constraints of the CSP thus
form a set of clauses.

9/15/2005 Fahiem Bacchus 49

Translation to Propositonal Logic

Finally, we must deal with the fact that
the variables have non-binary domains.

For each variable V with
Dom[V]={d1,…,dk} we obtain the
following clauses:

(V=d1,V=d2,…,V=dk)
(must have a value)

(V d1,V d2), (V d1,V d3), …, (V d1,V dk)
,…, (V d2,V d3), …, (V dk-1,V dk)
(must have a unique value)

9/15/2005 Fahiem Bacchus 50

FC

For simplicity look at Forward Checking,
and we will see that

embedded in a failed FC search tree is a tree
resolution.

Keeping track of the resolution refutation
gives us CBJ.

The resolution also makes the improvement
of backpruning (Bacchus 2000) obvious.

9/15/2005 Fahiem Bacchus 51

FC

FC maintains node consistency.

when a constraint becomes unary (all but
one of its variables have been instantiated),
we enforce node consistency on that
constraint to prune the domain of the sole
remaining variable.

This definition works with both binary and
n-ary constraints.

9/15/2005 Fahiem Bacchus 52

FC
X=a

Z=b

Q=c

R=a

Each value of V was removed
because it falsified some
nogood from some constraint.

Domain

wipe-out of

V

9/15/2005 Fahiem Bacchus 53

FC
X=a

Z=b

Q=c

R=a

Domain

wipe-out of

V

Dom[V] = {a, b, c}

(V a,X a)

(V b,R a,X a)

(V c,R a,X a)

Resolving these against
(V=a,V=b,V=c), we obtain the new
clause (X a,R a): a clause
containing the current value of R.

FC now backtracks and tries a
different value for R.

9/15/2005 Fahiem Bacchus 54

FC
X=a

Z=b

Q=c

R=b

Domain

wipe-out of

Y

Dom[Y] = {a,b,c}

(Y a,X a,Z b)

(Y b,R b)

(Y c, X a,R a)

Resolving these against
(Y=a,Y=b,Y=c), we obtain the
new clause (X a,Z b,R b)

Again we backtrack and try a
different value for R.

9/15/2005 Fahiem Bacchus 55

FC
X=a

Z=b

Q=c

R c

Perhaps R=c has already been pruned
by FC before we reached this node.

Then there is a clause forcing by R c,
e.g.

(Z b,R c)

Now we have a clause forcing the
removal of each of R’s values

Either computed via resolution from the
subtree below that assignment.

Or from forward checking above.
Domain

wipe-out of

Y

9/15/2005 Fahiem Bacchus 56

FC
X=a

Z=b

Q=c

R c

Now we have a clause for each
value of R:

(X a,R a)

(X a,Z b,R b)

(Z b,R c)

Resolve these against
(R=a,R=b,R=c) to obtain

(X a,Z b)Domain

wipe-out of

Y

9/15/2005 Fahiem Bacchus 57

FC-CBJ
X=a

Z=b

Q=c

R c

Ordinary FC would then contine
with the next value of Q.

But embedded in each failed
subtree of the FC search tree a
is a tree resolution.

FC-CBJ simply keeps track of
the resolution refutation, and
uses the clause produced

(X a,Z b)

to backtrack to undo Z=b.

Domain

wipe-out of

Y

9/15/2005 Fahiem Bacchus 58

Extended FC
X=a

Z=b

Q=c

R c

Domain

wipe-out of

Y

The clause (X a,Z b) tells us that we
can soundly backtrack to undo Z=b.
The clauses we learned for the values
of R

(X a,R a)
(X a,Z b,R b)
(Z b,R c)

Tell us that we also need not try the
value R=a again until we backtrack
even further to undo X=a.
Keeping track of this information
allows us to “backprune” values.
Bacchus (2000)

9/15/2005 Fahiem Bacchus 59

Negative Resolution
Notice the resolution steps involved

(R=a,R=b,R=c),(X a,R a) (X a,R=b,R=c)

(X a,R=b,R=c),(X a,Z b,R b)
(X a,R=c,Z b)

(X a,R=c,Z b),(Z b,R c) (X a,Z b)

Negative resolution steps. (One of the
clauses in always negative).

I.e., FCCBJ actually embeds a negative
tree resolution. Even more limited in
power. Mitchell (2003)

9/15/2005 Fahiem Bacchus 60

Negative Resolution
In fact in the standard techniques all
clauses (nogoods)

In the original constraints are negative.

Learned during search are negative.

Return to this later.

9/15/2005 Fahiem Bacchus 61

Modern Sat Solvers

9/15/2005 Fahiem Bacchus 62

Clause Learning (CL)

The main feature of modern SAT solvers
is the development of new techniques to
support effective clause learning

Without clause learning DPLL and CSP
backtracking algorithms are both limited to
tree resolution, (negative tree resolution in
the case of CSPs).

Modern solvers are N-orders of magnitude
faster than the best implementations of
standard DPLL on many problems. Where N
is probably >6.

9/15/2005 Fahiem Bacchus 63

DPLL+CL

DPLL

picks a literal

reduces the theory with that literal

this perhaps induces some sequence of
further literals all forced by unit propagation.

Stops and backtracks when some clause
becomes falsified.

9/15/2005 Fahiem Bacchus 64

Failed PathX
A
¬B
C

¬Y
D
¬E
F

Z
H
I
¬J
¬K

(K,¬I,¬H, ¬F,E, ¬D,B)

• X,Y,Z: Decision Variables.

• A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit

propagation

• (K,¬I,¬H, ¬F,E, ¬D,B): Falsified clause.

This clause is called a conflict clause:

it is falsified by the current path.

9/15/2005 Fahiem Bacchus 65

Forced LiteralsX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced

by some clause becoming

unit.

• We keep track of the forcing

clause as part of the unit

propagation process.

9/15/2005 Fahiem Bacchus 66

Forced LiteralsX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each clause reason contains

• One true literal on the

path (the literal it forced)

• Literals falsified higher up

on the path.

9/15/2005 Fahiem Bacchus 67

Forced LiteralsX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Hence we can resolve away

any forced literal in the

conflict clause.

• This will yield a new conflict

clause.

1. (K,¬I,¬H, ¬F,E, ¬D,B), (D,B,Y)

(K,¬I,¬H, ¬F,E,B,Y)

2. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)

(¬I,¬H, ¬F,E, ¬D,B)

3. (K,¬I,¬H, ¬F,E, ¬D,B), (H,B,E,¬Z)

(K,¬I,¬F,E, ¬D,B,¬Z)

4. …

9/15/2005 Fahiem Bacchus 68

Conflict Clauses

Any forced literal in any conflict clause can be
resolved on to generate a new conflict clause.

If we continued this process until all forced
literals were resolves away we would end up
with a clause containing decision literals only
(All-decision clause).

But empirically the all-decision clause tends
not be very effective.

Too specific to this particular part of the search to
be useful later on.

9/15/2005 Fahiem Bacchus 69

Conflict Clauses

Various choices exist as to how to
generate a conflict clause on failure.

The most popular form of clause learning
is 1-UIP learning (Zchaff). (Now almost
the standard).

9/15/2005 Fahiem Bacchus 70

1-UIP Clauses

Start with C equal to the original conflict
clause

1. Let n be the number of literals in C at or
below the last decision variable.

2. If n > 1

Let C be equal to the result of resolving away the
deepest forced literal.

Goto 1

3. Else store C for future use and use it for
backtracking.

9/15/2005 Fahiem Bacchus 71

1-UIP Clauses

This process must terminate. As when we
resolve away a literal can only introduce
literals above it on the path.

The last remaining literal from the
deepest level in the 1-UIP clause may or
may not be the decision literal.

9/15/2005 Fahiem Bacchus 72

1-UIPX
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)

(¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)

(¬H, ¬F,E, ¬D,B,¬X)

9/15/2005 Fahiem Bacchus 73

Backtracking

The advantage of a 1-UIP clause (or any
unique implication point clause) is that it
forces the single literal from the deepest
level.

We can backtrack to the point that literal
is forced and augment the set of forced
literals at that level by the new unit prop.

9/15/2005 Fahiem Bacchus 74

1-UIP
X

A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

Z
H (H,B,E,¬Z)

I (I,¬H,¬D,¬X)

¬J (¬J,¬H,B)

¬K (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

X
A …

¬B …

C …

¬Y
D (D,B,Y)

¬E …

F …

¬H (¬H,¬F,E, ¬D,B,¬X)

More unit

propagation

9/15/2005 Fahiem Bacchus 75

Backtracking

Note that the decision literal has not
been exhausted. We don’t know if the
current prefix with ¬Z instead of Z might
have a solution.

9/15/2005 Fahiem Bacchus 76

Far Backtracking

“Far Backtracking”, i.e., backtracking to the
point we have the new unit implicant instead of
backtracking to undo the deepest decision. has
two motivations:

¬H is implied at this higher level, so undoing all of
the work and starting again is the easiest way to
take this constraint into account. (See Bacchus 2000
for an alternate approach to back forcing of
backpruning values).

Perhaps heuristically it might be better to start the
search under the newly discovered implication all
over again.

9/15/2005 Fahiem Bacchus 77

Far Backtracking

E.g., with far backtracking whenever a
unit conflict is discovered, the search
returns to the root: a complete restart.

Unclear if there is any real empirical evidence
about whether or not this is more efficient.

9/15/2005 Fahiem Bacchus 78

Managing Large number of
Clauses

Once we start learning a clause at every
backtrack point, we soon have the
problem of having to deal with lots of
new clauses.

The learned clauses often are far more
numerous than the input clauses.

9/15/2005 Fahiem Bacchus 79

Watch Literals

Some other techniques have been developed in
the SAT literature that have made clause
learning feasible.

More efficient unit propagation by the technique of
watch literals.

in order for a clause to be come unit all but one of its
literals must become false.

Assign two watch literals per clause. Only when the watch
literal becomes false do we check the clause.

Try to find another watch, or determine that the clause has
become unit or empty.

9/15/2005 Fahiem Bacchus 80

Watch Literals

Like ideas in current GAC algorithms where only a
single support is maintained. But no reliance on
lexographic ordering. Thus watches have an
important benefit of requiring no work on
backtrack.

Also clever empirically tuned techniques for
where to locate the watches and how to store
clauses in memory designed to maximize cache
hits.

9/15/2005 Fahiem Bacchus 81

VSIDs Heuristics

Additional success has been obtained
from dynamic variable ordering heuristics
that are very quick to compute: don’t
require examining all unassigned
variables.

These heuristics favor literals that have
appeared in recently learned clauses.

Intuition is claimed to be: learning new
clauses that can be resolved against recent
clauses.

9/15/2005 Fahiem Bacchus 82

The Power of Clause Learning

Beame, Kautz, and Sabharwal (2003) showed
that regular resolution cannot p-simulate
clause learning.

I.e., there exists formulas with short CL proofs but
long regular resolution proofs.

Recently (Pitassi & Hertel, not yet published)
have shown that CL can p-simulate regular
resolution.

I.e., with clause learning DPLL becomes strictly more
powerful than regular resolution, and thus a major
advance over standard tree-resolution limited DPLL.

9/15/2005 Fahiem Bacchus 83

The Power of Clause Learning

We are still working on the question of
whether or not CL is as powerful as
general resolution.

9/15/2005 Fahiem Bacchus 84

Improving CSP solvers

9/15/2005 Fahiem Bacchus 85

Improving CSP Solvers

FCCBJ no more powerful than tree
resolution, also bounded by negative
resolution.

How do we gain from advances in SAT?

Ideas along this line have been pursued
by my PhD student George Katsirelos
who has written a general CSP solver
toolkit called EFC based on our ideas.

http://www.cs.toronto.edu/~gkatsi/efc/
9/15/2005 Fahiem Bacchus 86

Improving CSP Solvers

A. Unrestricted Clause (nogood) learning.

B. Learning non-negative clauses.

C. Improving the input clauses.

D. Better clauses (nogoods) from GAC.

E. Better clauses (nogoods) from
propagators.

9/15/2005 Fahiem Bacchus 87

A. Unrestricted NoGood Learning

Standard works on clause (nogood) learning
has concentrated on various restricted forms,
e.g., k-relevance bounded, length bounded,
etc.
Our first attempt was to utilize SAT techniques
for the efficient handling of large numbers of
clauses (watch literals, clause databases) to
allow storing as many nogoods as can fit into
main memory.
With standard techniques are used to learn the
nogoods the results were occasionally very
good, however often the results were not great.

9/15/2005 Fahiem Bacchus 88

Negative Resolution
FC (reminder)X=a

Z=b

Q=c

R c

With clause for each value of R:

(X a,R a)

(X a,Z b,R b)

(Z b,R c)

Resolve these against
(R=a,R=b,R=c) to obtain

(X a,Z b)
Domain

wipe-out of

Y

9/15/2005 Fahiem Bacchus 89

Negative Resolution

Each resolution step is a negative
resolution.

All learned nogoods are negative clauses.

Restricts the power of the search to negative
resolution.

9/15/2005 Fahiem Bacchus 90

No Unit Propagation

Unit propagation over the learned clauses
never propagates!

(X a,Z b) when X=a this becomes unit forcing
Z b (the pruning of b from Z’s domain)

But now Z b can only make other learned clauses
true, it cannot make any of them unit.

So one never gets very much further than the
original clauses.

In contrast unit propagation in SAT can often
value hundreds of literals after each decision.

9/15/2005 Fahiem Bacchus 91

B. Learning Non-Negative Clauses

Idea is simple, when learning a new clause
simply don’t resolve away all of the positive
literals!

With clause for each value of R:
(X a,R a)

(X a,Z b,R b)

(Z b,R c)

Resolve these against (R=a,R=b,R=c) to obtain
(X a,R=b,R=c)

or (Z b,R=a,R=c)

instead of doing all of the resolution steps.

9/15/2005 Fahiem Bacchus 92

B. Learning Non-Negative Clauses

We developed a first-decision clause
learning scheme, where we replace all
literals (assignments/non-assignments)
in the clause until we have only the
decision literal at the deepest level.

This allows us to learn non-negative
clauses, perform intelligent backtracking,
and it seems to work better than the 1-
UIP scheme in CSPs.

9/15/2005 Fahiem Bacchus 93

Unit Propagtion

(Z b,R=a,R=c), now if we prune a from
R’s domain and assign Z=b, this mixed
clause forces us to assign R=c.

That assignment can make other clauses
unit, pruning other values or forcing
other assignments.

9/15/2005 Fahiem Bacchus 94

B. Learning Non-Negative Clauses

“Generalized Nogood” learning often gives
dramatic performance improvements over
FCCBJ+learning standard nogoods (negative
clauses), which in turn is better than FCCBJ
without any learning.

Also provably adds power over standard
negative clauses (Katsirelos & Bacchus 2005)

See also Hwang & Mitchell (2005) on how 2-way
branching also has the potential to get around
negative resolution.

9/15/2005 Fahiem Bacchus 95

C. Improving Input Clauses

The input clauses are all negative
clauses. This also limits the effectiveness
of resolution.

One can generalize these clauses, e.g.,
say the constraint C(X,Y,Z) with
Dom={a,b,c} contains the clauses

(X a,Y a,Z a),

(X b,Y a,Z a),

these two clauses can be replaced by the
single clause (X=c,Y a,Z a)

9/15/2005 Fahiem Bacchus 96

C. Improving Input Clauses

Constraints can be optimized (and
converted from negative clauses) using,
e.g., information theory based decision
tree algorithms.

We haven’t as yet completed an empirical
evaluation of this idea.

Note same idea can be used to make GAC-
schema checking faster.

9/15/2005 Fahiem Bacchus 97

GAC

Most CSP solvers use GAC, and GAC is
empirically much more effective than FC.

How do we use clause learning ideas to
improve GAC?

9/15/2005 Fahiem Bacchus 98

Standard Technique

Inductively assume that every pruned
value is labeled by a (negative) clause
that caused the pruning.

How do we compute a clause to label a
value newly pruned by GAC on a
constraint C?

9/15/2005 Fahiem Bacchus 99

Standard Technique

The standard technique is to use the
union of the clauses that pruned any
value of any of the variables of the
constraint. [Chen 2000].

9/15/2005 Fahiem Bacchus 100

Standard Technique

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

(H=a & I=b &J=a) Logically

implies

(E=a & F=b &G=a)

(Z=b)

(Z=b)

Therefore
H=a & I=b &J=a & E=a & F=b &G=a & Z=b X b

In clause form
(H a,I b,J a,E a,F b,G a,Z b,X b)

9/15/2005 Fahiem Bacchus 101

Standard Technique

We obtain only negative clauses.

The resulting clause is very specific to
this particular part of the search space,
and can be quite long (not as powerful).

9/15/2005 Fahiem Bacchus 102

D. Better clauses from GAC

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

(H=a & I=b &J=a) Logically

implies
(E=a & F=b &G=a)

(Z=b)

(Z=b)

An immediate and computationally inexpensive clause
we can obtain is simply the set of pruned values that
caused the new pruning.

X a & Y b & Z c & Z a X b
(X=a,Y=b,Z=c,Z=a,X b) (Y=b,Z=c,Z=a,X b)

9/15/2005 Fahiem Bacchus 103

D. Better clauses from GAC

This “all of the values pruned” clause is actually
already captured by GAC processing itself.

(Y=b,Z=c,Z=a,X b)

Under any situation where we make all but one of
these literals true GAC will infer the remaining
literal.

E.g., if we prune b from Y’s domain, c and a from Z’s
domain, GAC will detect that b must be pruned from X’s
domain.

Similarly if X=b, a and c have been pruned from Z’s domain,
GAC will prune b from Y’s domain.

9/15/2005 Fahiem Bacchus 104

D. Better clauses from GAC

However, even though this clause is in
some sense “redundant” it can still be
resolved against other clauses to produce
powerful new clauses.

Increases the power of the search.

In some sense this method is
“converting” GAC inferences to clauses
on the fly, and these clauses can then be
used as inputs to more powerful
resolution refutations.

9/15/2005 Fahiem Bacchus 105

D. Better clauses from GAC

We can also resolve away various literals
from this clause, to yield a variety of
different clauses.

(Y=b,Z=c,Z=a,X b) (Y=b,Z b,X b)

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

(H=a & I=b &J=a)

(E=a & F=b &G=a)

(Z=b)

(Z=b)

9/15/2005 Fahiem Bacchus 106

D. Better clauses from GAC

The “all values pruned” clause empirically
is often quite useful.

Empirical analysis of the other possible
clauses one could generate remains
open.

9/15/2005 Fahiem Bacchus 107

Exploiting Constraint Structure
The “all values pruned” clause fails to exploit
information about the constraint.
It could be that from the structure of the constraint
only a subset of the currently pruned values
contributed to the newly pruned value.

GAC on

C(X,Y,Z)

X a

Y b

Z c

Z a

X b

E.g., perhaps X b
follows from just Y b
and Z c.

If we can detect this
efficiently, we could
learn even better
clauses from GAC.

9/15/2005 Fahiem Bacchus 108

Exploiting Constraint Structure

In general, any set of pruned values that
suffices to remove all of the supports of
X=b is a minimal reason for the pruning.

It is feasible to find such sets when the
constraint relatively small (e.g., small
enough to perform GAC-Schema)

In this case such clauses can be more
effective than the “all values pruned”
constraint.

9/15/2005 Fahiem Bacchus 109

E. Better clauses from
propagators

Another critical technique in CSPs is the
recognition that some constraints have a
specialized structure, and thus specialized
algorithms can be used to achieve GAC.

These specialized algorithms can work even
when the constraint is too large to be
represented as a set of clauses.

In these cases it should be feasible to
additionally exploit this structure to obtain
better clause reasons for the values pruned.

9/15/2005 Fahiem Bacchus 110

E. Better clauses from
propagators

E.g., all-diff.

The propagator (Regin 1994) works by
identifying sets of variables S that consume
all of the values in their domain.

E.g., a set of 3 variables all of which have the
same 3 values remaining in their domain.

In this case these values are consumed, they
cannot be used by any other variable in the all-
diff.

9/15/2005 Fahiem Bacchus 111

E. Better clauses from
propagators

E.g., all-diff.

Say that X=b, Y=b, Z=b are all pruned because we
have that b must be consumed by one of the
variables in the set {V,W}.

Then a shorter, structure specific, clause explaining
each of these pruned values is simply the set of
values already pruned from the domain of V and W.

“b” is consumed by V and W because these other values are
no longer available.

Other values pruned from the domains of other variables
are irrelevant.

9/15/2005 Fahiem Bacchus 112

E. Better clauses from
propagators

In general, getting better clauses by
exploiting structure specific to particular
constraints remains an area where much
additional work needs to be done.

9/15/2005 Fahiem Bacchus 113

Conclusions

9/15/2005 Fahiem Bacchus 114

Social Golfer
From Katsirelos & Bacchus 2005.

Note: no sophisticated symmetry breaking
techniques being used!

w,g,s GAC GAC+S GAC+G

2-7-5 1586.0s 218.0s 4.4s

2-8-5 >2000.0s 1211.9s 5.5s

3-6-4 >2000.0s 869.7s 5.0s

3-7-4 >2000.0s 549.6s 1.6s

4-7-3 843.4s 91.5s 0.3s

9/15/2005 Fahiem Bacchus 115

Conclusions

These techniques can yield a significant
improvement in CSP solvers.

Many other issues remain to be explored

The impact of learning different kinds of clauses
from GAC.

Heuristics based on recently learned clauses-very
successful in SAT, seemingly less so in CSPs.

Theoretical power in the presence of propagators.

Extending specialized constraints to be able to
extract better clauses.

