
Constraint Satisfaction Problems

Fahiem Bacchus
Department of Computer Science

University of Toronto

What is it?

• What is a constraint satisfaction problem?
• We illustrate with a couple of examples:

– The N-Queens puzzle.
– Golomb Rulers.

N-Queens
• Place N queens on an NxN chess board so

that queen can attack any other queen.

Queen Attacks

Solution to 8-Queens

8-Queens

• There are 92 distinct solutions to the 8-
Queens problem.

How do we solve N-Queens
• Humans solve this problem by

experimenting with different configurations.
• They use various insights about the problem

to explore only a small number of
configurations before they find an answer.

• Problem is that it is unclear exactly what
these insights are. Furthermore, people
would find it hard to solve a 1000 Queen
problem!

Generate and Test

• Computer are good at doing a large number
of simple things quickly.

• So one possible solution is to systematically
try every placement of queens until we find
a solution.

Generate and Test…
Q
Q
Q
Q

Q
Q
Q
Q

Q
Q
Q
Q

Q
Q
Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

…

Problem
• For 4-Queens there are 256 different

configurations.
• For 8-Queens there are 16,777,216

configurations.
• For 16-Queens there are

18,446,744,073,709,551,616 configurations.
• This would take about 12,000 years on a

fast modern machine.
• In general we have NN configurations for N-

Queens.

Backtracking

• One thing that we can notice is that in, e.g.,
the 8-Queens problem, as soon as we place
some of the queens we know that an entire
additional set of configurations are invalid:

Backtracking

• Backtracking is one of the main methods for
solving problems like N-Queens.

• But we don’t want to create an algorithm
just for solving N-Queens!

• We need to express N-Queens as an
instance of a general class of problems and
then design algorithms for solving this
general class of problems.

CSP
• We can represent the N-queens as a

constraint satisfaction problem.
• A Constraint Satisfaction Problem consists

of 3 components
1. A set of variables.
2. A set of values for each of the variables.
3. A set of constraints between various

collections of variables.
We must find a value for each of the variables

that satisfies all of the constraints.

Constraints
• A constraint is a relation between a local

collection of variables.
• The constraint restricts the values that

these variables can simultaneously have.
• For example, all-diff(X1,X2,X3). This

constraint says that X1, X2, and X3 must
take on different values.

– Say that {1,2,3} is the set of values for each
of these variables then:
• X1=1, X2=2, X3=3 OK X1=1,X2=1,X3=3 NO

Finding A Solution
• Although each constraint is over a local

collection of variables, finding a global
assignment to all of the variables that
satisfies all of the constraints is hard:

NP-Complete.
• The solution techniques work by cleverly

searching through the space of possible
assignments of values to variables.

• If each variable has d values and there are
n variables we have dn possible
assignments.

N-Queens as a CSP

• We need to know where to place each of the
N queens. So we could have N variables
each of which has as a value 1…N2. The
values represent where on the chessboard
we will place the i-th variable.

N-Queens as a CSP

• Q1 = 1, Q2 = 15, Q3 = 21, Q4 = 32, Q5 =
34, Q6 = 44, Q7 = 54, Q8 = 59

N-Queens as a CSP
• This representation has

648 =281,474,976,710,656

Different possible assignments in the search
space.

N-Queens as a CSP
• However any particular problem can be

represented as a CSP in a number of
different ways.

• In this case we know that we can never
place two queens in the same column.

• So we can configure the problem as one
where we assign one queen to each of the
columns, and now we need to find out only
which row each of these queens is to placed
in.

N-Queens as a CSP

• So we can have N variables: Q1, …, QN.
• The set of values for each of these variables

will be {1, 2, …, N}.

N-Queens as a CSP

• Q1 = 1, Q2 = 5, Q3 = 8, Q4 = 6, Q5 = 3, Q6
= 7, Q7 = 2, Q8 = 4

N-Queens as a CSP
• This representation has

88 =16,777,216
Different possible assignments in the search
space.

• Still too large to examine all of them, but a
big improvement.

The Constraints

• The constraints are the key component in
expressing a problem as a CSP.

• The constraints are determined by how the
variables and the set of values are chosen.

• Each constraint consists of
1. A set of variables it is over.
2. A specification of the sets of assignments to

those variables that satisfy the constraint.

Constraints

• The idea is that we break the problem up
into a set of distinct conditions each of
which have to be satisfied for the problem
to be solved.

• In N-Queens:
– No queen can attack any other queen.

• Given any two queens Qi and Qj they cannot attack
each other.

Constraints

• Now we translate each of these individual
conditions into a separate constraint.
– Qi cannot attack Qj (i ≠ j)

• Qi is a queen to be placed in column i, Qj is a queen
to be placed in column j.

• The value of Qi and Qj are the rows the queens are
to be placed in.

• Note the translation is dependent on the
representation we chose.

Constraints
• Queens can attack each other

1. Vertically, if they are in the same column---
this is impossible as Qi and Qj are placed in
different columns.

2. Horizontally, if they are in the same row---we
need the constraint Qi ≠ Qj.

3. Along a diagonal---they cannot be the same
number of columns apart as they are rows
apart: we need the constraint
|i-j| ≠ |Qi-Qj| (|.| is absolute value)

Representing the Constraints

1. Between every pair of variables (Qi,Qj) (i
≠ j), we have a constraint Cij.

2. For each Cij, an assignment of values to
the variables Qi = A and Qj = B, satisfies
this constraint if and only if

1. A ≠ B
2. |A-B| ≠ |i-j|

Solutions

• A solution to the N-Queens problem will be
any assignment of values to the variables
Q1,…,QN that satisfies all of the
constraints.

• Constraints can be over any collection of
variables. In N-Queens we only need binary
constraints---constraints over pairs of
variables.

Another Problem---Golomb
Rulers

• This problem has various practical
applications, e.g., sensor placement in radio
astronomy and in x-ray crystallography.

• We have a ruler of length L units. We can
place marks along this ruler at any unit
interval.

• For example, if L = 7, we can place a mark
at any of the positions 0,1, 2, 3, 4, 5, 6, 7.
But we cannot place a mark at position 1.5.

Golomb Rulers

• We want to place M marks (m1,m2,…mM)
on the ruler, such that all of the M(M-1)/2
differences mi-mj are distinct.

• The objective is to find the minimal length
ruler such that the M marks will all have
distinct differences.

Golomb Rulers

• For example, for 5 marks, the optimal
(shortest) ruler has length 11, and the marks
are placed at
– 0 1 4 9 11

• e.g., 11-4 ≠ 9-1

• An optimal ruler for 23 marks has length
372. The optimal ruler for 24 marks is not
known.

Expressing Golomb Rulers as
CSPs

• We can represent this problem as a CSP.
However, the CSP will only tell us whether
or not a ruler of a fixed length L for M
marks exists.

• To find the optimal length we must
successively decrease L until we find that
the CSP has no solution.

Golomb Rulers
• Variables m1,…mM one variable for each

mark.
• Each variable has the domain of values

{0,1,…,L-1}. If we assign, e.g., m1 = 4, this
means that we place mark 1 at position 4
along the ruler.

• We have a constraint between every
collection of 4 variables, {mi, mj, mk, mn}
such that they form two distinct pairs:
(mi,mj) ≠ (mk,mn).

Golomb Rulers

• The constraint between (mi,mj,mk,mn) is
that
– |mi-mj| ≠ |mk-mn|

Solving CSPs

• As we saw before we can improve over
simply enumerating and testing all possible
assignments by recognizing that a subset of
the variables can already make a solution
impossible.

• By expressing the problem as a CSP we
have a systematic way of achieving this
extra efficiency.

Generic Backtracking
• Generic Backtracking is the simplest and

oldest algorithm for solving CSP problems.
• The idea is to search in a tree of variable

assignments, as we move down the tree we
assign a value to a new variable.

• Once we have assigned all of the variables
that participate in a constraint, we check
that constraint.

• At any point if a constraint is violated we
backtrack up the tree.

BT
BT(int level)

if(all variables assigned)
PRINT value of each varible;
exit(1);

V := PickUnAssignedVariable();
Assigned[V] := TRUE;
for d := each member of Domain(V)

Value[V] := d;
OK := TRUE;
for each constraint C such that V is a variable of C

and all other variables of C
are assigned.

if C is NOT satisfied by the current assignments
OK := FALSE;

if(OK)
BT(level+1);

return;

BT

• PickUnAssignedVariable---simply returns one of
the unassigned variables. The choice of
which variable to assign next can be critical.

• Example: 4 Queens.

BT Performance

Finding a single solution.
26 Time = 26.84 sec
27 Time = 32.3 sec.
28 Time = 234.8 sec.
29 Time = 125.5 sec.

Forward Checking

• The idea of searching in a tree of variable
assignments is very powerful. However
generic backtracking is not a very good
algorithm.

• (Note that although BT is much faster than
simple enumeration all algorithms for
solving CSPs take time that can grow
exponentially with the size of the problem.)

Forward Checking

• Forward Checking is based on the idea of
looking ahead in the tree to see if we have
already made assigning a value to one of the
unassigned variable impossible.

• It is based on the idea of pruning the
domains of the unassigned variables.

FC
Initially CurrDomain[V] = Domain[V] for all variables V;

FC(int level)
if(all variables assigned)

PRINT value of each varible;
exit(1);

V := PickUnAssignedVariable();
Assigned[V] := TRUE;
for d := each member of CurrDomain(V)

Value[V] := d;
for each constraint C such that

1. V is a variable of C
2. C has an unassigned variable V’.
3. All other variables of C are assigned.

DWO := FCCheck(C,V,V’,level);
if(DWO == FALSE)

FC(level+1);
Restore(level);

return;

FC
FCCheck(Constraint C, Variable V, Variable V’, int level)

//We have just assigned a value to V.
//We need to check every value the CurrDomain(V’)
//to see if it is compatiable.

for d := each member of CurrDomain(V’)
Value[V’] := d;
if C is not satisfied by the current set of assignments

CurrDomain(V’) := CurrDomain(V’) - {d};
remember that d was pruned from the domain of V’

at level
if CurrDomain(V’) is empty

return TRUE;
return FALSE;

FC
Restore(int level)

for all d,V such that d was pruned from the domain of V
at level
CurrDomain(V) := CurrDomain(V) U {d};

FC

• Example 4 Queens.

FC Performance
Finding a single solution.
26 Time = 0.58 sec.
27 Time = 0.68 sec.
28 Time = 4.78 sec.
29 Time = 2.39 sec.
30 Time = 89.69 sec.
31 Time = 22.01 sec.
32 Time = 143.2 sec.
33 Time = 240.9 sec.

Variable Ordering

• Remember I said that the variable choosen
by PickUnAssignedVariable is
critical to performance.

• If we always chose as the next variable the
variable with smallest CurrDomain we
get a tremendous improvement in
performance.

FC Variable Ordering
Performance

Finding a single solution.
33 Time = 0.00 sec.
100 Time = 0.02 sec.
101 Time = 4.79 sec.
102 Time = 0.01 sec.

Then 104 Queens is hard to solve.

Work in CSPs
• Algorithms that use randomization have

been able to solve 6,000,000 Queens (but
randomization does not always work).

• In practice it is found that the way we
model a problem as a CSP makes a
tremendous difference.

• Optimization---finding the best solution is
also an area where a great deal of work is
being done.

	Constraint Satisfaction Problems
	What is it?
	N-Queens
	Queen Attacks
	Solution to 8-Queens
	8-Queens
	How do we solve N-Queens
	Generate and Test
	Generate and Test…
	Problem
	Backtracking
	Backtracking
	CSP
	Constraints
	Finding A Solution
	N-Queens as a CSP
	N-Queens as a CSP
	N-Queens as a CSP
	N-Queens as a CSP
	N-Queens as a CSP
	N-Queens as a CSP
	N-Queens as a CSP
	The Constraints
	Constraints
	Constraints
	Constraints
	Representing the Constraints
	Solutions
	Another Problem---Golomb Rulers
	Golomb Rulers
	Golomb Rulers
	Expressing Golomb Rulers as CSPs
	Golomb Rulers
	Golomb Rulers
	Solving CSPs
	Generic Backtracking
	BT
	BT
	BT Performance
	Forward Checking
	Forward Checking
	FC
	FC
	FC
	FC
	FC Performance
	Variable Ordering
	FC Variable Ordering Performance
	Work in CSPs

