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Abstract

Over the years a large number of algorithms has been discovered to solve instances
of CSP problems. In a recent paper Prosser [9] proposed a new approach to these
algorithms by splitting them up in groups with identical forward (Backtracking,
Backjumping, Conflict-Directed Backjumping) and backward (Backtracking, Back-
marking, Forward Checking) moves. By combining the forward move of an al-
gorithm from the first group and the backward move of an algorithm from the
second group he was able to develop four new hybrid algorithms: Backmarking
with Backjumping (BMJ), Backmarking with Conflict-Directed Backjumping (BM-
CBJ), Forward Checking with Backjumping (FC-BJ) and Forward Checking with
Conflict-Directed Backjumping (FC-CBJ).

Variable reordering heuristics have been suggested by, among others, by Haralick
[6] and Purdom [11, 14] to improve the standard CSP algorithms. They obtained
both analytical and empiral results about the performance of these heuristics in

their research.

In this thesis variable reordering heuristics are introduced into the new hybrid
algorithms by Prosser and emperical results are presented about the performance
of these adapted versions. Four new algorithms are derived this way: BMJ with
variable reordering (BMJvar), BM-CBJ with variable reordering (BM-CBJvar), FC-
BJ with variable reordering (FC-BJvar) and FC-CBJ with variable reordering (FC-
CBJvar). As comparison, variable reordering is also incorporated in the standard
algorithms, resulting in already known algorithms like BTvar, BMvar and FCvar,

and new algorithms like BJvar and CBJvar.

Three different kinds of problems were used to obtain the emperical test results:

the Zebra problem which was also used by Prosser, the N-queens problem and

v



random problems, all with fixed domain sizes.

The empirical results indicate that variable reordering heuristics offer a signifi-
cant improvement for many of these algorithms. However, they also show that for
problems with fixed domain sizes the new hybrid algorithms developed by Prosser
do not offer any improvements, compared to the traditional algorithms, after the

incorporation of these heuristics.
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Chapter 1

Introduction

A large number of problems in artificial intelligence, operations research and sym-
bolic logic can be viewed as special cases of the general Constraint Satisfaction
Problem (CSP). This problem is also known as the consistent labeling problem and
examples of its use can be found in machine vision, belief maintenance, schedul-
ing, planning, database consistency checking, temporal reasoning, graph problems,

satisfiability and similar problems. The problem is known to be NP-complete.

In its general form, a CSP consists of a finite list of n variables S = {V1,...,V,},
where each variable ¢ has a domain D; = {V;1,..., Vip, } associated with it consisting
of M; values. Related to these variables is a set of constraints C = {C,...,Cn,}
each specified over a subset of the n variables in S. These constraints limit the
possible combinations of values that the variables in that subset can take. To solve
the problem we have to find an assignment of values to the variables that satisfies

all the constraints simultaneously. We can also be interested in all such solutions.

The arity of a CSP is determined by the arity of its constraints. An n-ary

constraint involves restrictions to n different variables. The arity of the CSP is
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equal to the maximum of the constraint arities. For instance, if constraints exist
between some pairs of variables, but not between triples or larger subsets of the
n variables then we have an arity of 2. CSPs of this kind are called binary. The
degree of a CSP is determined by the size of the variable domains, being equal to
the maximum of its variable domain sizes. The satisfiability problem where any

variable can only take one of two values, either true or false, is an example of a

CSP of degree 2.

Since it is possible to convert any n-ary CSP to a binary CSP [17] we can restrict
our attention to this special case. Constraints can be represented as pairs of com-
patible variables with corresponding values, for example ((vary,valy), (vary,vals)).
A binary constraint can then be represented as a matrix with the values of the
variables along the edges and a “1” in the corresponding column and row if the
values are compatible and a “0” if they are not. The constraint matrix [C,Z] is a
bit-matrix such that C,Z = 1 if and only if the k-th value for variable 7 is consistent
with the [-th value for variable j, otherwise ,Z = 0. Since [ ,Z] is symmetrical (the
constraint graph is undirected) we could restrict ourselves to those positions where
t < j. However, since this restriction does not give us significant space savings in

! we choose to ignore this feature. The constraint matrix can also

implementations,
be used to implement the domains of the different variables: if C{i = 1 then value
k belongs to the domain of variable 7, if Cji = 0 then k is not an element of the

domain of 2.

'In most imperative programming languages we cannot declare arrays in which the elements

have different lengths, hence it is inconvenient to take advantage of this restriction.
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1.1 Generate and Test

A first approach to solving a CSP can be made by using exhaustive search, also
known as the generate-and-test approach. An algorithm using that approach sys-
tematically generates all the possible assignments of values to variables and then
tests each one of these to see if it satisfies all the constraints. This approach will in
the worst case result in the generation of M; x M,y x ... x M, possible assignments
(where M; is the domain size of variable 7) which all have to be tested. When
we are trying to find all solutions for a specific CSP this approach will therefore
show exponential behavior in the depth of the search tree (i.e., in the number of
variables). In the case of a CSP of degree two (binary variables) the search will
have a worst and average case complexity of 2", were n is the number of variables
or the depth of the search tree. When we are searching for the first solution to
a CSP of this kind, this approach will only show linear behavior when the cutoff
rate p, which indicates the fixed probability that the leftmost branch of a node will

succeed, is close to one [19]. The formula for the average search cost in this case is:

av(n) = pnCp + q(2" — 1)(CL + Cr 4+ 2CB) — qnCp

Here ¢ = 1 — p, and Cg,Cr,Cp are respectively the costs of traversing the
left branch, the right branch and backtracking along a branch after failure. If p is
close to 1 the second term will be small and the behavior of the algorithm will be
fairly linear. In that case the algorithm is likely to find a solution in the leftmost
branch of the tree. For smaller values of p the second term will dominate and the
complexity will grow exponentially in the depth of the tree. It is this potential for
exponential behavior that makes the generate and test approach unacceptable as

the general solution method for CSP’s.
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1.2 Standard CSP Algorithms

Standard algorithms for CSP’s are traditionally divided into three classes.

Tree-search algorithms This class includes Backtracking (BT) and its refine-
ments Backjumping (BJ) (also known as Backchecking), Conflict-Directed
Backjumping (CBJ) and Backmarking (BM). Algorithms of this class attempt
to generate a tree of all possible assignments of values to variables, while con-
tinuously checking if the current assignment constitutes a solution. During
this search they use different methods to avoid the exhaustive generation of

possible assignments or to avoid performing redundant checks.

Network Consistency or Filtering algorithms This class is comprised of arc-
consistency (AC) or Waltz filtering, and path-consistency (PC) algorithms.
Arc-consistency or 2-consistency algorithms (also known as constraint propa-
gation and constraint relaxation) filter the domain of a variable in such a way
that any remaining value has a compatible match in the domain of any other
variable. Path-consistency or 3-consistency ensures that any subnetwork of
two variables is extendable to any third variable. In general, ¢-consistent al-
gorithms guarantee that any consistent instantiation of ¢ — 1 variables can be
extended to any ¢th variable. Filtering algorithms can only solve problems in
specific cases, in general tree-search algorithms have to be additionally used

to solve the simplified problem.

Combinations This third class is comprised of algorithms that combine tree-
searching and filtering. Combining these two approaches is interesting because
tree-search algorithms are guaranteed to find all the solutions but suffer from

thrashing (explained below) while filtering algorithms can alleviate this defect
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but are not guaranteed to find a solution. Examples of these algorithms are
Full Lookahead (FL), Partial Lookahead (PL) and Forward Checking (FC).
Algorithms of this class look forward to the domain of variables that are not
yet instantiated and make sure that they are consistent with the variables

that already have a value.

1.2.1 An Example: the Zebra Problem

The example problem that will be used to clarify the workings of the various algo-
rithms is the Zebra problem. This CSP problem has 25 variables that correspond
to the following:

e Five colours: Red, Blue, Yellow, Green and Ivory (V[1], V[2], V[4], V[5],
VI3]);

o Five brands of cigarettes: Old-Gold, Parliament, Kools, Lucky and Chester-
field (V[6], V[8], V[12], V[13], V[9]);

o Five nationalities: Norwegian, Ukranian, English, Spanisch and Japanese

(V[7], VI10], V[14], V[15], V[11]);

e Five pets: Zebra, Dog, Horse, Fox and Snails (V[16], V[18], V[22], V[23],
V{19]);

e Five drinks: Coffee, Tea, Water, Milk and Orange-Juice (V[17], V[20], V[24],

V[25], V[21]);

Each of these variables has the domain {1,2,3,4,5} representing one of five

houses they belong to. The particular numbering of the variables that is used
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has been chosen to simplify the construction of suitable examples in the following

sections. The following constraints must be satisfied:

10.

11.

12.

13.

14.

15.

. Each house has a different colour, is inhabited by a single person from a spe-

cific nationality, who smokes a unique brand of cigarettes, owns a particular

pet and has a preferred drink;

The Englishman lives in the Red house;

The Spaniard owns a Dog;

Coffee is drunk in the Green house;

The Ukranian drinks Tea;

The Green house is to the right of the Ivory house;

The Old-Gold smoker owns Snails;

Kools are smoked in the Yellow house;

Milk is drunk in the middle house (house 3);

The Norwegian lives in the first house on the left (house 1);
The Chesterfield smoker lives next to the Fox owner;

Kools are smoked in the house next to the house with the horse;
The Lucky smoker drinks Orange-Juice;

The Japanese smokes Parliament;

The Norwegian lives next to the Blue house.

The constraint graph generated by this problem is shown in Figure 1.1.
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Figure 1.1: Constraint graph of the Zebra problem
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1.2.2 Data Structures and definitions

The code for part of the algorithms in this work has been taken from a CSP function
library by van Beek [3]. The following data structures and definitions are used in

the discussion of the various algorithms that will be presented:

o currentis the variable that is currently being instantiated, it ranges from 1 to
n + 1. After the instantiation of current checks out to be consistent at depth
¢ in the search tree, current is set to ¢ + 1. Hence at the bottom of the tree,

when a solution has been found current has the value n + 1.
e 7 is the number of variables, & is the maximum domain size for these variables

o The four-dimensional array C[n][n][k][k] holds the constraint matrices for all
the variables. C[3][f][k][]] = 1 if and only if value k for variable i is compatible
with value [ for variable j. C also determines the domain of variable i; if
C[3][i][k][k] = 1 then k belongs to the domain of i; if C[i][s][k][k] =0 then k

does not belong to this domain.

e The function trivial(s, j) returns True if the constraint between variable ¢ and
variable j is trivial, i.e., all values of variable ¢ are compatible with all values
for variable j. This function uses information obtained from preprocessing

(O(n?) algorithm) and considerably improves performance.?

o The array solution[i] holds the current assignment of values to variables for
1 <@ < current. Note that this structure only holds a solution to a CSP

when current > n. At the end of a search for all solutions to a specific CSP

2This function was not included in van Beek’s [3] library, but was added by the author.
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for example, it is unlikely that the last assignment of values to the variables

constitutes a solution.

e Variable checks is a counter for the number of consistency checks performed.
Tests that determine if a value belongs to the domain of a variable are not

considered consistency checks, accessing C[7][z][k][k] is therefore not counted.?

e Variable foundindicates whether a solution has been found and variable count

indicates how many solutions have been found.

o Variable number is used to indicate if the algorithm should search for one or
for all solutions. If number = 0 the algorithm will look for all solutions, if

number = 1 it will only look for the first solution.

All the algorithms that will be discussed here use the following template:

Function CSP-algorithm
{ If this is the first variable:
Initialize the bookkeeping structures
If all variables are instantiated consistently:
Process the solution
For all values of the variable do:
{
Perform domain checks
Instantiate the variable with this value
Perform consistency checks
Make a recursive step to this CSP-algorithm
Process the results of this step
}

Process a failure

3Not counting domain checks as consistency checks is in keeping with standard practice in CSP

research.
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A special function consistent checks if the instantiation of the current variable
is consistent with respect to other past or future variables. (See appendix A for

some programming conventions)

1.2.3 Backtracking (BT)

Chronological backtracking [20, 2] is one of the simplest algorithms for solving
CSP’s and serves as a basis for all of the other algorithms discussed in this thesis.
In backtracking the set of all variables is instantiated incrementally, one variable
at a time. When a variable is assigned a value from its respective domain a partial
consistency check is performed, involving only those constraints for which all the
variables are currently instantiated. If variable V; is currently being instantiated
only the constraints involving V; and variables from {V; ...V;_; } have to be checked.
Constraints that only involve variables from {V;...V;_;} were checked previously
and constraints involving variables from {V;;;...V,} cannot be checked because
these variables have not yet been assigned. When any of the constraints fail the
next value for V; is tried, and when all values are exhausted V; is unassigned and

the next value for the previous variable V;_; is checked.

The backtrack algorithm (BT) is given below. The consistent function checks if
the assignment to the current variable is consistent with the previous assignments
by checking all the constraints involving the variables from 1 to current — 1. If
the constraint between the current variable and a previous one is trivial, the func-
tion skips checking it. Actually performing a check between two variables is done
by accessing the C-array using these variables and their current values from the

solution-array as indicies. Each such use of the C-array is counted as a consistency

check.
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Function consistent(C, solution, current)

NETWORK C;

SOLUTION solution;

int current;

{ int i;

for (i := 1; i € current; i++) {
if (trivial(current,i)) continue; /* skip trivial constraints */
checks := checks + 1; /* count the consistency check */
/* consistency check between variable current and variable i */
if (C[current] [i] [solution[current]] [solution[i]] = 0)

return(0);} /* failure */
return(1l); /* success */

The main loop of the BT algorithm chronologically traverses the search tree by
assigning a value from its domain to the current variable, checking its consistency
and calling the function recursively for the next variable. If none of the values
prove to be consistent with the past instantiations the algorithm backs up to the
previous variable and tries its next value. If current > n the function processes a
solution as all the variables have been assigned consistent values. It then continues
the search for other solutions, or it returns control to the calling program if only

the first solution was requested.
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Function BT(C, n, k, solution, current, number, found)

NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i;
if (current = 1) /* initialize */
*found := 0;
if (current > n) { /* found a solution */
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(1); /* only first solution */
else return(0);} /* all solutions */
for (i :=1; i <= k; i++) { /* check all values */
if (C[current] [current] [i][i] = 0) /* if not in the domain */
continue; /* go to the next value */
solution[current] := i; /* assign the value */
if (consistent(C, solution, current) /* check consistency */
/* call BT recursively with current+1 */
if (BT(C, n, k, solution, current + 1, number, found))
return(1);} /* success */
return(0); /* failure, backtrack */

Backtracking eliminates substantial subspaces of the search space expanded by
the generate-and-test algorithm by checking partial solutions to a CSP. In order
to do this it needs to be able to use partial constraints. A partial constraint only
involves a subset of the total set of variables. It has the property that it will always
be satisfied by an assignment of values to the variables in this subset if such an
assignment can lead to a solution. It maught fail if the particular assignment cannot

lead to a solution.
A constitutes a solution = ((A’ C A) = PC(A') = True)

In this formula A is an assignment of values to all variables and PC is a partial
constraint. A good partial constraint fails with most assignments that cannot

lead to a solution. This way a single partial consistency check can prevent an
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Figure 1.2: BT scenario

entire subtree, that would not lead to a solution, from being searched. However,
backtracking can still be very inefficient because it may suffer from what is known
as thrashing. This basically means that during the search redundant checks are

preformed due to the incompatibility of a set of variables.

In Figure 1.2 an example of this behaviour for the Zebra problem is shown. The
domain of Vyorwegian 18 Wiped out because according to constraint 9 he has to live
in the Left house (house 1) and according to constraint 14 he also has to live next
to VBiue, which has value 3. The algorithm will now backtrack to Voiq_goiq, but
the problem will keep occuring until Vg, is assigned another value. The checks

performed between Viorwegian and Vi, are redundant.

In general, backtracking, like all the other algorithms that will be discussed
here, tends to have an exponential time complexity in the number of the variables,

or the depth of the tree, both in the average and worst-case.
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1.2.4 Backjumping (BJ)

Backjumping is an algorithm developed by Gaschnig [5] that jumps back multiple
levels, directly to the cause of a conflict to avoid thrashing. This way the number
of nodes visited in the search tree can be reduced, resulting in a reduction in the
number of consistency checks. If no value can be found in the domain of the current
variable that is consistent with the past variables, BJ jumps back to the deepest
variable in the tree that precluded a candidate value from the current domain. Its
forward move is still same as in Backtracking, checking the new variable against all

instantiations in the past.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
for (i := 1; i € current; i++) {
if (trivial(current,i)) continue;
checks := checks + 1;
if (C[current] [i] [solution[current]] [solution[i]] = 0) {
if (i > jump_place[current]) /* BJ, failure */
jump_place[current] := i; /* BJ, update if deeper */
return(0); } }
jump_place[current] := current - 1; /* BJ, success */
return(1l);
}

The consistent function is very similar to the one in BT except for the in-
troduction of the jump_place-array which is initialized to zero for all ¢ before the
search starts. If during the consistency checking loop one of the checks fails then
jump_place[current] is set to the variable causing the conflict if it is deeper in the

search-tree than the present value of jump_place[current]. If all the checks succeed
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jump_place is set to current — 1. The lines marked with “/* BJ */” indicate the

differences with BT.

Instead of a True or False indication the main function of BJ returns the variable
number of the variable to jump back to. When a backjump occurs the jump_place-
array has to be restored for all the variables between the spot where the algorithm

will jump back to and the current variable.

Function BJ(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump;
if (current = 1) {
clear_setup(n);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return (0);
else return{n);}
for (i :=1; i <= k; i++) {
if (C[current] [current] [i][i] = 0) continue;

solution[current] := i;
if (consistent(C, solution, current)) {
jump := BJ(C, n, k, solution, current + 1, number, found);
if (jump <> current) return(jump);}} /* jumpback to ‘‘jump’’ */
jump := jump_place[current];
for (i := jump+1l; i <= current; i++){ /* restore jump_place array */

jump_place[i] := 0;}
return(jump); /* return the backjump-spot */

Figure 1.3 is basically the same as Figure 1.2 but when BJ is used the algorithm
would jump back directly from Viorwegian t0 VBiye, the cause of the conflict. It

is important to note that only one backjump will occur and not a series of them.
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If a jumpback to variable Vg, occurs this means that the instantiation of Vg,
precluded some value from the current domain. However, the fact that Vg, was
instantiated in the first place means that it passed all the consistency checks with
its predecessors and therefore jump_place[Vpie| = Vgea- If subsequently all the

values for Vg are exhausted the algorithm would step back to Vg.q.

1.2.5 Conflict-Directed Backjumping (CBJ)

Conflict-Directed Backjumping is an improvement of Backjumping that can han-
dle multiple backjumps in a row. When a backjump occurs from V; to V;, CBJ
continues to jump back across conflicts that involve both V; and V;,. This is ac-
complished by recording the conflict-set of every variable in the conflicts| N|[N]
array. Conflicts[t][j] = 1 represents a conflict between V; and V; that pruned a

value from the first variable’s domain. Initially all conflict-sets are set to be empty.
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The conflict-set holds all the past variables that failed consistency checks with the
current variable. If no consistent value can be found in the domain of V; then
CBJ jumps back to the deepest variable V}, in its conflict-set. The conflict-set of
V}, is then changed to be the union of its current conflict-set and the conflict-set
of V;. If a wipe-out occurs at V;, CBJ jumps back to the deepest variable in this
union. The consistent function is very similar to BT except for the lines marked
“/* CBJ */”. As an extra improvement conflicts[i][i] always holds the maximum
value in the conflict-set of V;. CBJ has a primitive forward move since no extra

information is used while checking the new instantiation of the current variable.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
for (i := 1; i € current; i++) {
if (trivial(current,i)) continue;
checks := checks + 1;
if (C[current] [i] [solution[current]] [solution[i]] = 0) {
conflicts[current] [i] := 1; /* CBJ, conflict occurred */
if (conflicts[current] [current] < i) /* CBJ, bigger than max */
conflicts[current] [current] := ij; /* CBJ, update max */
return(0);} 1}
return(1l);
}

In the CBJ function the jump is made to the deepest variable in the conflict-set

which is stored in conflicts|current|[current].

The function union_conflicts(jump, current) calculates the union of the conflict-
sets of jump and current. The function empty_conflicts(jump, current) resets these

sets for all variables between jump and current.
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Function union_conflicts(i, j)

{

int i, j;
int m;
for (m := 1; m < i; n++) {
conflicts[i] [m] := conflicts[i] [m] or conflicts[j][m];

if (conflicts[i] [m] and conflicts[i][i] < m)

18

/* union */

conflicts[i] [i] := m;} /* set conflict[i][i] to max value */

Function CBJ(C, n, k, solution, current, number, found)

NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
int i, jump, curr;
curr := count;
if (current = 1) {
clear_setup(n);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return{n);}
for (i :=1; i <= k; i++) {
if (C[current] [current] [i][i] = 0)
continue;
solution[current] := i;
if (consistent(C, solution, current)) {

jump := CBJ(C, n, k, solution, current + 1, number, found);

if (jump <> current)
return(jump);} }

if (curr = count) /* we didn’t come across a solution
jump := conflicts[current] [current] /* return jump position
else /* we came across a solution
jump := current - 1; /* return to the previous variable

union_conflicts(jump, current);
empty_conflicts(jump, current);
return(jump);

*/
*/
*/
*/
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Figure 1.4: CBJ scenario

The variable curr is used to test whether a solution has been found on the
current search path. If this is so then the other values for the current variable are
tried and then the algorithm steps back to the previous variable. If the algorithm
has not found a solution then the information from the conflict-array is used to
jump back to the source of the conflict. Variable curris assigned the value of count
before the recursive step is made. If there is a difference between curr and count
after the recursive call then this indicates that we have encountered a solution on

the current search path.

When we apply CBJ to the scenario in figure 1.4 the algorithm would at first
step back from Vg,qis to Vpog. When subsequently all the values of Vp,, are also

exhausted it would jump back to Ve, and from there to Vog_goq, each time
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jumping back to the deepest variable in the union of the conflict sets. The backstep
and the first backjump result from constraint 1, “Each house has one pet”. The
second backjump is made as a result of constraint 7, “The Old-Gold smoker owns

Snails”.

1.2.6 Backmarking (BM)

Backmarking (BM) by Gaschnig [4] is aimed at eliminating redundant constraint
checks by preventing the same constraint from being tested repeatedly. This is
achieved by employing two arrays mecl and mbl. The maximum checking level
mecl[i, k] is the deepest variable that the instantiation V; = k checked against. The
minimum backup level mbl[:] is the shallowest past variable that has changed its
value since V; was the current variable. BM uses a primitive kind of backward
move by just stepping back to the previous variable, but its forward move is more

informed than the previous algorithms.

Two situations can arise:

e Case 1, the current variable V; is about to be re-instantiated with a value k
for which a previous instantiation failed because of a conflicting variable V},
if V; still holds the same value the check will fail again and doesn’t have to

be performed;

e Case 2, the current variable V; is about to be re-instantiated with a value k
for which a previous check with variable V; succeeded, if V; still holds the

same value the check will succeed again and doesn’t have to be performed.

When mcl[current][solution[current|] < mbl[current| (case 1) we know that the

algorithm has not backtracked past the level were the last inconsistency occurred for
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this value of the current variable. It would therefore occur again and the algorithm

need not consider this instantiation.

If mecl[current|[solution|current]] > mbl[current]| (case 2) we know that the
variables that were instantiated before mbl[current] still have the same value and

therefore the algorithm does not have to check them again.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
if (mcl[current] [solution[current]] < mbl[current]) /* BM, case 1%/
return(0);
for (i := mbl[current]; i < current; i++) { /* BM, case 2%/
mcl[current] [solution[current]] := i;
if (trivial(current,i)) continue;

checks := checks + 1;
if (C[current] [i] [solution[current]] [solution[i]] = 0)
return(0);}
return(1l);

If the domain for the current variable is exhausted mbl[current| is set to
current — 1, the previous variable. To restore the mblarray the backtrack points
of all the future variables have to be set to the minimum of their current value and

current — 1, the new backtrack point.

BM has a primitive form of backward move so only the success or failure of an

instantiation are returned and no backjump information.
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Function BM(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i;
if (current = 1) {
clear_setup(n, k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(l);
else return(0);}
for (i :=1; i <= k; i++) {
if (C[current] [current] [i][i] = 0)
continue;
solution[current] := i;
if (consistent(C, solution, current))
if (BM(C, n, k, solution, current + 1, number, found))
return(1);}
mbl[current] := current - 1;
for (i := current+l; i <= n; i++) /* BM, restore mbl array */
if (mbl[i] > current-1)
mbl[i] := current-1;
return(0);

In Figure 1.5 an example is given of the two sorts of savings that the BM
algorithm can make. In case 1, at the second instantiation of Vj,panese the values
1,2,3,5 do not have to be considered because they are guaranteed to fail since
Vpartiament still has value 4 and according to constraint 14, “The Japanese smokes
Parliament”, these variables have to have the same value. In case 2 the instantiation
of Viapanese With value 4 only has to be checked against Vopester fictd - - - Virkranian since
the previous variables still hold the same values and constraint checks involving

them succeeded before, so they will succeed again.
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1.2.7 Forward Checking (FC)

Forward Checking by Haralick [6] is really a hybrid of a tree-search algorithm
and a filtering algorithm. When a variable is instantiated the algorithm filters
all the domains of the future variables in such a way that the remaining values
in these domains are consistent with the current variable. If during this filtering
process one of the domains of the future variables gets wiped out a new value
for the current variable must be tried. When the FC algorithm moves forward to
instantiate the next variable it does not have to perform any consistency checks
because all the remaining values in the domain are guaranteed to be consistent
with the past variables. FC performs more work per node, but aims at visiting less

nodes in total and performing a smaller total number of checks this way.

In the implementation of this algorithm two arrays are used: domains[N|[K]
and checking|N][N]. The first array keeps track of the consistency of the values
in the domain of a variable. Initially all the entries are set to zero but when value
k of variable V; is pruned by the instantiation of variable V; then domains[j][k] is
set to 2. If variable V; is uninstantiated during backtracking then all the values it
pruned can be restored. The checking array keeps track of which variables pruned
values from which other variables to simplify the restoration of the domains during
backtracking. If checking[i][j] = 1 then variable 7 pruned a value from the domain

of variable j.

There is no need for consistency checking in the consistent function since in-
consistent values were pruned by earlier instantiations. The only case when this
function returns False is when the domain of a future variable is wiped out during

forward checking.
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Function consistent(C, n, k, current, solution)

NETWORK C;
int n, k, current, solution;
{ int i;
for (i := current + 1; i <= n; i++) { /* all future variable */

if (trivial(current,i)) continue;
if (check_forward(C,k,current,i,solution) = 0) /* forward check */
return(0);} /* a future variable got wiped out */
return(1l);

}

When V; is forward checked against V; all the values that are still in the domain
of V; are checked against the current instantiating of V;. Values that are pruned by

V; are marked as such and if any values are pruned then the checking matrix is set

to reflect this.

Function check_forward(C, k, i, j, solution)
NETWORK C;
int k, i, j, solution;

{ int m, old_count,delete_count;

old_count := 0, delete_count := 0;
for (m := 1; m <= k; n++) /* all values */
if (C[j1[j1[m]l[m] and (domains[jl[m] = 0)) {/* still in domain? */
old_count := old_count + 1;
checks := checks + 1;
if (C[i][j][solutiom] [m] = 0) { /* if there’s a conflict */
domains[j][m] := i; /* prune value from domain */
delete_count := delete_count + 1;}}
if (delete_count) /* if a value was deleted */
checking[i] [j] := 1; /* indicate in checking array */

/* return false if all remaining values were pruned true otherwise */
return(old_count - delete_count);

If V; is uninstantiated during backtracking then all the values that V; pruned
from future variables are restored. These are the values [ of V; for which

domains[j][l] = i¢. Array checking[i][j] will indicate that V; pruned values from V;.
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Function restore(i, n, k)
int i, n, k;

{ int j, 1;
for (j :=1i + 1; j <= n; j++) /* all future variables */
if (checking[il[j1) { /* i pruned some values of j */
checking[i] [j] := O; /* reset the checking array */
for (1 :=1; 1 <= k; 1++) /* for all the values */
if (domains[j]1[1] = i) /* if pruned by this variable */
domains[j][1] := 0;} /* restore value to domain of j */

The main function of FC is relatively simple. The domain check has been
extended with domains|current|[t]. If this array element is not equal to zero then

the value ¢ of the current variable has been pruned by a past variable.

Function FC(C, n, k, solution, current, number, found)

NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;

{ int i;

if (current = 1) {
clear_setup(n, k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(l);
else return{0);}
for (i :=1; i <= k; i++) {
if (C[current] [current] [i][i] = 0 or domains[current] [i])
continue; /* skip if value not in domain or pruned */
solution[current] := i;
if (consistent(C, n, k, current, solution[current]))
if (FC(C, n, k, solution, current + 1, number, found))
return(1l);
restore(current, n, k);} /* restore the future domains */
return(0);
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Figure 1.6: FC scenario

When the algorithm has finished investigating a certain value of a variable the

function restore has to be called to restore the domains of the future variables.

In Figure 1.6 the assignment of 1 to Vp;4_goig prunes this same value from the
domains of Vpgriiament and Viopester field because according to constraint 1, “A differ-
ent brand of cigarettes is smoked in every house”. The instantiation of Vpu,iiament
with 2 prunes this value from Vipesterfierd leaving only values 3, 4 and 5 as possi-
bilities. When the algorithm backtracks the domains of the variables are restored

by adding the pruned values again.
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1.3 Comparing the Standard CSP Algorithms

In [6] Haralick and Elliot tested seven different CSP algorithms and found the fol-
lowing order (from best to worst) : word-wise Forward Checking (wFC)*, Forward
Checking (FC), Backmarking (BM), Partial Lookahead (PL), Full Lookahead (FL),
Backjumping (BJ) and Backtracking (BT). The algorithms discussed in the previ-
ous sections can be ordered in a similar way as follows: FC < CBJ < BM < BJ
< BT [9]. This comparison is mainly based on the number of consistency checks
that the algorithms perform on several different problems. If run-time performance
is considered then BM usually moves further down the ordering because of the

relatively large overhead this algorithm displays.

1.4 Summary

Table 1.1 gives a summary of the algorithms discussed in this chapter.

Algorithm | forward move backward move next variable
BT check against all past variables | previous variable chronological
BJ check against all past variables | single jump back chronological
CBJ check against all past variables | multiple jumps back | chronological
BM perform only new checks previous variable chronological
FC prune future variables previous variable chronological

Table 1.1: Summary of traditional algorithms

*Word-wise Forward Checking is a variant of Forward Checking which utilizes the bit-parallel

capabilities of computers: several constraints are checked at once by using bit-wise and operations.
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Prosser’s Hybrid Algorithms

In [9] Prosser approached the algorithms BT, BJ, BM, CBJ and FC by explicitly
stating their forward and backward moves in a non-recursive fashion. In this ap-
proach BT ,BJ and CBJ describe different styles of backward moves while BT, BM
and FC describe different styles of forward moves. The differences between these
moves is based on the amount of information that is used to make them. CBJ is
more informed than BJ, and BJ is more informed than BT. The same holds for
the other group, where FC is more informed than BM, and BM is more informed
than BT. Simple Backtracking (BT) is considered to have the most primitive for-
ward move, checking a new variable against all the past variables, and also the
most primitive backward move, stepping back to the previous variable. By com-
bining the backward move of an algorithm from the first group with the forward
move of an algorithm from the second group Prosser developed four new algorithms:
Backmarking with Backjumping (BMJ), Backmarking with Conflict-Directed Back-
jumping (BM-CBJ), Forward Checking with Backjumping (FC-BJ) and Forward
Checking with Conflict-Directed Backjumping (FC-CBJ).

29
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Figure 2.1: Prosser’s 4 new algorithms

In the following sections recursive versions of all the algorithms in Prosser’s
paper [9] are given, the code of which is again partly taken from van Beek’s CSP-
function library [3]. The part that Prosser refers to in his paper as the label function
can mostly be found in the consistent function of the recursive algorithms and the
unlabel function is generally represented by the code segment after the recursive

call.

2.1 Backmarking with Backjumping (BMJ)

Backmarking with Backjumping [9] (also known as Backmark Jumping) combines
the forward move of BM with the backward move of BJ. It has the advantages of
both algorithms, i.e., most of the redundant consistency checks are avoided and
nodes are eliminated from the search tree by occasionally jumping back over more

than one node to the source of a conflict to avoid thrashing.

The consistent function of BMJ is a straightforward combination of the con-

ststent functions of BJ and BM. The lines labeled “/* from BM */” represent the
Backmarking part of the algorithm, the lines labeled “/* from BJ */” represent the
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Backjumping part.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
if (mcl[current] [solution[current]] < mbl[current]) /* from BM */
return(0);
for (i := mbl[current]; i < current; i++) { /* from BM x/
mcl[current] [solution[current]] := i; /* from BM x*/
if (trivial(current,i)) continue;
checks := checks + 1;
if (C[current] [i] [solution[current]] [solution[i]] = 0) {
if (i > jump_place[current]) /* from BJ */
jump_place[current] := i; /* from BJ */
return(0); } }
jump_place[current] := current - 1; /* from BJ */
return(1l);
}

In the main function of BMJ, were the backward move of the algorithm is
described, the BJ portion is present in its original form but the BM part has to be
changed. In case of a backjump the maximum backup level (mbl) of the current
variable is set to jump, the variable that the algorithm is jumping back to, instead
of to current — 1, the previous variable. Both the mbl and the jump_place-array
have to be restored in case of such a backjump. The mbl array holds information
about future variables and therefore the array has to be restored from jump + 1 to

n.
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Function BMJ(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump;
if (current = 1) {
clear_setup(n, k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0)
else return(n); }
for (i :=1; i <= k; i++) {
if (C[current] [current] [i][i] = 0)
continue;
solution[current] := i;
if (consistent(C, solution, current)) {
jump := BMJ(C, n, k, solution, current + 1, number, found);
if (jump <> current)
return(jump); } }

jump := jump_place[current]; /* from BJ */
mbl[current] = jump; /* BM, jump instead of current-1 */
for (i := jump+l ; i <= n; i++) /* BM, jump instead of current-1 */
if (mbl[i] > jump) /* BM, jump instead of current-1 *
mbl[i] := jump; /* BM, jump instead of current-1 */
for (i:=jump+1l;i<=current;i++) /* from BJ */
jump_place[i] := 0; /* from BJ */
return(jump);

In Figure 2.2 a scenario for BMJ is given. When the algorithm tries to instanti-
ate Vorwegian for the first time a wipe-out occurs because of contraints 10 and 15,
“The Norwegian lives in house 1 and he lives next to the Blue house”. The BJ part
of the algorithm enables it to jump back to the source of the problem, Vgy,.. When

VNorwegian gets instantiated a second time the BM part of the algorithm prevents
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Figure 2.2: BMJ scenario

the redundant check with Vg.q since this variable still has the same value and a
check would succeed again. For an example of the second form of savings from the
BM part we have to look deeper into the tree to Vg,giishman. When this variable
gets instantiated for the second time the algorithm can skip the values 1, 3, 4 and 5
because it found out earlier that these values are incompatible with Vg4 according

to contraint 2, “The Englishman lives in the Red house”.

According to Prosser there is a scenario in which BMJ might perform worse
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than BM. This situation occurs when BMJ jumps from V;, over V;,, to V, while
mbl[h] < g. When V}, is reinstantiated, consistency checks will be repeated between
Vi and V; for all f such that mbi[h] < f < g. Therefore the only claim that can be
made is that BMJ combines most of the advantages of BM with BJ, and performs

better in most cases.

2.2 Backmarking with Conflict-Directed Backjump-
ing (BM-CBJ)

BM-CBJ is a hybrid of Backmarking and Conflict-Directed Backjumping with a
less trivial construction, it tries to prevent redundant checks and has the ability of

making multiple backjump.

In CBJ there was only one situation in which the consistent function would
return False, only if a consistency check involving the C-array would fail. In BM-
CBJ there is one other case, originating from the BM part of the algorithm, namely
when mel[current|[solution|current]] < mbl[current]. In that case there has been a
conflict in the past with the variable represented by mcl[current]||[solution|[current]].
This information must be transferred to the conflicts-array of the CBJ part of the
algorithm.

The conflict with the variable in mcl[current|[solution[current]] should be record-
ed and conflicts[current]||current| should be changed if this conflict was located
deeper in the search-tree than the previous known value. The lines involved in this

transfer are marked “/* Addition */” in the following code.
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Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
if (mcl[current] [solution[current]] < mbl[current]) { /* from BM */
/* Addition for combination of BM and CBJ */
conflicts[current] [mcl[current] [solution[current]]] := 1;
if (conflicts[current] [current] < mcl[current] [solution[current]])
conflicts[current] [current] := mcl[current] [solution[current]];
return(0);}
for (i := mbl[current]; i < current; i++) { /* from BM x/
mcl[current] [solution[current]] := i; /* from BM x*/
if (trivial(current,i)) continue;
checks := checks + 1;
if (C[current] [i] [solution[current]] [solution[i]] = 0) {/* CBJ */
conflicts[current] [i] := 1; /* from CBJ */
if (conflicts[current] [current] < i) /* from CBJ */
conflicts[current] [current] := ij; /* from CBJ */
return(0); } }
return(1l);
}

When a backjump occurs the information for the BM part of the algorithm,
array mbl, also has to be updated. This is done by replacing current — 1, the back-
step point in a BM algorithm, with jump, the backjump point in a CBJ algorithm,

just like in BMJ. The rest of the algorithm is similar to the previous ones.
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Function BM-CBJ(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump, curr;
curr := count;
if (current = 1) {
clear_setup(n, k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0)
else return(n); }
for (i :=1; i <= k; i++) {
if (C[current] [current] [i][i] = 0) continue;
solution[current] := i;
if (consistent(C, solution, current)) {

jump := BM-CBJ(C, n, k, solution, current + 1, number, found);

if (jump <> current)
return(jump);} }

if (curr = count) jump := conflicts[current] [current];

else jump := current - 1;

mbl[current] := jump; /* from BM, jump instead of current-1

union_conflicts(jump, current); /* from CBJ

for (i := jump + 1; i <= n; i++)/* from BM, jump instead of current
if (mbl[i] > jump) mbl[i] := jump; /* from BM, jump for current

empty_conflicts(jump, current); /* from CBJ

return(jump);

36

*/
*/
*/
*/
*/

The scenario that was constructed in which BMJ would perform worse than

BM is also applicable to BM-CBJ. Strictly speaking BM-CBJ might be even more

prone to it because of the increased number of backjumps it performs.
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2.3 Forward Checking with Backjumping (FC-
BJ)

FC-BJ combines the moves of FC and BJ. While the FC part of the algorithm prunes
future variables of values that are not compatible with the current instantiations,
the BJ part enables the algorithm to jump back over more than one variable in

case of a conflict.

In FC-BJ the functions check_forward and restore are the same as for FC. The
constistent function changes and now returns the number of the future variable
whose domain was wiped out by the instantiation of the current variable. This
result is used by the main function to determine to which variable the algorithm
has to jump back. When all the forward checks were successful jump_place[current]
is set to current — 1, just like in the BJ algorithm, to reflect that this variable has

no conflicts with past variables.

Function consistent(C, n, k, current, value)

NETWORK C;
int n, k, current, value;
{ int i;
for (i := current + 1; i <= n; i++) {
if (trivial(current,i)) continue;
if (check_forward(C, k, current, i, value) = 0) /* from FC */
return(i);} /* return wiped out variable */
jump_place[current] := current - 1; /* from BJ */
return(0);

}

Since there were no consistency checks performed in the consistent function the
jump_place-array has to be updated in the main function of FC-BJ. This happens
when consistent returns the variable whose domain was wiped out by the instan-

tiation of the current variable. In this case the algorithm searches for the deepest
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past variable that also had a conflict with this wiped-out variable. If this variable is
located deeper in the search-tree than the present value of jump_place|current] this
array-element is updated. Jumping back to this variable might make certain values
in the domain of the wiped-out variable available again, and this could prevent a

repeat of the wipe-out that occured as a result of the previous instantiations.

The real backjump however, is also dependent on the checking-array. The
algorithm will jump back to either a variable that also pruned values from the
variable that was wiped out (case 1), or to a variable which pruned values from
the current variable (case 2). The choice between these two options depends on

whichever one is located deeper in the search tree.

If a backjump occurs all the values that were pruned by the variables between
jump and current have to be restored. This task is performed by the restore
function. Although the restoration does not necessarily have to be done in reverse
order, it is usually done this way because this reflects the way in which the algorithm

backtracks.
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Function FC-BJ(C, n, k, solution, current, number, found)

}

NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
int i, j, jump, fail;
if (current = 1) {
clear_setup(n, k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0)
else return(n); }
for (i :=1; i <= k; i++) {
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if (C[current] [current] [i][i] = 0 or domains[current][i]) continue;

solution[current] := i;
fail := consistent(C, n, k, current, solution[current]);
if (not fail) {
jump := FC-BJ(C, n, k, solution, current + 1, number,
if (jump <> current)
return(jump) ;}
restore(current, n, k);
if (fail)
for (j := 1; j < current; j++)
/* BJ adapted, case 1
if (checking[j]l[fail] and jump_place[current] < j)
jump_place[current] := j;}
jump := jump_place[current]; /%
/* BJ adapted, case 2
for (i := 1; i <= current; i++)
if (checking[i] [current] and jump < i) jump := i;
for (i := current; i > jump; i--) { /%
jump_place[i] := 0; /%
restore(i, n, k);} /*
return(jump);

found) ;

from BJ

from BJ
from BJ
from FC

*/

*/
*/

*/
*/
*/
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Figure 2.3: FC-BJ scenario

In Figure 2.3 an example is shown of a scenario for FC-BJ. The instantiation
of Void_coia With value 2 prunes this value from the domains of Vpg,iiament and
Vehester fiela because of constraint 1 “In every house a different kind of cigarette is
smoked”. It also prunes the values 1, 3, 4 and 5 from the domain of Vs,4;, because
constraint 7 says that “The Old-Gold smoker owns Snails”. Further down the tree
the instantiation of Vinester fietla With value 1 prunes values 1, 3, 4 and 5 from the

domain of Vz,, because of constraint 11, “The Chesterfield smoker lives next to the
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Fox owner”. When the algorithm arrives at Vg,u, it notices that the domain of
Vror will be wiped out by a combination of constraints. FCBJ will now backjump
to the deepest variable in the tree which pruned values from either Vg, or Vs,qis,

variable Vopester ficia in this case.

2.4 Forward Checking with Conflict-Directed Back-
jumping (FC-CBJ).

FC-CBJ combines FC and CBJ and the advantages of this algorithm over FC-BJ
are the same as the advantages of CBJ over BJ, i.e., the ability to jump back
multiple times in a row. The algorithm forward checks all the future variables and
if a wipe out occurs at a future level or at the current level the algorithm jumps
back to the cause of one of these conflicts. After trying all other values for this

variable it will continue to jump back using this same principle.

The functions check_forward, union_conflicts and restore are the same as for
FC and FC-BJ. The empty-conflicts function resets all the conflict information for
variable 2. The union_checking function combines the information from the CBJ
part of the algorithm (the conflicts-array) with the FC part of the algorithm (the

checking-array), this to ensure that the correct variables will not be missed.

Function union_checking(i, j)

int i, j;
{ int m;
for (m := 1; m < i; m++)
conflicts[i] [m] := conflicts[i][m] or checking[m][j];



CHAPTER 2. PROSSER’S HYBRID ALGORITHMS 42

The consistent function is the same as for FC-BJ except for the removal of the
BJ statements. No information is updated for the CBJ part of the algorithm so
this will all have to be done in the main FC-CBJ function.

Function consistent(C, n, k, current, value)
NETWORK C;
int n, k, current, value;
{ int i;
for (i := current + 1; i <= n; i++) {
if (trivial(current,i)) continue;
if (check_forward(C, k, current, i, value) = 0)
return(i);}
return(0);

}

Again, like in BJ, the algorithm has to be determined whether to jump back
to the variable that helped wiping out the future variable, or to jump back to a
variable that pruned a value from the current domain. Ultimately the algorithm

will backjump to the deepest one of these two variables.
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Function FC-CBJ(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;

{ int i, jump, fail, curr;

curr := count;

if

(current = 1) {
clear_setup(n, k);
xfound := 0;}

else if (current > n) {

process_solution(C, n, solution);

*found := 1;

count := count + 1;

if (number = 1) return(0)
else return(n); }

for (i := 1; i <= k; i++) {

if (C[current] [current] [i][i] = 0 or domains[current][i]) continue;
solution[current] := i;

fail := consistent(C, n, k, current, solution[current]);
if (not fail) {
jump := FC-CBJ(C, n, k, solution, current + 1, number, found);
if (jump <> current) return(jump);}
if (fail)
union_checking(current, fail);
restore(current, n, k);} /* from FC */
if (curr = count) { /* didn’t come across a solution */
jump := 0; /* set jump to the deepest variable i in either */
for (i := 1; i < current; i++)
if (conflicts[current] [1]) jump:=i;/* conflicts[current][i] orx/
for (i := jump + 1; i < current; i++)
if (checking[i] [current]) jump := i;}/* checking[i] [current] =*/
else jump := current - 1; /* came across a solution */
/* update conflict[current][] with checking[] [current] */
union_checking(current, current);
union_conflicts(jump, current); /* from CBJ */
for (i := current; i > jump; i--) {
empty_conflicts(i); /* from CBJ */
restore(i, n, k);} /* from FC */
restore(jump, n, k); /* from FC */
return(jump);
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2.5 Summary
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We can include BMJ, BM-CBJ, FC-BJ and FC-CBJ in the summary of the algo-

rithms and their properties as shown in table 2.1:

Algorithm | forward move backward move next variable
BT check against all past variables | previous variable chronological
BJ check against all past variables | single jump back chronological
CBJ check against all past variables | multiple jumps back | chronological
BM perform only new checks previous variable chronological
FC prune future variables previous variable chronological
BMJ perform only new checks single jump back chronological
BM-CBJ | perform only new checks multiple jumps back | chronological
FC-BJ prune future variables single jump back chronological
FC-CBJ prune future variables multiple jumps back | chronological

Table 2.1: Summary of traditional and Prosser’s algorithms




Chapter 3

Variable Reordering Heuristics

The algorithms in the previous chapter can all be improved by incorporating some
form of heuristics in them. A heuristic can be seen as a general rule of thumb,
a guideline to direct the search that generally improves its efficiency, but offers
no guarantee that search will proceed directly to a solution. Usually a heuristic
is considered to be good if it is general and cheap to use, produces solutions and
prunes a large number of incorrect lines of attack [18]. There are three kind of

heuristics that are often associated with CSP algorithms:

e Variable reordering: Changing the order in which the variables are instanti-

ated.

o Value reordering: Changing the order in which the domain values of a variable

are used for its instantiation.

e Constraint reordering: Changing the order in which the constraint are checked.

Combinations of these heuristics can also occur but the focus of this thesis will

be on variable reordering (also known as search rearrangement) heuristics. This

45



CHAPTER 3. VARIABLE REORDERING HEURISTICS 46

1 2 3 4 5 6 Total Orderi ng

10| 10| 10 10| 10 60
12 12/ 12| 10 68
10| 12| 14| 14| 12| 10 72
12 14/ 12| 10 72
10| 12| 12 12/ 10 68
10| 10| 10| 10 10 60

o Ul A W N P
O AN P W Ol

Number of restricted fields

Figure 3.1: Global ordering in the n-Queens problem

heuristic involves the order in which the variables are instantiated. Instead of
doing this randomly the sequence of instantiations can be ordered. This can either

be done globally, before the search starts, or locally, at every node.

A global ordering orders the variables before the search commences, e.g., by
selecting as variable v, the variable which leads to the least expected number of
nodes at level k£ in the search tree. Ties are broken by looking “deeper” into the
tree and chosing the variable that allows less nodes on level k4 1, and so on. In the
n-Queens problem® for instance this would lead to an ordering from the middle rows
outward, since a Queen in the middle row restricts the search more than one on the
top or bottom of the board. In Figure 3.1 an example of a global ordering for the
6-Queens problem is given. The numbers indicate how many squares in other rows
would be made unavailable if a Queen would be placed in that particular square.
The columns to the right of the board indicate the totals per row and a possible

ordering resulting from those totals.

The order of the variables can also be determined dynamically at every node in

the tree, and vary from branch to branch, this is called a local ordering. The first

'For a definition of this problem see Section 4.2.2.
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reference to this rule comes from Warnsdorff who applied it in 1823 to generate
knight’s tours. He suggested that a jump should be made to a square from which
the tour had fewest possible continuations. Bitner and Reingold [2] introduced it
in their backtrack algorithm by using nodes of low degree earlier in the search tree
than nodes of high degree. A lot of research on local variable reordering or search

rearrangement has been performed by Purdom and Brown[11, 12, 13, 14, 15].

The basic heuristic used by Bitner and Reingold examines the set of unassigned
variables and instantiates the one with the fewest remaining values. This idea can
be generalized to selecting a set of k unassigned variables for some predetermined
number k and instantiating the variable that is the root of the smallest k-level
subtree. Simple Backtracking can then be considered to be the case & = 0, and
Bitner and Reingold’s algorithm becomes k = 1 variable reordering Backtracking.
While more consistency checks are performed per node to find the best next variable,
an algorithm with variable reordering aims at visiting less nodes and thus improving

performance.

3.1 Incorporating the Heuristic

To incorporate variable reordering heuristics into the existing algorithms an extra
level of indirection has to be introduced. Instead of traversing the variables chrono-
logically we will now traverse the order of instantiations of those variables. Instead
of having variable ¢ as the current variable we will be dealing with instantiation ¢,

which can be any variable between 1 an N.

To implement this indirection an array ins of size N is introduced. The invariant

belonging to this structure is:
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{Vi,7:1<14,j < current :ins[i] € {1... N} Ains[i| = ins[j]| =i =j}.

During the search ins is a permutation of a subset of the set of variables, and
when a solution is found ¢ns is a permutation of the set of variables. When a variable
1 1is selected for instantiation, ins[current|is assigned value ¢ and solution[ins[current]]
is assigned the first domain value of variable 7. For example, if first variable 4 gets

instantiated, secondly variable 7 and thirdly variable 1, then ins we would have:

ins[l] =4, ins[2] =7, ins[3] = 1, and ins[4]...ins[N]| would be undefined.

During the forward move of an algorithm a new variable will have to be selected
that will be instantiated next. The function nezt is introduced for this purpose and
it basically represents a 1-level search rearrangement heuristic. Forward checking
algorithms utilize a slightly different version of this function called neztFC which
uses the specific advantages of FC to reduce the number of checks needed to find

the next variable.

It is important to note that not all bookkeeping information that is stored by
the various algorithms will have to be accessed through the ins structure. Only
information that is related to the forward move of an algorithm needs this extra
level of indirection since the order in which future variables are accessed might be

different from a order in which they were previously used.

Information needed for the backward move of an algorithm can be stored at a
specific node in the search tree. When the algorithm backtracks this information is
lost. The information needed for the forward move of an algorithm however, needs
to be stored at a specific variable, regardless of the node in the search tree where

this variable gets instantiated.

The information that is contained in the bookkeeping of the different algorithms

should always pertain to nodes and not to variables. In FCvar for example, it is
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A

Backward move Bookkeeping does not need extraindirection
(BJ, CBJ)
Current C-matrix, trivial function and solution need extraindirection

Use next or nextFC function

Forward move Bookkeeping needs extraindirection
(BM, FC) v

Figure 3.2: Use of extra indirection

important to know that node 8 pruned some values from the domain of Vp,g so
that these values can be restored if the algorithm backtracks across this node. It is

not of importance to know exactly which variable did the pruning.

3.2 Standard Algorithms with Variable Reorder-
ing

Most research in this area focuses on the use of variable reordering for Backtracking
and Forward Checking. Backtracking is frequently used because it is a standard
algorithm for which complexity formulas can be derived. This enables us to compare
the behavior of simple Backtracking with Backtracking that uses a certain heuristics
analytically. Forward Checking has been the object of study, because it is one of
the best algorithm known and its rather simple structure lends itself well for the

incorporation of heuristics.

Introducing variable reordering into algorithms with a standard forward move
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such as BT, BJ and CBJ is fairly straightforward because the heuristic does not
interfere with their backtrack or backjump structures. The jump_place-array in
BJ and the conflicts-array in CBJ only hold information about the past for the
previous and the current variables. As soon as a backjump is made all information
regarding uninstantiated variables is lost. In BM and FC, the algorithms with a
more informed forward move, variable reordering does interfere more directly with
the stored information about the future. When one of these algorithms backtracks
up one branch of a search tree and then moves forward again down another branch
the ordering of the variables in the branch is likely to have changed. Therefore we
have to be more cautious that the information about the future is not disturbed
when chosing another ordering. Special care has to be given to the boundaries of
the different loops that are used in the algorithms to restore part of the bookkeeping
information when a backtrack occurs. We have to make sure that only instantiated
variables get accessed through the ins structure, uninstantiated variables have to

be dealt with directly.

In the following discussion of the different algorithms with variable reordering
heuristics the emphasis will be on the changes that have to be made on those
algorithms as compared to their originals. These changes are both indicated in the
code segments and explaned in the accompanying text. Auxiliary function that do
not need any changes are omitted and the reader is referred to the previous chapter

to find their definitions.

The notion of the transformation rules given in the previous section should be
sufficient to follow the process of incorporating variable reordering heuristics in
the given algorithms. Especially in the more complex algorithms like BM-CBJ
and FC-CBJ intuitive reasoning about how to include these heuristics gets rather

complicated. Strictly following the rules however, leads to correct new algorithms.
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3.2.1 Backtracking with Variable Reordering (BTvar)

The consistent function changes in two places. Firstly, the ¢rivial function now has
to access the variables through the ins-array. It is no longer important if variable
current has a trivial constraint with variable ¢, but if the variable that was selected
as number current in the instantiation order has a trivial constraint with variable ¢
in that same order. Secondly, the constraint checks performed by accessing the C-
array now have to use the same indirection: ins[current] has to be checked against
ins[i]. The values for these two instantiations are kept in solution[ins|current|| and
solution|[ins|i]], instead of in solution|[current] and solution[i]. Since Backtracking
checks the consistency of the current variable with all the past variables we have

to use as precondition for this function that ins is defined for 1 < 7 < current.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
for (i := 1; i € current; i++) {
if (trivial(ins[current],ins[i])) continue; /* extra indirection */
checks := checks + 1;
if (C[ins[current]] [ins[i]] /* extra indirection */
[solution[ins[current]]] [solution[ins[i]]] = 0)
return(0);
}
return(1l);
}

The function neztis used to select the variable that will be instantiated next, this
is done by counting the number of values left in the domains of the uninstantiated
variables and returning the variable with the least number of values left. Ties are
broken in favor of the chronological order, if variable z and 7 both have the same

domain size then ¢ will be selected if ¢ < j. To determine if a variable is still
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uninstantiated the function in_ins is used, this function checks if a certain variable
appears in the list of instantiated variables. The search for the lowest number of
values is terminated as soon as a variable with zero remaining values has been found
or when all possible values have been counted. Counting the values for a specific
variable can be terminated as soon as its number is greater than the minimum
found thus far. Special flags could be used to indicate the fact that a variable
with one value or a variable with zero values left has been sighted, but in order to
preserve as much of the original algorithms as possible this was not implemented.
Instead next will just return that specific variable and leave it to the search routine

to instantiate it with its only value or detect the dead-end.
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Function next (C,ins,solution,var,nvars,k)
NETWORK C;
int ins[N];
SOLUTION solution;
int var,nvars,k;
{ int count,i,j,l,max,nt,failed;

min := k + 1; /* initialize min

/* count values for all variables, break off if wipe-out
for (i:=1; (i <= nvars) and (min <> 0);i++) {

found

if (not in_ins(i,ins,var)) { /* not yet instantiated

count := 0;
/* check all their values, break off if count>min
for (j:=1;(j<=k) and (count<min);j++) {
if (C[i1[i1[3j1[j] = 0) failed := true; /* in
olse failed := false;
/* check against instantiated variables
for (1:=1; 1 <= var and not failed;l++) {
checks := checks + 1; /* count this
if (not C[i] [ins[1]1]1[j][solution[ins[1]]1])
failed := true; /* not
else failed := false; /*
if (not failed)

the domain

as a check

consistent
consistent

count := count + 1;} /* another value left for this var

if (count < min) { /* is the count smaller than the minimum

min := count; /* record the new min

nt :=i; } } } /* set nt to number of this variable
return(nt); /* return variable with fewest values left
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*/
*/

*/

*/

*/

*/
*/

*/
*/
*/
*/
*/

The main BT function will only have a few minor changes. In the initialization

the first variable that will be instantiated has to be selected. Asin all the algorithms

that will be discussed here this will turn out to be the variable with the smallest

initial domain. The domain check and the value assignment have to be made on

ins|current| instead of on current and to determine the next variable the function

next has to be called.
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Function BTvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i;
if (current = 1) {
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ins[1] := next(C,ins,solution,0,n,k); /* select first variable */

*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(l);
else return(0);}
for (i :=1; i <= k; i++) {
/* check domain of ins[current] instead of current
if (C[ins[current]] [ins[current]][i][i] = 0) continue;

*/

solution[ins[current]] := i; /* assign value to ins[current] */

if (consistent(C, solution, current)) {
/* select the next variable
ins[current + 1] := next(C,ins,solution,current,n,k);
if (BTvar(C, n, k, solution, current + 1, number, found))
return(1); } }
return(0);

*/

In Figure 3.3 an example is shown of BTvar. The first two variables that get

instantiated are Viorwegian and Varir because these variables only have one value in

their domain due to constraints 9 and 10: “Milk is drunk in the middle house” and

“The Norwegian lives in the first house on the left”. The ordering of variables with

equal domain sizes is based on the underlying chronological ordering and therefore

VNorwegian 18 used before Vari. Vpiye is instantiated next as it only has one possible

value left due to the instantiation of Viyorpegian, since constraint 15 states that: “The

Norwegian lives next to the Blue house”. Vgeq, Vivory and Vy.yow are the logical

next steps on the leftmost path of the shown search tree. When the algorithm

backtracks to Viyery, and assigns value 4 to the variable, Vgyeen is chosen as next
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Figure 3.3: BTvar scenario
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variable instead of Vy .., because it only has one possible value left as a result of
constraint 6: “The Green house is to the right of the Ivory house”. The different
ordering does not pose any problems since BTvar uses only a primitive kind of

forward move.

3.2.2 Backjumping with Variable Reordering (BJvar)

The consistent function in BJvar is not very different from the one in simple BJ.
Again, only the trivial function and the constraint matrix C' get an extra level
of indirection. The jump_place-array does not need this indirection because it
only has information about the past and this information will not change as a
result of the variable reordering. The meaning of this array does change however,
jump_place[current] is no longer a reference to the deepest variable with which
the current variable had a conflict, but to the deepest instantiation with which the

current instantiation had a conflict.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;
{ int i;
for (i := 1; i € current; i++) {
if (trivial(ins[current],ins[i])) continue; /* extra indirection */
checks := checks + 1;
if (C[ins[current]] [ins[i]] /* extra indirection */
[solution[ins[current]]] [solution[ins[i]]] = 0) {
if (i > jump_place[current])
jump_place[current] := i;
return(0); } }
jump_place[current] := current - 1;
return(1l);
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The code of BJvar is very similar to BJ except for the same changes that were
discussed for BTvar, the initialization of the first variable, the extra indirection for

the constraint matrix and a call to the nezt function.

Function BJvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump;
if (current = 1) {
clear_setup(n);
ins[1] := next(C,ins,solution,0,n,k); /* select first variable */
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return{n);}
for (i :=1; i <= k; i++) {
if (Clins[current]] [ins[current]] [i][i]=0) /* extra indirection */

continue;
solution[ins[current]] := i; /* extra indirection */
if (consistent(C, solution, current)) {
/* select the next variable */
ins[current + 1] := next(C,ins,solution,current,n,k);
jump := BJvar(C, n, k, solution, current + 1, number, found);

if (jump <> current)
return(jump); } }
jump := jump_place[current];
for (i:=jump+1l; i <= current; i++){
jump_place[i] := 0;}
return(jump);

Unfortunately BJvar will not offer any improvements over BTvar. BJ was an
improvement of BT because it had the ability to jump back to the deepest node ¢

that was checked against when a domain wipe-out occured at the current node j,



CHAPTER 3. VARIABLE REORDERING HEURISTICS 58

ian=1

V//\V’
:['  B // e

________________ pas

Conflicts :

>

"""""" ;/ Yellow =4 //Gl’een_ < current

Domain wipe out detected instantly,

// \\ no backjump but a backstep!

Figure 3.4: BJvar scenario

thus jumping back to the cause of the conflict. This prevented the algorithm from
searching the subtree between ¢ and j. Aslong as 7 is instantiated with its current
value this subtree was not going to give a solution because the search would fail
again as soon as the domain wipe-out at j occured again. In BJvar such backjumps
will not occur, because if the current instantiation of ¢ wipes out the last remaining
values in the domain of future variable j, the heuristic will choose this variable as
the one to be instantiated next. The search will fail and the backjump will only
consist of a backstep to the previous node and therefore not offer any improvements

over BTvar.
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An example of this behaviour is shown in Figure 3.4. When V7,0, is instantiated
with value 5 the domain of Vig,cen, is wiped out. The next function notices this and
returns this variable as the one to be instantiated next. The search will fail and
the algorithm will step back to Viyory. The resulting graph is identical to the one
in Figure 3.3 as predicted.

3.2.3 CBJ with Variable Reordering (CBJvar)

Since CBJ also only keeps information about the past there is no interference with
the variable reordering heuristic. In fact unton_con flicts and empty_con flicts are
exactly the same as in the original algorithm and the consistent function only needs

minor changes.

Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;
{ int i;
for (i := 1; i € current; i++) {
if (trivial(ins[current],ins[i])) continue; /* extra indirection */
checks := checks + 1;
if (C[ins[current]] [ins[i]] /* extra indirection */
[solution[ins[current]]] [solution[ins[i]]] = 0) {
conflicts[current] [i] := 1;
if (conflicts[current] [current] < i)
conflicts[current] [current] := ij;
return(0); } }
return(1l);

The main function for CBJvar is almost identical to the one for CBJ and only

in a few places do we need an extra level of indirection.
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Function CBJvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump, curr;
curr := count;
if (current = 1) {
clear_setup(n);
ins[1] := next(C,ins,solution,0,n,k); /* select first variable */
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return{n);}
for (i :=1; i <= k; i++) {
if (Clins[current]] [ins[current]][i]J[i] = 0)/* extra indirection */

continue;
solution[ins[current]] := i;
if (consistent(C, solution, current)) {
/* selct next variable */
ins[current + 1] := next(C,ins,solution,current,n,k);
jump := CBJvar(C, n, k, solution, current + 1, number, found);

if (jump <> current){
return(jump);} } }
if (curr = count ) jump := conflicts[current] [current];
else jump := current - 1;
union_conflicts(jump, current);
empty_conflicts(jump, current);
return(jump);

In contrast to BJvar, variable reordering heuristics can be used with hybrids
involving CBJ because CBJ records the set of past nodes that failed consistency
test with the current node. When a domain wipe-out occurs at the current node
the initial scenario will be the same as described for BJvar, the node that pruned

the last remaining values from the domain of the current node will be the previous
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Figure 3.5: CBJvar scenario

node, and therefore only a backstep will occur. However, when all the values of
the previous node have been tried a real backjump can occur to the deepest node
in the union of the conflict sets of the two nodes. This backjump will prune a part
of the search-tree and thus prevent performing some unnecessary checks. Some of
the advantages of the CBJ backward move are therefore preserved under variable

reordering.

Figure 3.5 shows an example of this behaviour. Instantiations of V7., and
Vreq both fail due to conflicts with earlier variables. When all the values for Vg een
are tried the algorithm backjumps to Vy s, since this is the deepest variable with

which Vgpeer, had a conflict.
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3.2.4 Backmarking with Variable Reordering (BMvar)

In [9] Prosser claims that Backmarking cannot exploit heuristic knowledge during
the search process because it requires a static order of instantiation in order to
maintain the integrity of its search knowledge (arrays mcl and mbl). This would
suggest that BM, and the BM hybrids, cannot exploit heuristic knowledge during
the search process. Prosser considered this to be a severe limitation on the worth of
these algorithms. But, while incorporating value reordering heuristics in Backmark-
ing might prove to be hard, this is certainly not the case with variable reordering.
In [6] Haralick already used variable reordering with Backmarking and Forward
Checking, he presented the results of a comparison between these two algorithms,

although he did not include any actual code.

In order to correctly incorporate variable reordering in the BM algorithm, which
uses a more informed forward move, the search information of the algorithm will
also have to be stored using the extra indirection of the ins structure. Instead of
accessing mbl[i], we will now have to access mbl[ins[t]], the maximum backup level
of the ¢-th instantiation. The same indirection has to be used in the mecl structure.

The modifications are shown in the consistent function of BMvar.
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Function consistent(C, solution, current)
NETWORK C;
int current;
SOLUTION solution;

{ int i;
/* extra indirection for mbl and mcl */
if (mcl[ins[current]] [solution[ins[current]]] < mbl[ins[current]])
return(0);
for (i := mbl[ins[current]]; i < current; i++) { /* indirection mbl */

mcl[ins [current]] [solution[ins[current]]]:=i; /* indirection mcl */
if (trivial(ins[current],ins[i])) continue;
checks := checks + 1;
if (C[ins[current]] [ins[i]] /* extra indirection */
[solution[ins[current]]] [solution[ins[i]]] = 0)
return(0);}
return(1l);

The same changes also have to be incorporated in the main function of BMvar.

The mbl structure now has to be accessed by using the ins-array.

The boundaries of the final for-loop in which the mbl information is restored
will also have to be changed. In case of a backtrack occurrence the mbl-array would
formerly be updated from current 4+ 1 to n. Since these boundaries no longer reflect
the range of uninstantiated variables, this will have to be changed. We cannot use
ins|current + 1] because this value is still undefined when the algorithm has reached
current (no variable has been assigned to spot current + 1 in the ins-array). To
make sure that all uninstantiated variables are reset the algorithm will reset all
mbl[i] to the maximum of their current value and current — 1. Since none of the
instantiated variables will have a mbl with a higher value it is guaranteed that no

search knowledge about those variables will be disturbed.?

2If the in_ins function (see Section 3.2.1) is used the results are exactly the same.
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Function BMvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i;
if (current = 1) {
clear_setup(n, k);
ins[1] := next(C,ins,solution,0,n,k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(l);
else return(0);}
for (i :=1; i <= k; i++) {
if (C[ins[current]] [ins[current]][i][i] = 0) continue;
solution[ins[current]] := i;
if (consistent(C, solution, current)){
ins[current + 1] := next(C,ins,solution,current,n,k);
if (BMvar(C, n, k, solution, current + 1, number, found))
return(1); } }

mbl[ins[current]] := current - 1; /* extra indirection mbl */
for (i := 1; i <= n; i++) /* new boundaries for-loop */
if (mbl[i] > current - 1)
mbl[i] := current - 1;
return(0);

}

In Figure 3.6 a BMvar scenario is shown. When the algorithm arrives at Vg een
for the first time values 1, 2, 3 and 4 are found to be inconsistent with respectively
Vieds VBiuey Vivory and Wy ejioy. This information is stored in the mecl structure and
the algorithm continues until a dead end or a solution is found. When a backtrack
to Viyory occurs the order of the instantiation changes because Vgyee, now only has
a single value left in its domain. By comparing the minimum backup level mbl with

the values in the mcl structure the algorithm can make the two kinds of savings.

From this example we can see that the search information should be kept with
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the variable, not with the nodes. This means that this information should be
accessed through the ins structure. This information itself should contain nodes
and not variables. If you compare this figure to Figure 1.5 the differences in the
stored information can also be seen. In BM the mecl and mbl structures refered to

specific variables, in BMvar they refer to nodes.

3.2.5 FC with Variable Reordering (FCvar)

Algorithms that involve Forward Checking can make use of a slightly different next
function called neztF'C. In FC algorithms there is no need to check the consistency
of any of the remaining values of the current variable because inconsistent values
where pruned in earlier processing. This advantage of FC algorithms over non-
FC algorithms is the main contributer to a larger increase in performance from
variable reordering for these algorithms. Haralick already stated that variable rear-
rangement improves forward checking more than backmarking because it has more

information about the future [6].

The FCnext function is very similar to the original next function except for the
absence of consistency checks and the use of the domains-structure to check if a

domain value has been pruned earlier.

The checking-array in FC records the variables from which a particular variable
prunes values. If checking[i][j] was equal to one in the original FC algorithm this
meant that variable 7 pruned values from variable j’s domain and if domains[j][l]
was equal to ¢ this meant that variable ¢ pruned value [ from variable j. In FCvar
however, the algorithm forward checks an instantiation, which could be any variable,
against all the future variables. So the first index in the checking-array needs an

extra level of indirection and is changed to ins[i]. Note that this indirection can not
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be used for the second index because this index refers to an as yet uninstantiated

variable.

Function nextFC (C,ins,domains,var,nvars,k)
NETWORK C;
int ins[N];
int domains[N][X], var,nvars,k;

{ int count,i,j,l,m,nt,failed;

min := k + 1; /* initialize min */

/* count values for all variables, break off if wipe-out found
for(i:=1; (i <= nvars) and (min <> 0);i++) {

*/

if (not in_ins(i,ins,var)) { /* not yet instantiated */
count := 0;
/* check all their values, break off if count>min */
for (j:=1; (j <= k) and (count < min);j++) {
if (C[i1[i1[3j1[j] = 0) failed := true; /* in the domain */
olse failed := false;
if ((domains[i][j] = 0) and not failed) /* not pruned */
count := count + 1;} /* another value left for this var*/
if (count < min) { /* is the count smaller than the minimum */
min := count; /* record the new min */
nt := i;} } } /* set nt to number of this variable */
return(nt); /* return variable with fewest values left */
}
Function check_forward(C, k, i, j, value)
NETWORK C;
int k, i, j, value;
{ int m, old_count, delete_count;
old_count := 0, delete_count := 0;
for (m := 1; m <= k; n++)
if (C[j1[j1[m][m] and domains[j]l[m] = 0) {
old_count := old_count + 1;
checks := checks + 1;
if (C[ins[i]]1[jl[valuel[m] = 0) { /* indirection first index */
domains[j][m] := i;
delete_count := delete_count + 1; } }
if (delete_count)
checking[ins[i]][j] := 1; /* indirection first index */

return(old_count - delete_count);
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In the restore function the algorithm can no longer assume that the variables
2 + 1 to n are uninstantiated and therefore all the variables have to be checked.
This changes the boundaries of the for-loop now to 1 and n. The auxiliary function
in_ins(j,ins,v) checks if variable j is present in the list of instantiated variables. If
this is not the case and values from the domain of this variable where pruned by 1
then these values are restored.

Function restore(i, n, k)
int i, n, k;

{ int j, 1;
for (j := 1; j <= n; j++) /* new boundaries */
if (not in_ins(j,ins,i) and /* "not instantiated" check */
(checking[ins[i11[j1)) {
checking[ins[i]][j] := O; /* indirection first index */

for (1 := 1; 1 <= k; 1++)
if (domains[j][1] i)
domains [j] [1] 0; }

The same explanation holds for the consistent function. The boundaries of the
for loop change and an extra check is included to make sure that the algorithm

does not forward check against already instantiated variables.

Function consistent(C, n, k, current, value)

NETWORK C;
int n, k, current, value;
{ int i;
for (i :=1; i <= n; i++) { /* new boundaries */

if (trivial(ins[current],i)) continue;
if (not in_ins(i,ins,current) /* "not instantiated" check */
if (check_forward(C, k, current, i, value) = 0)
return(0); }
return(1l);

}

The main FCvar function does not need any changes beside the obvious ones.
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Function FCvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i;
if (current = 1) {
clear_setup(n, k);
ins[1] := nextFC(C,ins,domains,0,n,k); /* first variable */
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(l);
else return{0);}
for (i :=1; i <= k; i++) {
if (Clins[current]] [ins[current]][i]J[i] = 0 /* extra indirection */

or domains[ins[current]][i]) /* extra indirection */
continue;
solution[ins[current]] := i; /* extra indirection */
/* select next variable using nextFC */
if (consistent(C, n, k, current, solution[ins[current]])) }
ins[current + 1] := nextFC(C,ins,domains,current,n,k);

if (FCvar(C, n, k, solution, current + 1, number, found))
return(1);}
restore(current, n, k); }
return(0);

}

In the Figure 3.7 an example of the behaviour of FCvar is shown. When
VNorwegian 18 instantiated is prunes all but one value from the domain of Vg,
since constraint 15 states that “The Norwegian lives next to the Blue house”. Af-
ter the instantiation of Vg and Vige, Vreq is left with four possible value 1, 3,
4 or 5. Value 1 fails consistency checks since it would wipe out the domain of a
future variable, Vengiishman in this case, as a result of the constraint that states that
“The Englishman lives in the Red house”. This house is already occupied by the

Norwegian.
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Figure 3.7: FCvar scenario
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The search will continue along the branch with Ve,gishman, Veitows Viools and
VHorse, and find a solution deeper in the tree. When the algorithm backtracks
looking for the next solution and instantiates Vy o, with its next possible value
and new branch will be formed. The ordering in this branch might be different
from the previous one as we see happening in the example. After Vs it is Vigreen,
and not Vp,.s that will be instantiated next. The cause of this change is constraint
12, “The Kools are smoked in the house next to the house with the Fox owner”.
A value of 1 for Vgeo, will eliminate all but one value from the domain of Vg,
a value of 4 leaves two possible domain values, and since Vg,cen, appears earlier in

the chronological ordering it will be selected first.?

3.3 Prosser’s Hybrid Algorithms with Variable

Reordering

Now that variable reordering versions of the five traditional CSP algorithms have
been constructed the logical next step is to incorporate this heuristic into Prosser’s
hybrid algorithms. This results in four new algorithms: BMJvar, BM-CBJvar,
FC-BJvar and FC-CBJvar (see Figure 3.8).

As shown in the discussion of the previous five algorithms the extra level of
indirection is only needed for algorithms with a more informed forward move. Since
Prosser’s algorithms are hybrid, combining the forward move of one algorithm with
the backward move of another, the extra indirection only has to be incorporated in

the parts of these algorithms related to this forward move.

3V eliow and Vivory Were swapped in the chronological ordering to simplify this example.
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Figure 3.8: Variable reordering versions of Prosser’s algorithms

3.3.1 Backmarking with Backjumping and Variable Reorder-
ing (BMJvar)

Previously we saw that algorithms with only a forward move need an extra level
of indirection and algorithms with only a backward move do not. Since BMJ is
a combination of BM, representing the forward move, and BJ, representing the
backward move, and the information for these moves is not combined, BMJvar
only needs the extra indirection for its BM part. Because of this the ins-array
is only used in combination with mcl and mbl in the consistent function of this

algorithm.
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Function consistent(C, solution, current)
NETWORK C; int current; SOLUTION solution;
{ int i;
/* BM, extra indirection */
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if (mcl[ins[current]] [solution[ins[current]]] < mbl[ins[current]])

return(0);

/* BM, extra indirection */

for (i := mbl[ins[current]]; i < current; i++) {
/* BM, extra indirection */
mcl[ins[current]] [solution[ins[current]]] := i;
if (trivial(ins[current],ins[i])) continue;
checks := checks + 1;

if (C[ins[current]] [ins[i]]
[solution[ins[current]]] [solution[ins[i]]] =

if (i > jump_place[current]) /* BJ,
jump_place[current] := i; /* BJ,
return(0); } }
jump_place[current] := current - 1; /* BJ,
return(1l);

0) {
no indirection */
no indirection */

no indirection */

In the main function of BMJvar the information for both moves has to be

restored when a backtrack occurs. As in BJvar restoring the jump_place-array

does not give any problems and as in BMvar the boundaries for the for-loop in

which mbl is restored need to be changed. The rest of the function is similar to the

original BMJ function, except for the obvious changes.
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Function BMJvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump;
if (current = 1) {
clear_setup(n, k);
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ins[1] := next(C,ins,solution,0,n,k); /* select first variable */

*found := 0;}

else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return(n);}

for (i :=1; i <= k; i++) {

if (C[ins[current]] [ins[current]][i][i] = 0)/* extra indirection */

continue;

solution[ins[current]] := i; /* extra indirection */

if (consistent(C, solution, current)) {
/* select next variable */
ins[current + 1] := next(C,ins,solution,current,n,k);
jump := BMJvar(C, n, k, solution, current + 1, number, found);
if (jump <> current)
return(jump); } }

jump := jump_place[current];
mbl[ins[current]] := jump;
for (i := 1 ; i <= n; i++) /* BM, boundaries changed */

if (mbl[i] > jump) mbl[i] := jump;

for (i := jump+1l; i <= current; i++) /* BJ, boundaries unchanged */

jump_place[i] := 0;
return(jump);

BMJvar shows no improvements over BMvar just like BJvar shows improve-

ments over BTvar. The variable reordering heuristic eliminates the usefulness of

Backjumping because the heuristic will select a variable with an empty domain

to be instantiated next. There will not be any instances where the source of a

conflict is more than one position earlier in the search-tree and therefore all the
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backjumps will be backsteps. In Figure 3.8 the equivalence of BTvar-BJvar and
BMvar-BMJvar is indicated by grouping them in the two small boxes.

3.3.2 Backmarking with Conflict-Directed Backjumping and
Variable Reordering (BM-CBJvar)

The union_con flicts and empty_con flicts functions in BM-CBJ only involve infor-

mation from the CBJ part of the algorithm and therefore they remain unchanged

in BM-CBJvar.

Function consistent(C, solution, current)
NETWORK C; int current; SOLUTION solution;

{ int i;
/* BM, everywhere extra indirection for mcl and mbl */
if (mcl[ins[current]] [solution[ins[current]]] < mbl[ins[currentl]]) {
conflicts[current] [mcl[ins[current]] [solution[ins[current]]]] := 1;

if (conflicts[current] [current] <
mcl[ins[current]] [solution[ins[current]]])
conflicts[current] [current] :=
mcl[ins [current]] [solution[ins[current]]];
return(0);}
for (i := mbl[ins[current]]; i < current; i++) {
mcl[ins[current]] [solution[ins[current]]] := i;
if (trivial(ins[current],ins[i])) continue;
checks := checks + 1;
if (C[ins[current]] [ins[i]]
[solution[ins[current]]] [solution[ins[i]]] = 0){
conflicts[current] [i] := 1; /* CBJ, no change! */
if (conflicts[current] [current] < i)
conflicts[current] [current] := ij;
return(0); } }
return(1l);

}

The consistent function does change since it also uses information from the BM

part of the algorithm. The mbl and mcl arrays get an extra level of indirection
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because they hold BM information, the conflicts-array does not change because it

holds information for CBJ.

Function BM-CBJvar(C, n, k, solution, current, number, found)
NETWORK C; int n, k, current, number, *found; SOLUTION solution;
{ int i,j, jump, curr;
curr := count;
if (current = 1) {
clear_setup(n, k);
ins[1] := next(C,ins,solution,0,n,k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return(n);}
for (i :=1; i <= k; i++) {
if (C[ins[current]] [ins[current]][i][i] = 0) continue;
solution[ins[current]] := i;
if (consistent(C, solution, current)) {
ins[current + 1] := next(C,ins,solution,current,n,k);
jump := BM-CBJvar(C, n, k, solution, current+l, number, found);
if (jump <> current){
return(jump);} } }

if (curr = count) jump := conflicts[current] [current];

else jump := current - 1;

mbl[ins[current]] := jump; /* BM, extra indirection */
union_conflicts(jump, current);

for (i := 1; i <= n; i++) /* BM, boundaries changed */

if (mbl[i] > jump) mbl[i] := jump;
empty_conflicts(jump, current);
return(jump);

The main function of BM-CBJvar is again very similar to BM-CBJ. Just like in
previous algorithms with a combination of BM and variable reordering the bound-

aries on the final for-loop have to be changed to ensure that all elements of mbl are
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updated correctly.

3.3.3 Forward Checking with Backjumping and Variable
Reordering (FC-BJvar)

The check_forward and restore functions of FC-BJvar are the same as those for
FCvar since they only deal with the FC part of the algorithm. The consistent
function is changed the same way the FCvar consistent function changed: the
boundaries of the for-loop are changed and an extra test is included to make sure

that the variable that is forward-checked against is not already instantiated.

Function consistent(C, n, k, current, value)

NETWORK C;
int n, k, current, value;
{ int i;
for (i :=1; i <= n; i++) { /* FC, boundaries changed */

if (trivial(ins[current],i)) continue;
if (not in_ins(i,ins,current)) /* not already instantiated */
if (check_forward(C, k, current, i, value) = 0)
return(i);}
jump_place[current] := current - 1;
return(0);

}

The main function of FC-BJ is changed in the same way. The conflicts-array,
belonging to the FC part of the algorithm, gets an extra level of indirection for
its first index. The jump_place-array does not change since it belongs to the BJ
part of the algorithm. The boundaries of the for-loops in this function do not have
to be changed because they deal with past variables, from 1 to current which are

guaranteed to be represented in the ins-array.
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Function FC-BJvar (C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, j, jump, fail;
if (current = 1) {
clear_setup(n, k);
ins[1] := nextFC(C,ins,domains,0,n,k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return (n);}
for (i :=1; i <= k; i++) {
if (C[ins[current]] [ins[current]][i]J[i] = 0 or
domains[ins[current]] [i]) continue;
solution[ins[current]] := i;
fail := consistent(C, n, k, current, solution[ins[current]]);
if (not fail) {
ins[current + 1] := nextFC(C,ins,domains,current,n,k);
jump := FC-BJvar(C, n, k, solution, current + 1, number, found);
if (jump <> current) return(jump); }
restore(current, n, k);

if (fail)
for (j := 1; j < current; j++)
if (checkingl[ins[j]][fail] and jump_place[current] < j)
jump_place[current] := j; }
jump := jump_place[current];
for (i := 1; i <= current; i++)

if (checking[ins[i]] [ins[current]] and jump < i)
jump := 1i;
for (i := current; i > jump; i--) {
jump_place[i] := 0;
restore(i, n, k);}
return(jump);

In contrast to the equality of BMJvar and BMvar, Forward Checking with Back-

jumping and variable reordering (FC-BJvar) does have some, albeit limited, benefits
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over FCvar because in this algorithm the backjump information is used in a differ-
ent way. The jump_place-array is updated when a wipe-out has occurred in the

future and its information is then used to jump back to the cause of the conflict

(see Figure 2.3).

3.3.4 Forward Checking with Conflict-Directed Backjump-
ing and Variable Reordering (FC-CBJvar).

The union_con flicts and empty _con flicts functions do not change since they only
handle information from the FC part of the algorithm. The functions check_forward,
restore and consistent are the same as in FCvar for the same reasons. The main
function is changed in the usual way, the checking-array gets an extra level of

indirection for its first index and the trivial changes are make to the C'-matrix.
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Function FC-CBJvar(C, n, k, solution, current, number, found)
NETWORK C;
int n, k, current, number, *found;
SOLUTION solution;
{ int i, jump, fail, curr;
curr := count;
if (current = 1) {
clear_setup(n, k);
ins[1] := nextFC(C,ins,domains,0,n,k);
*found := 0;}
else if (current > n) {
process_solution(C, n, solution);
*found := 1;
count := count + 1;
if (number = 1) return(0);
else return (n);}
for (i :=1; i <= k; i++) {
if (C[ins[current]] [ins[current]][i]J[i] = 0 or
domains[ins[current]] [i]) continue;
solution[ins[current]] := i;
fail := consistent(C, n, k, current, solution[ins[current]]);
if (not fail) {
ins[current + 1] := nextFC(C,ins,domains,current,n,k);
jump := FC-CBJvar(C, n, k, solution, current+l, number, found);

if (jump <> current) return(jump); }
if (fail) union_checking(current, fail);
restore(current, n, k);}

if (curr = count) {
jump := 0;
for (i := 1; i < current; i++)
if (conflicts[current] [i]) jump := i;
for (i := jump + 1; i < current; i++)
if (checkingl[ins[i]] [ins[current]]) jump := i; %
else jump := current - 1;

union_checking(current, current);
union_conflicts(jump, current);
for (i := current; i > jump; i--) {
empty_conflicts(i);
restore(i, n, k);}
restore(jump, n, k);
return(jump);
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The unton_checking function combines the information from the conflicts-array,
from the CBJ part of the algorithm, with the checking-array of the FC part. Be-
cause this function is called with two different sets of parameters, (current,fail) and
(current,current) a few additional changes have to be made to the original version.
If the function is called with (current,fail) the second parameter represents a vari-
able that is not yet instantiated. If it is called with (current,current) the second
parameter represent a variable that is instantiated and thus has to be accessed

through the ins-array.

Function union_checking(i,j)

int i, j;
{ int m;
if (not in_ins(j,ins,i)) { /* is second parameter instantiated 7 */
for (m := 1; m < i; n++)

/* j is not instantiated */
conflicts[i] [m] := conflicts[i] [m] or checking[ins[m]][j];}

else {
for (m := 1; m < i; n++)
/* j is instantiated */
conflicts[i] [m] := conflicts[i] [m] or checking[ins[m]] [ins[j1];}
}

3.4 Other heuristics

3.4.1 Value Reordering

Another heuristic that could be used to improve CSP algorithms is value reordering.
A value reordering heuristics selects the value from a variables domain that should
be used for the instantiation of the current variable. Some values will be more
restrictive for the future search than others and thus result in different search-

trees. Omne heuristic attempts to select the value that least restricts the future
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search. This way there will be a greater chance of finding a solution on the current

search-path.

Value reordering is only useful when we are looking for the first & solutions to
a CSP. If we are looking for all solutions then all values for a particular variable
will have to be checked, which makes the ordering of the values unnecessary. The
same holds for a CSP that does not have any solutions, in order to determine this
the entire tree will have to be searched and value reordering does not have any
advantages. These two disadvantages pose a severe restriction on the use of value

reordering heuristics.

In [7] Kalé uses value rearrangement together with variable rearrangement to
find solutions for the n-Queens problem for all values of n from 4 to 1000. This
heuristic appears to be almost perfect in the sense that it finds a first solution

without any backtracks in most cases.

For value ordering heuristics we can again use both global and local orderings.
A global ordering is an ordering of the variables before the search starts and a local
ordering is an ordering that takes place during the search. A local value ordering is
not necessarily better than a global ordering. In the n-Queens problem for instance
we can use a very simple global ordering by instantiating the variables from “the
inside out”. This implies that we try values in the middle of a row first and then
move outward to the edges of the board. This heuristic works a lot better than one
level local value reordering in simple Backtracking because a local heuristic returns
the same values for all but the outer two squares. In order to break the ties between
all the identical values a local algorithm will have to look deeper into the search
tree. Because the n-Queens problem is a well-structured problem we can tell in

advance which ordering will result from this: “the inside out” order.
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Figure 3.9: Global Constraint Reordering

3.4.2 Constraint Reordering

The order in which the constraints are checked can also have great impact on the
performance of the algorithm. If a new variable ¢ in instantiated only a subset of the
total set of constraints has to be checked, this set contains only those constraints
that involve the newly instantiated variable. As soon as one of these constraints in
this subset is violated we know that we can abandon the current search path due
to the nature of our search. To improve the search we therefore desire to find a
conflicting constraint as early as possible. This approach leads us to an order in
which the most rigid constraints are checked first. The checking order can again be
determined globally or locally. Although the actual constraints do not change the

subset relevant to the instantiated variables does.

A good global ordering in the n-Queens problem would for example be to check
the constraints “bottom-up” (assuming a top-down instantiation of the rows) start-
ing from the previous row. A Queen that is placed close to the current row con-

straints the possible values for this row more than a Queen that is placed further
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away from it. A Queen in an adjacent row gives 3 x (n — 2) 4+ 2 % 2 possible con-
flicts, the two corner squares each restrain two squares, the n — 2 other placements
each result in 3 possible conflicts. The general formula for the number of possible
conflicts is 3n — 22 + 25 with j < ¢, this formula decreases when 7 and j are further

apart (Figure 3.9).

3.5 Summary

If we include the variable reordering versions of the algorithms into our summary

we get table 3.1.
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Algorithm | forward move backward move next variable
BT check against all past variables | previous variable chronological
BJ check against all past variables | single jump back chronological
CBJ check against all past variables | multiple jumps back | chronological
BM perform only new checks previous variable chronological
FC prune future variables previous variable chronological
BMJ perform only new checks single jump back chronological
BM-CBJ perform only new checks multiple jumps back | chronological
FC-BJ prune future variables single jump back chronological
FC-CBJ prune future variables multiple jumps back | chronological
BTvar check against all past variables | previous variable least values
BJvar check against all past variables | single jump back least values
CBJvar check against all past variables | multiple jumps back | least values
BMvar perform only new checks previous variable least values
FCvar prune future variables previous variable least values
BMJvar perform only new checks single jump back least values
BM-CBJvar | perform only new checks multiple jumps back | least values
FC-BJvar prune future variables single jump back least values
FC-CBJvar | prune future variables multiple jumps back | least values

Table 3.1: Summary of all algorithms




Chapter 4

Results

4.1 Estimating the cost of CSP algorithms

To estimate the cost of a specific instance of a backtrack search tree we can use
an approach by Knuth [8]. Instead of giving a mathematical formula Knuth uses
a Monte Carlo approach to predict the number of nodes in a search tree when
looking for all solutions. This approach is based on a random exploration of the
search tree. For each partial solution (vi,...,v;) for 0 < k < n a value for vgyg
is chosen from among the set of all possible continuations. By taking into account
the number of possibilities at every level that are encounter during the random
walk, an estimate for the total cost of the search can be computed. The expected
value of this computed cost is proven to be equal to the cost of the tree. However,
just knowing that executing the algorithm yields the right expected value is not
very useful in practise. Therefore it is always necessary to use a number of trials
to come up with a reasonable estimate. Purdom gave a number of improvements

on Knuth’s algorithm [10], as he found it to be ineffective in certain cases. His
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partial backtracking results in exponential improvements over Knuth’s algorithm
for estimating the tree size, by occasionally following more than one path from a
node. This effect is particularly important for trees with a lot of dead-end branches

(slender trees) and for tall trees.

The use of this Monte Carlo approach is mathematically well defined and this
might suggest that it should also be possible to derive a single closed form for-
mula of the same scope and accuracy. However, such a formula might be rather
useless if its parameterization is not rich enough. The mean performance of the
backtrack algorithm in solving all csp’s with IV variables might not be a very infor-
mative number because it ranges over a vast area of problems, from “n-Queens” and
“Zebra-problems” to “instant insanity” and “uncrossed knight tours”. This stands
in contrast to, e.g., sorting where a one parameter formula is usually sufficient to
describe the average behavior of an algorithm [5]. Therefore we need more problem
specific parameters to distinguish one problem from all the others in the domain
of the algorithm, and the need for computational models arises. Two examples of

these models are:

Model 1 Purdom and Brown derived an asymptotic expression for the number of
nodes in a tree constructed by a backtracking algorithm that finds all the
solutions of conjunctive normal form formulas. These formulas range over v
variables with s literals per term and v® terms (1 < @ < s). The number of

nodes is the backtrack tree will have is then: e®®¢™>/¢™) 1

This shows that, since exhaustive search requires time ¢®®) and (s — a)/(s —
1) < 1, simple backtracking saves an exponential amount of time but still

has exponential complexity. This set of problems had been selected because

'O(g(n)) = {f(n) : Je1,e2,m0 > 0: 0 < c19(n) < f(n) < cag(n),Vn > no}



CHAPTER 4. RESULTS 88

they lead to a relatively straightforward analysis. However, these problems
are unlike typical problems that are solved by backtracking. Care is therefore

needed in interpreting the results of this analysis [16].

Model 2 Haralick and Elliot [6] assume that a given pair of variables with a given
pair of values are consistent with a fixed probability p, where p is independent
of which variables or values have already been used in prior instantiations.
They also assume that each variable has the same number of possible values
M. Using these assumptions they arrive at:

k—1

g:(Mkp(k_n(k_z)/z l1—p
k=1 1 -Pp

)

for the total estimated number of consistency checks in a BT algorithm.

Unfortunately both models rely heavily on very specific assumptions that are
quite restrictive. Since backtracking is the simplest of the algorithms discussed in
this thesis no attempt is made to derive analytical expressions for the more complex

other algorithms. Instead we employ an empirical analysis.

4.2 Empirical results

4.2.1 Zebra problem

In order to compare the variable reordering versions of the hybrid algorithms with
the originals by Prosser [9] we use the same problem he did to obtain our empirical
results. In his paper Prosser uses instances of the Zebra problem (see Section 1.2.1)

with different bandwidths.
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The bandwidth of a variable v in a constraint graph under an ordering A is the
maximum value of | A(v)—h(w) | over all variables w connected to v. The bandwidth
of a graph under an ordering is the maximum bandwidth of any variable [21]. To
get a sizable test set 450 different orderings were used, 50 orderings of each of 9
different bandwidths between 16 and 24. The following results were obtained using

the same orderings Prosser used.

In table 4.1 the first column shows the 18 different algorithms that were tested.
The second column shows the total number of consistency checks needed by these
algorithms to find the first solution for the 450 different orderings of the Zebra
problem and the third column shows Prosser’s results as a comparison. The last
column shows the total number of consistency checks needed to find all 11 solutions

to the problem.

The first observation we can make from table 4.1 is that the results confirm that
the author’s recursive algorithms are indeed functionally equivalent to Prosser’s
non-recursive algorithms, since they result in exactly the same number of average
checks over 450 problems. Furthermore, it also confirms the earlier claim that
BTvar and BJvar will result in the same number of checks because no backjumps
will occur in a variable reordering version of BJ. The same can be said about BMvar

and BMJvar which also result in the exact same number of checks.

In the table we can also see that all the variable reordering versions of the tree-
search algorithms BT, BJ, CBJ, BM, BMJ and BM-CBJ result in approximately the
same number of checks, around 22,000. Apparently the added value of combining
the forward and backward moves of different algorithms diminishes when variable

reordering heuristics are implemented in these combinations.

As expected the Forward Checking algorithms benefit the most from the heuris-
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First solution All solutions Ratio
Algorithm van Run Prosser van Run | one - all
BT 3,858,988.8 3,858,989 | 16,196,383.9 4.2
BTvar 22,418.9 153,970.1 7.0
BJ 503,324.3 503,324 | 2,225,701.2 4.4
BJvar 22,418.9 153,970.1 7.0
CBJ 63,211.9 63,212 397,341.7 6.3
CBJvar 22,278.4 153,243.3 6.9
BM 396,944.9 396,945 | 1,607,386.7 4.0
BMvar 22,191.7 151,394.1 6.8
BMJ 125,473.9 125,474 557,188.8 4.4
BMJvar 22,191.7 151,394.1 6.8
BM-CBJ 25,470.5 25,470 160,113.6 6.3
BM-CBJvar 22,063.8 150,747.9 6.8
FC 35,582.0 35,582 181,984.7 5.1
FCvar 503.7 2,928.2 5.8
FC-BJ 16,839.5 16,839 101,823.9 6.0
FC-Blvar 502.9 2,924.9 5.8
FC-CBJ 10,361.2 10,361 69,982.1 6.8
FC-CBJvar 502.3 2,921.2 5.8

Table 4.1: Constraint checks, first and all solutions
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tic and the difference between them and the tree-search algorithms becomes larger.
Although BM-CBJ was better than FC in the original versions, the variable reorder-
ing version FCvar surpassed BM-CBJvar by two orders of magnitude. Furthermore
there seems to be no clear split in the Forward Checking algorithms between FCvar
on one side and FC-BJvar and FC-CBJvar on the other. Just like with the tree-
search algorithms, combining the forward and backward moves of two algorithms

does not seem to pay off.

We can now order the algorithms again according to the average number of

checks they perform on this problem.

BT > BJ > BM > BMJ > CBJ > FC > (BTvar = BJvar) > CBJvar > (BMvar =
BMJvar) > BM-CBJvar > FC-BJ > FC-CBJ > FCvar > FC-BJvar > FC-CBJvar

There seem to be no significant other observations that can be made by looking
at the number of checks to find all solutions. The ordering of the algorithms stays
the same, and the ratio for the difference in number of checks to find one solution
and to find all solutions only ranges from 4.0 for BM to 7.0 for BTvar and BJvar.
The only algorithms for which this ratio improves after the variable reordering
heuristic is added are FC-BJ and FC-CBJ. These ratios might prove to be very

problem specific, so their value should not be overrated.

Table 4.2 shows how often one algorithm (row) performed better than another
(column) in the 450 different problems. Not performing better does not mean per-
forming worse because in many cases the results from two algorithms were exactly
the same. If we compare the table to the one in [9] it is again confirmed that the

author’s algorithms are equivalent to Prosser’s as the tables match each other on
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similar positions. The following conclusions can be made regarding these results.

Tree-search algorithms seem to have a declining rate of outperforming their orig-
inals. The better the original algorithm was, the smaller the chance that its variable
reordering version outperforms the original. The rate ranges from 434/450 = 96%
for BT to 138/450 = 31% for BM-CBJ. The mutual differences between related
algorithms also seem to get smaller, for example in contrast to the relation between

BMJ and BM-CBJ, BM-CBJvar is not often much better than BMJvar.

The scenario described in Chapter 2 in which BM outperforms BMJ and BM-
CBJ must be rather rare because both BMJ and BM-CBJ outperform BM in more
than 93% of the cases.

CBJvar only outperforms CBJ in 217 cases, in 233 cases CBJ is better and
there are no cases in which they perform the same. Since CBJvar still outperforms
CBJ in total by a factor of about 3, this means that the margin by which CBJvar
outperforms CBJ in those cases must be significantly larger than the margin by
which it performs worse in the other cases. The same can be said about BM-
CBJvar, which only outperforms BM-CBJ in 138 cases and is worse in 312 cases.
However, since the difference between the total values of these two algorithms in

table 4.1 is rather small (only 15%), this is less of a surprise.

The forward checking algorithms with variable reordering show a significantly
larger rate of outperforming their originals. FCvar, FC-BJvar and FC-CBJvar all
perform better then their non-reordering counterparts in more than 444 out of 450
cases. However, FC-BJvar and FC-CBJvar only outperform FCvar in respectively
8 and 12 cases and in all other cases they perform the same. Similarly FC-CBJvar
is only better than FC-BJvar in 6 cases and equal in all the others.
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4.2.2 N-Queens problem

The n-Queens problem is often used by researchers in the AI-community as a bench-
mark for their programs because it can be solved by algorithms and heuristics that
are widely applicable in other constraint-based optimization problems very common
to computing practice. The results of the use of a standard problem to compare dif-
ferent CSP-algorithms must be handled with care though because they only reflect
the behavior of the algorithms in one particular case. The general CSP is a very
richly parameterized problem, and an algorithm that performs well for a problem
like n-Queens with very specific characteristics, like N = K and a complete graph
representing its constraint matrix, can perform very differently on a problem with

different characteristics.

n-Queens problem: place n-Queens on a n X n chess board in such a way that
neither Queen attacks another one. Since every row can only hold one Queen,
the problem is usually transformed to finding a position on every row of a

chess board for one Queen without them attacking each other.

Again we can be interested in the first, any, or all solutions to the problem.
Two examples of solutions for n = 4 and n = 8 are given in Figure 4.1, the latter

being one of 92 possible solutions to this particular problem.

Although finding one explicit solution to the n-Queens problem can be solved
analytically [1], finding the first, any or all solutions cannot, and thus offers an

interesting benchmark for search algorithms.

In Figure 4.2 and 4.3 the graphs are displayed for the number of checks needed
to find the first and all solutions to the n-Queens problem. The algorithms used are
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Figure 4.1: A solution to the n-Queens problem for n=4 and n=8

the best ones from the previous section: BM-CBJvar, FC, FCvar and FC-CBJvar.
FC-BJvar is not used because it behaves almost identically to FC-CBJvar.

In Figure 4.2 we can see that FC now performs worse than BM-CBJvar (and very
likely also the other tree-search hybrids) based on the number of consistency checks
it needs to find the first solution. The n-Queens problem has a very dense (complete)
constraint matrix and since there are no trivial constraints FC has to forward check
against every other variable. This results in a larger number of consistency checks.
The FC hybrids that were combined with the variable reordering heuristic do remain
faster than the tree-search hybrids. However, there seems to be no important
advantage from the use of hybrid FC algorithms with variable reordering (e.g., FC-
CBJvar) over variable reordering with the standard FC algorithms (FCvar) since

the graphs for these two algorithms coincide.

Figure 4.3 shows that BM_CBJvar needs considerably more consistency checks
to find all solutions to the n-Queens problems than FC. The advantage it had in
finding the first solution seems to have disappeared. While the overhead of the
FC algorithm proves to be the determining negative factor in the case with the

first solution, it pays off when the search continues for more solutions. FCvar and



CHAPTER 4. RESULTS

N-queens, first solution
checks(log)

10.00 20.00 30.00 40.00

Figure 4.2: N-Queens, first solutions

FC CBYVar

#queens

50.00



CHAPTER 4. RESULTS

checks(log)

1e+08

N-queens, all solutions

Figure 4.3: N-Queens, all solutions

BM-CBJvar

#queens



CHAPTER 4. RESULTS 98

FC-CBJvar coincide again but they form a consistent improvement of performance

over FC.

4.2.3 Random problems

Both the n-Queens and the Zebra problem have a very specific structure. In the
n-Queens problem the constraint matrix represents a complete graph, there is a
constraint between every pair of Queens. The Zebra problem also has a very dis-
tinctly shaped graph with variables grouped in five hexagons. The variables in
each hexagon are highly constraint among themselves and loosely constraint with
variables from other hexagons (see Figure 1.1). The third problem used for testing

has therefore a more randomly constructed constraint matrix.

The problem has 25 variables (n), each with 15 different values (k). The con-
straint matrix was build randomly using two parameters p and g, where p is the
independent probability that a constraint between two variables is not trivial and

q is the independent probability of a 1 as an entry in a non-trivial constraint.

The results are obtained by taking the average number of checks needed to find
the first solution in 10 problems with a specific p and q. Tests are performed for p
and ¢ ranging from 0 to 100 with step size 10. All problems are guaranteed to have
at least one solution because one solution was put into every matrix in a random

fashion.

The three best algorithms discovered so far were subjected to this test, FCvar,

FC-BJvar, and FC-CBJvar.

FC-CBJvar, FC-BJvar and FCvar demonstrated very similar behavior and since
putting more results in the same graph would make it difficult to read only a graph

for FC-CBJvar is given. As we can see in Figure 4.4 (logarithmic) the highest
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Figure 4.4: Checks for FC-CBJvar

number of checks are needed for problem with p between 50 and 100 p and ¢ between
70 and 80. A higher number of checks for a higher value of p is predictable, more
non-trivial constraints lead to more failures and thus to more checks. The same
can be said for the low number of checks for ¢ = 90 or ¢ = 100, since these values
of ¢ turn the non-trivial constraints into almost trivial or trivial ones. The peak
at ¢ between 70 and 80 can be explained by looking at 1/q as a cutoff probability.
When ¢ is low a high number of branches in the search tree are cut off early. When
q grows larger and the cutoff probability decreases it takes the algorithm longer to

identify a branch as being unsuccessful.

In Figure 4.5 (linear) the differences are shown between FCvar and FC-BJvar.
The first observation we can make is that FCvar never outperforms FC-BJvar, this
corresponds to what we saw in the previous two problems. FC-BJvar outperforms

FCvar in a few cases, especially in the case when p is between 80 and 100 and
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Figure 4.5: Difference between FCvar and FC-BJvar

g ~ 80. This is the area in which all algorithms need the largest number of checks

and these difficult problems seem to result in relatively larger gains for FC-BJvar.

The differences between FC-CBJvar and FC-BJvar are shown in Figure 4.6
(linear) and they are of a larger order than those between FC-BJvar and FCvar
(notice the difference in scale on the checks axis). The differences between FC-
BJvar and FC-CBJvar also seem to be more scattered although the peak at p = 80
and ¢ = 80 is in accordance with what we saw in the previous comparison: the
more complex hybrids perform better on the more difficult problems. The rest
of the differences lie mostly around 1/2 < p/q < 1. Even though the difference
between the two algorithms might seem large for these particular problems it still

represents a difference of less than 1% in the total number of checks.
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Figure 4.6: Difference between FC-BJvar and FC-CBJvar

4.3 Influence of Uniform Domain sizes

The loss of effectiveness of the hybrid algorithms can possibly be explained by
the uniformity of the domain sizes. The Zebra problem, the n-Queens problem
and the random problems all have variables with fixed domain sizes. The variable
reordering heuristic that was used tends to select variables that have been filtered
by past variables. This causes the source of a conflict to be close to its occurence
and therefore the effect of the backward move diminishes. When the initial domain
sizes have larger size differences the hybrid algorithms might regain some of their

value.

In Figure 4.7 an example of a problem with non-uniform domain sizes is given in
which FC-CBJvar would retain more of its benifits compared to the problems that
were used previously. The large domain of V,, gets wiped out by a combination
of variables that are not located closely together in the search tree. Therefore the

CBJ backward move of the algorithm enables it to jump back using large jumps,
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thus eliminating large sections of the search tree.

4.4 Conclusions

The major findings reported in this thesis are summarized in this final section.

Variable reordering heuristics can be implemented in BM algorithms contrary
to what Prosser claimed in [9]. They can also be included in all of the hybrid

algorithms by Prosser, improving them significantly.

Using one extra level of indirection was shown to be sufficient to incorporate
variable reordering in any of the discussed algorithms. This extra indirection only
has to be used for the current variable and for the part of the algorithm that
performs the forward move. Following this basic rule provides a standard way of

introducing this heuristic in any of the algorithms.

Backjumping as a backward move in a hybrid non-FC algorithm loses its ef-
fectiveness when the variable reordering heuristic is used. Consequently we see
no differences in the number of checks performed by Backtracking with variable
reordering (BTvar) and Backjumping with variable reordering (BJvar). We can
make the same observation concerning the number of checks performed by Back-
marking with variable reordering (BMvar) and Backmark Jumping with variable
reordering (BMJvar). The equality in the number of consistency checks for these
two sets of algorithms indicate that no backjumps occur in the adapted versions.
An explanation for this behavior has been given in the discussion of the various

algorithms in question.

All the tree-search algorithms perform approximately the same number of con-

sistency checks when variable reordering heuristics are added to them. Even the
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hybrid algorithms lose the relative increase of performance they received from com-
bining the forward and backward moves of two algorithms. The forward checking
hybrids show a substantially larger increase in performance than the tree search al-
gorithms but the value of a more complex backward move also diminishes compared

to simple forward checking with variable reordering.

Overall FC-CBJvar turns out to be the best algorithm tested, but FC-BJvar, and
especially FCvar, are good and simpler alternatives that only perform significantly

worse in very hard problem cases.

The influence of the uniform domain sizes in the problems that were used can
be considered a major influence to the loss of effectiveness of the hybrid algorithms.
Although the results of the n-Queens problem are always considered to be of less
importance because of the particular structure of this problem, the Zebra problem
seems to have a more natural structure and is considered to be more representative

of real world problems [9].

For future research it might be interesting to look for hybrid algorithms that do
retain the advantage of combining the forward and backward move of two different
algorithms after variable reordering, and that do so even for problems with fixed
domain sizes. The incorporation of value or constraint reordering heuristics, or
any combination of them with variable reordering, in hybrid algorithms might also
produce interesting results. Research into the behaviour of hybrid algorithms with
dynamic variable reordering on problems with variable domain sizes is currently

underway.



Appendix A

Programming conventions

The program-code in this thesis is presented in a C-like syntax with the following

conventions:

o “{” and “}” indicate the begin and the end of a program block;

e A “*” in front of a variable name means that it is a call-by-reference param-

eter, a variable whose value is returned to the calling function;
e “<>” means not equal;
o All functions return integers;

o for(i = 1;¢ <= current;t + +) represents a for-loop with ¢ going from 1 to

current in steps of one;

o if (trivial(current,i)) continue; causes the next iteration of the enclosing loop

to begin if the condition trivial(current,i) is true;

o “0” represents False, “> 0” represent True.
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