
Domain Independant Heuristics in Hybrid

Algorithms for CSP�s

by

Paul van Run

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo� Ontario� Canada� ����

c�Paul van Run ����

I hereby declare that I am the sole author of this thesis�

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research�

I further authorize the University of Waterloo to reproduce this thesis by pho�

tocopying or by other means� in total or in part� at the request of other institutions

or individuals for the purpose of scholarly research�

ii

The University of Waterloo requires the signatures of all persons using or pho�

tocopying this thesis� Please sign below� and give address and date�

iii

Abstract

Over the years a large number of algorithms has been discovered to solve instances

of CSP problems� In a recent paper Prosser 	�
 proposed a new approach to these

algorithms by splitting them up in groups with identical forward �Backtracking�

Backjumping� Con�ict�Directed Backjumping and backward �Backtracking� Back�

marking� Forward Checking moves� By combining the forward move of an al�

gorithm from the �rst group and the backward move of an algorithm from the

second group he was able to develop four new hybrid algorithms� Backmarking

with Backjumping �BMJ� Backmarking with Con�ict�Directed Backjumping �BM�

CBJ� Forward Checking with Backjumping �FC�BJ and Forward Checking with

Con�ict�Directed Backjumping �FC�CBJ�

Variable reordering heuristics have been suggested by� among others� by Haralick

	�
 and Purdom 	��� ��
 to improve the standard CSP algorithms� They obtained

both analytical and empiral results about the performance of these heuristics in

their research�

In this thesis variable reordering heuristics are introduced into the new hybrid

algorithms by Prosser and emperical results are presented about the performance

of these adapted versions� Four new algorithms are derived this way� BMJ with

variable reordering �BMJvar� BM�CBJ with variable reordering �BM�CBJvar� FC�

BJ with variable reordering �FC�BJvar and FC�CBJ with variable reordering �FC�

CBJvar� As comparison� variable reordering is also incorporated in the standard

algorithms� resulting in already known algorithms like BTvar� BMvar and FCvar�

and new algorithms like BJvar and CBJvar�

Three di�erent kinds of problems were used to obtain the emperical test results�

the Zebra problem which was also used by Prosser� the N�queens problem and

iv

random problems� all with �xed domain sizes�

The empirical results indicate that variable reordering heuristics o�er a signi��

cant improvement for many of these algorithms� However� they also show that for

problems with �xed domain sizes the new hybrid algorithms developed by Prosser

do not o�er any improvements� compared to the traditional algorithms� after the

incorporation of these heuristics�

v

Acknowledgements

I would like to thank the Verenigde Spaarbank Fund �VSB Fonds for granting

me the support of their scholarship for my studies in Canada and the Institute

for Computer Research �ICR and the Information Technology Research Centre

�ITRC for their �nancial support through the ICR�ITRC fellowship award in the

summer and fall of �����

Thanks to Professor Fahiem Bacchus for taking me on as a Graduate student

and for his guidance during my research and the writing of this thesis� It was a

pleasure working with you�

Thanks to my roommates Derek Euale and Dexter Craig for being my �rst two

friends in Canada� Thanks to Lisa Weatherill� for being my girl� and my best friend�

Special thanks to my parents back in the Netherlands for their �nancial and

moral support even though it must have been very hard for them to see me leave�

vi

Contents

� Introduction �

��� Generate and Test �

��� Standard CSP Algorithms �

����� An Example� the Zebra Problem � � � � � � � � � � � � � � � �

����� Data Structures and de�nitions � � � � � � � � � � � � � � � � �

����� Backtracking �BT ��

����� Backjumping �BJ ��

����� Con�ict�Directed Backjumping �CBJ � � � � � � � � � � � � � ��

����� Backmarking �BM ��

����� Forward Checking �FC ��

��� Comparing the Standard CSP Algorithms � � � � � � � � � � � � � � ��

��� Summary ��

� Prosser�s Hybrid Algorithms ��

��� Backmarking with Backjumping �BMJ � � � � � � � � � � � � � � � � ��

vii

��� Backmarking with Con�ict�Directed Backjumping �BM�CBJ � � � � ��

��� Forward Checking with Backjumping �FC�BJ � � � � � � � � � � � � ��

��� Forward Checking with Con�ict�Directed Backjumping �FC�CBJ� � ��

��� Summary ��

� Variable Reordering Heuristics ��

��� Incorporating the Heuristic ��

��� Standard Algorithms with Variable Reordering � � � � � � � � � � � � ��

����� Backtracking with Variable Reordering �BTvar � � � � � � � ��

����� Backjumping with Variable Reordering �BJvar � � � � � � � ��

����� CBJ with Variable Reordering �CBJvar � � � � � � � � � � � ��

����� Backmarking with Variable Reordering �BMvar � � � � � � � ��

����� FC with Variable Reordering �FCvar � � � � � � � � � � � � � ��

��� Prosser�s Hybrid Algorithms with Variable Reordering � � � � � � � ��

����� Backmarking with Backjumping and Variable Reordering �BMJ�

var ��

����� Backmarking with Con�ict�Directed Backjumping and Vari�

able Reordering �BM�CBJvar � � � � � � � � � � � � � � � � � ��

����� Forward Checking with Backjumping and Variable Reorder�

ing �FC�BJvar ��

����� Forward Checking with Con�ict�Directed Backjumping and

Variable Reordering �FC�CBJvar� � � � � � � � � � � � � � � ��

��� Other heuristics ��

viii

����� Value Reordering ��

����� Constraint Reordering ��

��� Summary ��

� Results �	

��� Estimating the cost of CSP algorithms � � � � � � � � � � � � � � � � ��

��� Empirical results ��

����� Zebra problem ��

����� N�Queens problem ��

����� Random problems ��

��� In�uence of Uniform Domain sizes ���

��� Conclusions ���

A Programming conventions �
�

Bibliography �
	

ix

List of Tables

��� Summary of traditional algorithms � � � � � � � � � � � � � � � � � � ��

��� Summary of traditional and Prosser�s algorithms � � � � � � � � � � � ��

��� Summary of all algorithms ��

��� Constraint checks� �rst and all solutions � � � � � � � � � � � � � � � ��

��� How often is one algorithm �row better than another �column � � ��

x

List of Figures

��� Constraint graph of the Zebra problem � � � � � � � � � � � � � � � � �

��� BT scenario ��

��� BJ scenario ��

��� CBJ scenario ��

��� BM scenario ��

��� FC scenario ��

��� Prosser�s � new algorithms ��

��� BMJ scenario ��

��� FC�BJ scenario ��

��� Global ordering in the n�Queens problem � � � � � � � � � � � � � � � ��

��� Use of extra indirection ��

��� BTvar scenario ��

��� BJvar scenario ��

��� CBJvar scenario ��

xi

��� BMvar scenario ��

��� FCvar scenario ��

��� Variable reordering versions of Prosser�s algorithms � � � � � � � � � ��

��� Global Constraint Reordering ��

��� A solution to the n�Queens problem for n�� and n�� � � � � � � � � ��

��� N�Queens� �rst solutions ��

��� N�Queens� all solutions ��

��� Checks for FC�CBJvar ��

��� Di�erence between FCvar and FC�BJvar � � � � � � � � � � � � � � � ���

��� Di�erence between FC�BJvar and FC�CBJvar � � � � � � � � � � � � ���

��� Non�uniform domain sizes ���

xii

Chapter �

Introduction

A large number of problems in arti�cial intelligence� operations research and sym�

bolic logic can be viewed as special cases of the general Constraint Satisfaction

Problem �CSP� This problem is also known as the consistent labeling problem and

examples of its use can be found in machine vision� belief maintenance� schedul�

ing� planning� database consistency checking� temporal reasoning� graph problems�

satis�ability and similar problems� The problem is known to be NP�complete�

In its general form� a CSP consists of a �nite list of n variables S � fV�� � � � � Vng�

where each variable i has a domainDi � fVi�� � � � � ViMig associated with it consisting

of Mi values� Related to these variables is a set of constraints C � fC�� � � � � Cmg

each speci�ed over a subset of the n variables in S� These constraints limit the

possible combinations of values that the variables in that subset can take� To solve

the problem we have to �nd an assignment of values to the variables that satis�es

all the constraints simultaneously� We can also be interested in all such solutions�

The arity of a CSP is determined by the arity of its constraints� An n�ary

constraint involves restrictions to n di�erent variables� The arity of the CSP is

�

CHAPTER �� INTRODUCTION �

equal to the maximum of the constraint arities� For instance� if constraints exist

between some pairs of variables� but not between triples or larger subsets of the

n variables then we have an arity of �� CSPs of this kind are called binary� The

degree of a CSP is determined by the size of the variable domains� being equal to

the maximum of its variable domain sizes� The satis�ability problem where any

variable can only take one of two values� either true or false� is an example of a

CSP of degree ��

Since it is possible to convert any n�ary CSP to a binary CSP 	��
 we can restrict

our attention to this special case� Constraints can be represented as pairs of com�

patible variables with corresponding values� for example ��var�� val�� �var�� val��

A binary constraint can then be represented as a matrix with the values of the

variables along the edges and a ��� in the corresponding column and row if the

values are compatible and a ��� if they are not� The constraint matrix 	C ij
kl
 is a

bit�matrix such that C ij
kl � � if and only if the k�th value for variable i is consistent

with the l�th value for variable j� otherwise C ij
kl � �� Since 	C ij

kl
 is symmetrical �the

constraint graph is undirected we could restrict ourselves to those positions where

i � j� However� since this restriction does not give us signi�cant space savings in

implementations�� we choose to ignore this feature� The constraint matrix can also

be used to implement the domains of the di�erent variables� if C ii
kk � � then value

k belongs to the domain of variable i� if C ii
kk � � then k is not an element of the

domain of i�

�In most imperative programming languages we cannot declare arrays in which the elements

have di�erent lengths� hence it is inconvenient to take advantage of this restriction�

CHAPTER �� INTRODUCTION �

��� Generate and Test

A �rst approach to solving a CSP can be made by using exhaustive search� also

known as the generate�and�test approach� An algorithm using that approach sys�

tematically generates all the possible assignments of values to variables and then

tests each one of these to see if it satis�es all the constraints� This approach will in

the worst case result in the generation of M��M�� � � ��Mn possible assignments

�where Mi is the domain size of variable i which all have to be tested� When

we are trying to �nd all solutions for a speci�c CSP this approach will therefore

show exponential behavior in the depth of the search tree �i�e�� in the number of

variables� In the case of a CSP of degree two �binary variables the search will

have a worst and average case complexity of �n� were n is the number of variables

or the depth of the search tree� When we are searching for the �rst solution to

a CSP of this kind� this approach will only show linear behavior when the cuto�

rate p� which indicates the �xed probability that the leftmost branch of a node will

succeed� is close to one 	��
� The formula for the average search cost in this case is�

av�n � pnCL � q��n � ��CL � CR � �CB� qnCB

Here q � � � p� and CR� CL� CB are respectively the costs of traversing the

left branch� the right branch and backtracking along a branch after failure� If p is

close to � the second term will be small and the behavior of the algorithm will be

fairly linear� In that case the algorithm is likely to �nd a solution in the leftmost

branch of the tree� For smaller values of p the second term will dominate and the

complexity will grow exponentially in the depth of the tree� It is this potential for

exponential behavior that makes the generate and test approach unacceptable as

the general solution method for CSP�s�

CHAPTER �� INTRODUCTION �

��� Standard CSP Algorithms

Standard algorithms for CSP�s are traditionally divided into three classes�

Tree�search algorithms This class includes Backtracking �BT and its re�ne�

ments Backjumping �BJ �also known as Backchecking� Con�ict�Directed

Backjumping �CBJ and Backmarking �BM� Algorithms of this class attempt

to generate a tree of all possible assignments of values to variables� while con�

tinuously checking if the current assignment constitutes a solution� During

this search they use di�erent methods to avoid the exhaustive generation of

possible assignments or to avoid performing redundant checks�

Network Consistency or Filtering algorithms This class is comprised of arc�

consistency �AC or Waltz �ltering� and path�consistency �PC algorithms�

Arc�consistency or ��consistency algorithms �also known as constraint propa�

gation and constraint relaxation �lter the domain of a variable in such a way

that any remaining value has a compatible match in the domain of any other

variable� Path�consistency or ��consistency ensures that any subnetwork of

two variables is extendable to any third variable� In general� i�consistent al�

gorithms guarantee that any consistent instantiation of i� � variables can be

extended to any ith variable� Filtering algorithms can only solve problems in

speci�c cases� in general tree�search algorithms have to be additionally used

to solve the simpli�ed problem�

Combinations This third class is comprised of algorithms that combine tree�

searching and �ltering� Combining these two approaches is interesting because

tree�search algorithms are guaranteed to �nd all the solutions but su�er from

thrashing �explained below while �ltering algorithms can alleviate this defect

CHAPTER �� INTRODUCTION �

but are not guaranteed to �nd a solution� Examples of these algorithms are

Full Lookahead �FL� Partial Lookahead �PL and Forward Checking �FC�

Algorithms of this class look forward to the domain of variables that are not

yet instantiated and make sure that they are consistent with the variables

that already have a value�

����� An Example� the Zebra Problem

The example problem that will be used to clarify the workings of the various algo�

rithms is the Zebra problem� This CSP problem has �� variables that correspond

to the following�

� Five colours� Red� Blue� Yellow� Green and Ivory �V 	�
� V 	�
� V 	�
� V 	�
�

V 	�
�

� Five brands of cigarettes� Old�Gold� Parliament� Kools� Lucky and Chester�

�eld �V 	�
� V 	�
� V 	��
� V 	��
� V 	�
�

� Five nationalities� Norwegian� Ukranian� English� Spanisch and Japanese

�V 	�
� V 	��
� V 	��
� V 	��
� V 	��
�

� Five pets� Zebra� Dog� Horse� Fox and Snails �V 	��
� V 	��
� V 	��
� V 	��
�

V 	��
�

� Five drinks� Co�ee� Tea� Water� Milk and Orange�Juice �V 	��
� V 	��
� V 	��
�

V 	��
� V 	��
�

Each of these variables has the domain f�� �� �� �� �g representing one of �ve

houses they belong to� The particular numbering of the variables that is used

CHAPTER �� INTRODUCTION �

has been chosen to simplify the construction of suitable examples in the following

sections� The following constraints must be satis�ed�

�� Each house has a di�erent colour� is inhabited by a single person from a spe�

ci�c nationality� who smokes a unique brand of cigarettes� owns a particular

pet and has a preferred drink�

�� The Englishman lives in the Red house�

�� The Spaniard owns a Dog�

�� Co�ee is drunk in the Green house�

�� The Ukranian drinks Tea�

�� The Green house is to the right of the Ivory house�

�� The Old�Gold smoker owns Snails�

�� Kools are smoked in the Yellow house�

�� Milk is drunk in the middle house �house ��

��� The Norwegian lives in the �rst house on the left �house ��

��� The Chester�eld smoker lives next to the Fox owner�

��� Kools are smoked in the house next to the house with the horse�

��� The Lucky smoker drinks Orange�Juice�

��� The Japanese smokes Parliament�

��� The Norwegian lives next to the Blue house�

The constraint graph generated by this problem is shown in Figure ����

CHAPTER �� INTRODUCTION �

L

next to

not equal

equal

R

to the right of

Z

D

H F

S

W M

J

C

T

E S

J

N

UC

LK

P

O

GY

B

R

I

R

L

middle house

left house

CIGARETTES

DRINKPET

NATIONALITY

COLOUR

16

6

8

14 15

1

2 3

4 5

17

18 19 20 21

22 23 24 25

7

1312

9 10 11

Figure ���� Constraint graph of the Zebra problem

CHAPTER �� INTRODUCTION �

����� Data Structures and de�nitions

The code for part of the algorithms in this work has been taken from a CSP function

library by van Beek 	�
� The following data structures and de�nitions are used in

the discussion of the various algorithms that will be presented�

� current is the variable that is currently being instantiated� it ranges from � to

n� �� After the instantiation of current checks out to be consistent at depth

i in the search tree� current is set to i � �� Hence at the bottom of the tree�

when a solution has been found current has the value n� ��

� n is the number of variables� k is the maximum domain size for these variables

� The four�dimensional array C	n
	n
	k
	k
 holds the constraint matrices for all

the variables� C	i
	j
	k
	l
 � � if and only if value k for variable i is compatible

with value l for variable j� C also determines the domain of variable i� if

C	i
	i
	k
	k
 � � then k belongs to the domain of i� if C	i
	i
	k
	k
 � � then k

does not belong to this domain�

� The function trivial�i� j returns True if the constraint between variable i and

variable j is trivial� i�e�� all values of variable i are compatible with all values

for variable j� This function uses information obtained from preprocessing

�O�n� algorithm and considerably improves performance��

� The array solution	i
 holds the current assignment of values to variables for

� � i � current� Note that this structure only holds a solution to a CSP

when current � n� At the end of a search for all solutions to a speci�c CSP

�This function was not included in van Beek�s ��� library� but was added by the author�

CHAPTER �� INTRODUCTION �

for example� it is unlikely that the last assignment of values to the variables

constitutes a solution�

� Variable checks is a counter for the number of consistency checks performed�

Tests that determine if a value belongs to the domain of a variable are not

considered consistency checks� accessing C	i
	i
	k
	k
 is therefore not counted��

� Variable found indicates whether a solution has been found and variable count

indicates how many solutions have been found�

� Variable number is used to indicate if the algorithm should search for one or

for all solutions� If number � � the algorithm will look for all solutions� if

number � � it will only look for the �rst solution�

All the algorithms that will be discussed here use the following template�

Function CSP�algorithm

� If this is the first variable�

Initialize the bookkeeping structures

If all variables are instantiated consistently�

Process the solution

For all values of the variable do�

�

Perform domain checks

Instantiate the variable with this value

Perform consistency checks

Make a recursive step to this CSP�algorithm

Process the results of this step

�

Process a failure

�

�Not counting domain checks as consistency checks is in keeping with standard practice in CSP

research�

CHAPTER �� INTRODUCTION ��

A special function consistent checks if the instantiation of the current variable

is consistent with respect to other past or future variables� �See appendix A for

some programming conventions

����� Backtracking �BT�

Chronological backtracking 	��� �
 is one of the simplest algorithms for solving

CSP�s and serves as a basis for all of the other algorithms discussed in this thesis�

In backtracking the set of all variables is instantiated incrementally� one variable

at a time� When a variable is assigned a value from its respective domain a partial

consistency check is performed� involving only those constraints for which all the

variables are currently instantiated� If variable Vi is currently being instantiated

only the constraints involving Vi and variables from fV� � � � Vi��g have to be checked�

Constraints that only involve variables from fV� � � � Vi��g were checked previously

and constraints involving variables from fVi�� � � � Vkg cannot be checked because

these variables have not yet been assigned� When any of the constraints fail the

next value for Vi is tried� and when all values are exhausted Vi is unassigned and

the next value for the previous variable Vi�� is checked�

The backtrack algorithm �BT is given below� The consistent function checks if

the assignment to the current variable is consistent with the previous assignments

by checking all the constraints involving the variables from � to current� �� If

the constraint between the current variable and a previous one is trivial� the func�

tion skips checking it� Actually performing a check between two variables is done

by accessing the C�array using these variables and their current values from the

solution�array as indicies� Each such use of the C�array is counted as a consistency

check�

CHAPTER �� INTRODUCTION ��

Function consistent�C� solution� current�

NETWORK C	

SOLUTION solution	

int current	

� int i	

for �i �
 �	 i � current	 i� �

if �trivial�current�i�� continue	 �� skip trivial constraints ��

checks �
 checks �	 �� count the consistency check ��

�� consistency check between variable current and variable i ��

if �C�current��i��solution�current���solution�i��
 ��

return���	� �� failure ��

return���	 �� success ��

�

The main loop of the BT algorithm chronologically traverses the search tree by

assigning a value from its domain to the current variable� checking its consistency

and calling the function recursively for the next variable� If none of the values

prove to be consistent with the past instantiations the algorithm backs up to the

previous variable and tries its next value� If current � n the function processes a

solution as all the variables have been assigned consistent values� It then continues

the search for other solutions� or it returns control to the calling program if only

the �rst solution was requested�

CHAPTER �� INTRODUCTION ��

Function BT�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i	

if �current
 �� �� initialize ��

�found �
 �	

if �current � n� � �� found a solution ��

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	 �� only first solution ��

else return���	� �� all solutions ��

for �i �
 �	 i �
 k	 i� � �� check all values ��

if �C�current��current��i��i�
 �� �� if not in the domain ��

continue	 �� go to the next value ��

solution�current� �
 i	 �� assign the value ��

if �consistent�C� solution� current� �� check consistency ��

�� call BT recursively with current� ��

if �BT�C� n� k� solution� current �� number� found��

return���	� �� success ��

return���	 �� failure� backtrack ��

�

Backtracking eliminates substantial subspaces of the search space expanded by

the generate�and�test algorithm by checking partial solutions to a CSP� In order

to do this it needs to be able to use partial constraints� A partial constraint only

involves a subset of the total set of variables� It has the property that it will always

be satis�ed by an assignment of values to the variables in this subset if such an

assignment can lead to a solution� It might fail if the particular assignment cannot

lead to a solution�

A constitutes a solution � ��A� � A� PC�A� � True

In this formula A is an assignment of values to all variables and PC is a partial

constraint� A good partial constraint fails with most assignments that cannot

lead to a solution� This way a single partial consistency check can prevent an

CHAPTER �� INTRODUCTION ��

Conflict

Backtrack V

V

Old-Gold = 1

Norwegian = ?

past

current

Thrashing

V

V

Red = 1

Blue = 3

Figure ���� BT scenario

entire subtree� that would not lead to a solution� from being searched� However�

backtracking can still be very ine�cient because it may su�er from what is known

as thrashing� This basically means that during the search redundant checks are

preformed due to the incompatibility of a set of variables�

In Figure ��� an example of this behaviour for the Zebra problem is shown� The

domain of VNorwegian is wiped out because according to constraint � he has to live

in the Left house �house � and according to constraint �� he also has to live next

to VBlue� which has value �� The algorithm will now backtrack to VOld�Gold� but

the problem will keep occuring until VBlue is assigned another value� The checks

performed between VNorwegian and VBlue are redundant�

In general� backtracking� like all the other algorithms that will be discussed

here� tends to have an exponential time complexity in the number of the variables�

or the depth of the tree� both in the average and worst�case�

CHAPTER �� INTRODUCTION ��

����	 Backjumping �BJ�

Backjumping is an algorithm developed by Gaschnig 	�
 that jumps back multiple

levels� directly to the cause of a con�ict to avoid thrashing� This way the number

of nodes visited in the search tree can be reduced� resulting in a reduction in the

number of consistency checks� If no value can be found in the domain of the current

variable that is consistent with the past variables� BJ jumps back to the deepest

variable in the tree that precluded a candidate value from the current domain� Its

forward move is still same as in Backtracking� checking the new variable against all

instantiations in the past�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

for �i �
 �	 i � current	 i� �

if �trivial�current�i�� continue	

checks �
 checks �	

if �C�current��i��solution�current���solution�i��
 �� �

if �i � jump�place�current�� �� BJ� failure ��

jump�place�current� �
 i	 �� BJ� update if deeper ��

return���	 � �

jump�place�current� �
 current � �	 �� BJ� success ��

return���	

�

The consistent function is very similar to the one in BT except for the in�

troduction of the jump place�array which is initialized to zero for all i before the

search starts� If during the consistency checking loop one of the checks fails then

jump place	current
 is set to the variable causing the con�ict if it is deeper in the

search�tree than the present value of jump place	current
� If all the checks succeed

CHAPTER �� INTRODUCTION ��

jump place is set to current � �� The lines marked with ��� BJ ��� indicate the

di�erences with BT�

Instead of a True or False indication the main function of BJ returns the variable

number of the variable to jump back to� When a backjump occurs the jump place�

array has to be restored for all the variables between the spot where the algorithm

will jump back to and the current variable�

Function BJ�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump	

if �current
 �� �

clear�setup�n�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return ���	

else return�n�	�

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 �� continue	

solution�current� �
 i	

if �consistent�C� solution� current�� �

jump �
 BJ�C� n� k� solution� current �� number� found�	

if �jump �� current� return�jump�	�� �� jumpback to ��jump�� ��

jump �
 jump�place�current�	

for �i �
 jump�	 i �
 current	 i�� �� restore jump�place array ��

jump�place�i� �
 �	�

return�jump�	 �� return the backjump�spot ��

�

Figure ��� is basically the same as Figure ��� but when BJ is used the algorithm

would jump back directly from VNorwegian to VBlue� the cause of the con�ict� It

is important to note that only one backjump will occur and not a series of them�

CHAPTER �� INTRODUCTION ��

Conflict

V

V

Old-Gold = 1

Norwegian = ?

past

current

V

V

Red = 1

Blue = 3

Backjump

Figure ���� BJ scenario

If a jumpback to variable VBlue occurs this means that the instantiation of VBlue

precluded some value from the current domain� However� the fact that VBlue was

instantiated in the �rst place means that it passed all the consistency checks with

its predecessors and therefore jump place	VBlue
 � VRed� If subsequently all the

values for VBlue are exhausted the algorithm would step back to VRed�

����
 Con�ict�Directed Backjumping �CBJ�

Con�ict�Directed Backjumping is an improvement of Backjumping that can han�

dle multiple backjumps in a row� When a backjump occurs from Vi to Vh CBJ

continues to jump back across con�icts that involve both Vi and Vh� This is ac�

complished by recording the con�ict�set of every variable in the con�icts	N
	N

array� Con�icts	i
	j
 � � represents a con�ict between Vi and Vj that pruned a

value from the �rst variable�s domain� Initially all con�ict�sets are set to be empty�

CHAPTER �� INTRODUCTION ��

The con�ict�set holds all the past variables that failed consistency checks with the

current variable� If no consistent value can be found in the domain of Vi then

CBJ jumps back to the deepest variable Vh in its con�ict�set� The con�ict�set of

Vh is then changed to be the union of its current con�ict�set and the con�ict�set

of Vi� If a wipe�out occurs at Vh CBJ jumps back to the deepest variable in this

union� The consistent function is very similar to BT except for the lines marked

��� CBJ ����� As an extra improvement con�icts	i
	i
 always holds the maximum

value in the con�ict�set of Vi� CBJ has a primitive forward move since no extra

information is used while checking the new instantiation of the current variable�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

for �i �
 �	 i � current	 i� �

if �trivial�current�i�� continue	

checks �
 checks �	

if �C�current��i��solution�current���solution�i��
 �� �

conflicts�current��i� �
 �	 �� CBJ� conflict occurred ��

if �conflicts�current��current� � i� �� CBJ� bigger than max ��

conflicts�current��current� �
 i	 �� CBJ� update max ��

return���	� �

return���	

�

In the CBJ function the jump is made to the deepest variable in the con�ict�set

which is stored in con�icts	current
	current
�

The function union con�icts�jump� current calculates the union of the con�ict�

sets of jump and current� The function empty con�icts�jump� current resets these

sets for all variables between jump and current�

CHAPTER �� INTRODUCTION ��

Function union�conflicts�i� j�

int i� j	

� int m	

for �m �
 �	 m � i	 n� �

conflicts�i��m� �
 conflicts�i��m� or conflicts�j��m�	 �� union ��

if �conflicts�i��m� and conflicts�i��i� � m�

conflicts�i��i� �
 m	� �� set conflict�i��i� to max value ��

�

Function CBJ�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump� curr	

curr �
 count	

if �current
 �� �

clear�setup�n�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return�n�	�

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 ��

continue	

solution�current� �
 i	

if �consistent�C� solution� current�� �

jump �
 CBJ�C� n� k� solution� current �� number� found�	

if �jump �� current�

return�jump�	� �

if �curr
 count� �� we didn�t come across a solution ��

jump �
 conflicts�current��current� �� return jump position ��

else �� we came across a solution ��

jump �
 current � �	 �� return to the previous variable ��

union�conflicts�jump� current�	

empty�conflicts�jump� current�	

return�jump�	

�

CHAPTER �� INTRODUCTION ��

current

pastVConflicts

V

Backjump 1

Backjump 2

Backstep

V

VZebra = 3

Dog = 5

Old-Gold = 5

Snails = ?

Figure ���� CBJ scenario

The variable curr is used to test whether a solution has been found on the

current search path� If this is so then the other values for the current variable are

tried and then the algorithm steps back to the previous variable� If the algorithm

has not found a solution then the information from the con�ict�array is used to

jump back to the source of the con�ict� Variable curr is assigned the value of count

before the recursive step is made� If there is a di�erence between curr and count

after the recursive call then this indicates that we have encountered a solution on

the current search path�

When we apply CBJ to the scenario in �gure ��� the algorithm would at �rst

step back from VSnails to VDog� When subsequently all the values of VDog are also

exhausted it would jump back to VZebra and from there to VOld�Gold� each time

CHAPTER �� INTRODUCTION ��

jumping back to the deepest variable in the union of the con�ict sets� The backstep

and the �rst backjump result from constraint �� �Each house has one pet�� The

second backjump is made as a result of constraint �� �The Old�Gold smoker owns

Snails��

���� Backmarking �BM�

Backmarking �BM by Gaschnig 	�
 is aimed at eliminating redundant constraint

checks by preventing the same constraint from being tested repeatedly� This is

achieved by employing two arrays mcl and mbl� The maximum checking level

mcl	i� k
 is the deepest variable that the instantiation Vi � k checked against� The

minimum backup level mbl	i
 is the shallowest past variable that has changed its

value since Vi was the current variable� BM uses a primitive kind of backward

move by just stepping back to the previous variable� but its forward move is more

informed than the previous algorithms�

Two situations can arise�

� Case �� the current variable Vi is about to be re�instantiated with a value k

for which a previous instantiation failed because of a con�icting variable Vj �

if Vj still holds the same value the check will fail again and doesn�t have to

be performed�

� Case �� the current variable Vi is about to be re�instantiated with a value k

for which a previous check with variable Vj succeeded� if Vj still holds the

same value the check will succeed again and doesn�t have to be performed�

Whenmcl	current
	solution	current

� mbl	current
 �case � we know that the

algorithm has not backtracked past the level were the last inconsistency occurred for

CHAPTER �� INTRODUCTION ��

this value of the current variable� It would therefore occur again and the algorithm

need not consider this instantiation�

If mcl	current
	solution	current

� mbl	current
 �case � we know that the

variables that were instantiated before mbl	current
 still have the same value and

therefore the algorithm does not have to check them again�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

if �mcl�current��solution�current�� � mbl�current�� �� BM� case ���

return���	

for �i �
 mbl�current�	 i � current	 i� � �� BM� case ���

mcl�current��solution�current�� �
 i	

if �trivial�current�i�� continue	

checks �
 checks �	

if �C�current��i��solution�current���solution�i��
 ��

return���	�

return���	

�

If the domain for the current variable is exhausted mbl	current
 is set to

current� �� the previous variable� To restore the mbl�array the backtrack points

of all the future variables have to be set to the minimum of their current value and

current� �� the new backtrack point�

BM has a primitive form of backward move so only the success or failure of an

instantiation are returned and no backjump information�

CHAPTER �� INTRODUCTION ��

Function BM�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i	

if �current
 �� �

clear�setup�n� k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return���	�

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 ��

continue	

solution�current� �
 i	

if �consistent�C� solution� current��

if �BM�C� n� k� solution� current �� number� found��

return���	�

mbl�current� �
 current � �	

for �i �
 current�	 i �
 n	 i� �� BM� restore mbl array ��

if �mbl�i� � current���

mbl�i� �
 current��	

return���	

�

In Figure ��� an example is given of the two sorts of savings that the BM

algorithm can make� In case �� at the second instantiation of VJapanese the values

�� �� �� � do not have to be considered because they are guaranteed to fail since

VParliament still has value � and according to constraint ��� �The Japanese smokes

Parliament�� these variables have to have the same value� In case � the instantiation

of VJapanese with value � only has to be checked against VChesterfield � � � VUkranian since

the previous variables still hold the same values and constraint checks involving

them succeeded before� so they will succeed again�

CHAPTER �� INTRODUCTION ��

mbl[Japanese] = Chesterfield

mbl[Japanese] = Chesterfield

Case 2 savings, skip checks

Case 1 savings, skip values

V

V V

V

V

V

Chesterfield = 1,2,5

Japanese = 4 Japanese = 4

mcl[Japanese][1,2,3,5] = Parliament

mcl[Japanese][4] = Ukranian }

}

Ukranian = 2 Ukranian = 2

Parliament = 4

Figure ���� BM scenario

CHAPTER �� INTRODUCTION ��

����� Forward Checking �FC�

Forward Checking by Haralick 	�
 is really a hybrid of a tree�search algorithm

and a �ltering algorithm� When a variable is instantiated the algorithm �lters

all the domains of the future variables in such a way that the remaining values

in these domains are consistent with the current variable� If during this �ltering

process one of the domains of the future variables gets wiped out a new value

for the current variable must be tried� When the FC algorithm moves forward to

instantiate the next variable it does not have to perform any consistency checks

because all the remaining values in the domain are guaranteed to be consistent

with the past variables� FC performs more work per node� but aims at visiting less

nodes in total and performing a smaller total number of checks this way�

In the implementation of this algorithm two arrays are used� domains	N
	K

and checking	N
	N
� The �rst array keeps track of the consistency of the values

in the domain of a variable� Initially all the entries are set to zero but when value

k of variable Vj is pruned by the instantiation of variable Vi then domains	j
	k
 is

set to i� If variable Vi is uninstantiated during backtracking then all the values it

pruned can be restored� The checking array keeps track of which variables pruned

values from which other variables to simplify the restoration of the domains during

backtracking� If checking	i
	j
 � � then variable i pruned a value from the domain

of variable j�

There is no need for consistency checking in the consistent function since in�

consistent values were pruned by earlier instantiations� The only case when this

function returns False is when the domain of a future variable is wiped out during

forward checking�

CHAPTER �� INTRODUCTION ��

Function consistent�C� n� k� current� solution�

NETWORK C	

int n� k� current� solution	

� int i	

for �i �
 current �	 i �
 n	 i� � �� all future variable ��

if �trivial�current�i�� continue	

if �check�forward�C�k�current�i�solution�
 �� �� forward check ��

return���	� �� a future variable got wiped out ��

return���	

�

When Vj is forward checked against Vi all the values that are still in the domain

of Vj are checked against the current instantiating of Vi� Values that are pruned by

Vi are marked as such and if any values are pruned then the checking matrix is set

to re�ect this�

Function check�forward�C� k� i� j� solution�

NETWORK C	

int k� i� j� solution	

� int m� old�count�delete�count	

old�count �
 �� delete�count �
 �	

for �m �
 �	 m �
 k	 n� �� all values ��

if �C�j��j��m��m� and �domains�j��m�
 ��� ��� still in domain� ��

old�count �
 old�count �	

checks �
 checks �	

if �C�i��j��solutiom��m�
 �� � �� if there�s a conflict ��

domains�j��m� �
 i	 �� prune value from domain ��

delete�count �
 delete�count �	��

if �delete�count� �� if a value was deleted ��

checking�i��j� �
 �	 �� indicate in checking array ��

�� return false if all remaining values were pruned true otherwise ��

return�old�count � delete�count�	

�

If Vi is uninstantiated during backtracking then all the values that Vi pruned

from future variables are restored� These are the values l of Vj for which

domains	j
	l
 � i� Array checking	i
	j
 will indicate that Vi pruned values from Vj �

CHAPTER �� INTRODUCTION ��

Function restore�i� n� k�

int i� n� k	

� int j� l	

for �j �
 i �	 j �
 n	 j� �� all future variables ��

if �checking�i��j�� � �� i pruned some values of j ��

checking�i��j� �
 �	 �� reset the checking array ��

for �l �
 �	 l �
 k	 l� �� for all the values ��

if �domains�j��l�
 i� �� if pruned by this variable ��

domains�j��l� �
 �	� �� restore value to domain of j ��

�

The main function of FC is relatively simple� The domain check has been

extended with domains	current
	i
� If this array element is not equal to zero then

the value i of the current variable has been pruned by a past variable�

Function FC�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i	

if �current
 �� �

clear�setup�n� k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return���	�

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 � or domains�current��i��

continue	 �� skip if value not in domain or pruned ��

solution�current� �
 i	

if �consistent�C� n� k� current� solution�current���

if �FC�C� n� k� solution� current �� number� found��

return���	

restore�current� n� k�	� �� restore the future domains ��

return���	

�

CHAPTER �� INTRODUCTION ��

V

V

V

V

V

Parliament = 2 Parliament = 3

Chesterfield = 3,4 or 5 Chesterfield = 1,2 or 4

Past

Current

Future

Forward checking

Forward checkingOld-Gold = 1,..,5

Figure ���� FC scenario

When the algorithm has �nished investigating a certain value of a variable the

function restore has to be called to restore the domains of the future variables�

In Figure ��� the assignment of � to VOld�Gold prunes this same value from the

domains of VParliament and VChesterfield because according to constraint �� �A di�er�

ent brand of cigarettes is smoked in every house�� The instantiation of VParliament

with � prunes this value from VChesterfield leaving only values �� � and � as possi�

bilities� When the algorithm backtracks the domains of the variables are restored

by adding the pruned values again�

CHAPTER �� INTRODUCTION ��

��� Comparing the Standard CSP Algorithms

In 	�
 Haralick and Elliot tested seven di�erent CSP algorithms and found the fol�

lowing order �from best to worst � word�wise Forward Checking �wFC�� Forward

Checking �FC� Backmarking �BM� Partial Lookahead �PL� Full Lookahead �FL�

Backjumping �BJ and Backtracking �BT� The algorithms discussed in the previ�

ous sections can be ordered in a similar way as follows� FC � CBJ � BM � BJ

� BT 	�
� This comparison is mainly based on the number of consistency checks

that the algorithms perform on several di�erent problems� If run�time performance

is considered then BM usually moves further down the ordering because of the

relatively large overhead this algorithm displays�

��� Summary

Table ��� gives a summary of the algorithms discussed in this chapter�

Algorithm forward move backward move next variable

BT check against all past variables previous variable chronological

BJ check against all past variables single jump back chronological

CBJ check against all past variables multiple jumps back chronological

BM perform only new checks previous variable chronological

FC prune future variables previous variable chronological

Table ���� Summary of traditional algorithms

�Word	wise Forward Checking is a variant of Forward Checking which utilizes the bit	parallel

capabilities of computers
 several constraints are checked at once by using bit	wise and operations�

Chapter �

Prosser�s Hybrid Algorithms

In 	�
 Prosser approached the algorithms BT� BJ� BM� CBJ and FC by explicitly

stating their forward and backward moves in a non�recursive fashion� In this ap�

proach BT�BJ and CBJ describe di�erent styles of backward moves while BT� BM

and FC describe di�erent styles of forward moves� The di�erences between these

moves is based on the amount of information that is used to make them� CBJ is

more informed than BJ� and BJ is more informed than BT� The same holds for

the other group� where FC is more informed than BM� and BM is more informed

than BT� Simple Backtracking �BT is considered to have the most primitive for�

ward move� checking a new variable against all the past variables� and also the

most primitive backward move� stepping back to the previous variable� By com�

bining the backward move of an algorithm from the �rst group with the forward

move of an algorithm from the second group Prosser developed four new algorithms�

Backmarking with Backjumping �BMJ� Backmarking with Con�ict�Directed Back�

jumping �BM�CBJ� Forward Checking with Backjumping �FC�BJ and Forward

Checking with Con�ict�Directed Backjumping �FC�CBJ�

��

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

BM

BT

FC FC-BJ FC-CBJ

BMJ BM-CBJ

CBJBJ

Go
Forward

Go
Back

Figure ���� Prosser�s � new algorithms

In the following sections recursive versions of all the algorithms in Prosser�s

paper 	�
 are given� the code of which is again partly taken from van Beek�s CSP�

function library 	�
� The part that Prosser refers to in his paper as the label function

can mostly be found in the consistent function of the recursive algorithms and the

unlabel function is generally represented by the code segment after the recursive

call�

��� Backmarking with Backjumping �BMJ�

Backmarking with Backjumping 	�
 �also known as Backmark Jumping combines

the forward move of BM with the backward move of BJ� It has the advantages of

both algorithms� i�e�� most of the redundant consistency checks are avoided and

nodes are eliminated from the search tree by occasionally jumping back over more

than one node to the source of a con�ict to avoid thrashing�

The consistent function of BMJ is a straightforward combination of the con�

sistent functions of BJ and BM� The lines labeled ��� from BM ��� represent the

Backmarking part of the algorithm� the lines labeled ��� from BJ ��� represent the

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Backjumping part�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

if �mcl�current��solution�current�� � mbl�current�� �� from BM ��

return���	

for �i �
 mbl�current�	 i � current	 i� � �� from BM ��

mcl�current��solution�current�� �
 i	 �� from BM ��

if �trivial�current�i�� continue	

checks �
 checks �	

if �C�current��i��solution�current���solution�i��
 �� �

if �i � jump�place�current�� �� from BJ ��

jump�place�current� �
 i	 �� from BJ ��

return���	 � �

jump�place�current� �
 current � �	 �� from BJ ��

return���	

�

In the main function of BMJ� were the backward move of the algorithm is

described� the BJ portion is present in its original form but the BM part has to be

changed� In case of a backjump the maximum backup level �mbl of the current

variable is set to jump� the variable that the algorithm is jumping back to� instead

of to current � �� the previous variable� Both the mbl and the jump place�array

have to be restored in case of such a backjump� The mbl array holds information

about future variables and therefore the array has to be restored from jump� � to

n�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Function BMJ�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump	

if �current
 �� �

clear�setup�n� k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���

else return�n�	 �

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 ��

continue	

solution�current� �
 i	

if �consistent�C� solution� current�� �

jump �
 BMJ�C� n� k� solution� current �� number� found�	

if �jump �� current�

return�jump�	 � �

jump �
 jump�place�current�	 �� from BJ ��

mbl�current�
 jump	 �� BM� jump instead of current�� ��

for �i �
 jump� 	 i �
 n	 i� �� BM� jump instead of current�� ��

if �mbl�i� � jump� �� BM� jump instead of current�� �

mbl�i� �
 jump	 �� BM� jump instead of current�� ��

for �i�
jump�	i�
current	i� �� from BJ ��

jump�place�i� �
 �	 �� from BJ ��

return�jump�	

�

In Figure ��� a scenario for BMJ is given� When the algorithm tries to instanti�

ate VNorwegian for the �rst time a wipe�out occurs because of contraints �� and ���

�The Norwegian lives in house � and he lives next to the Blue house�� The BJ part

of the algorithm enables it to jump back to the source of the problem� VBlue� When

VNorwegian gets instantiated a second time the BM part of the algorithm prevents

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

V

V

Red = 2

Backjump

VV

V

Old-Gold = 1

Norwegian = ?

Old-Gold = 2

Wipe out

Avoided checks, case 1 BM

VNorwegian = 1

Blue = 1,2

V VEnglishman = 2 Englishman = 2

Avoided values, case 2 BM

Figure ���� BMJ scenario

the redundant check with VRed since this variable still has the same value and a

check would succeed again� For an example of the second form of savings from the

BM part we have to look deeper into the tree to VEnglishman� When this variable

gets instantiated for the second time the algorithm can skip the values �� �� � and �

because it found out earlier that these values are incompatible with VRed according

to contraint �� �The Englishman lives in the Red house��

According to Prosser there is a scenario in which BMJ might perform worse

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

than BM� This situation occurs when BMJ jumps from Vi� over Vh� to Vg while

mbl	h
 � g� When Vh is reinstantiated� consistency checks will be repeated between

Vh and Vf for all f such that mbl	h
 � f � g� Therefore the only claim that can be

made is that BMJ combines most of the advantages of BM with BJ� and performs

better in most cases�

��� Backmarking with Con	ict
Directed Backjump

ing �BM
CBJ�

BM�CBJ is a hybrid of Backmarking and Con�ict�Directed Backjumping with a

less trivial construction� it tries to prevent redundant checks and has the ability of

making multiple backjump�

In CBJ there was only one situation in which the consistent function would

return False� only if a consistency check involving the C�array would fail� In BM�

CBJ there is one other case� originating from the BM part of the algorithm� namely

when mcl	current
	solution	current

� mbl	current
� In that case there has been a

con�ict in the past with the variable represented bymcl	current
	solution	current

�

This information must be transferred to the con�icts�array of the CBJ part of the

algorithm�

The con�ict with the variable inmcl	current
	solution	current

 should be record�

ed and con�icts	current
	current
 should be changed if this con�ict was located

deeper in the search�tree than the previous known value� The lines involved in this

transfer are marked ��� Addition ��� in the following code�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

if �mcl�current��solution�current�� � mbl�current�� � �� from BM ��

�� Addition for combination of BM and CBJ ��

conflicts�current��mcl�current��solution�current��� �
 �	

if �conflicts�current��current� � mcl�current��solution�current���

conflicts�current��current� �
 mcl�current��solution�current��	

return���	�

for �i �
 mbl�current�	 i � current	 i� � �� from BM ��

mcl�current��solution�current�� �
 i	 �� from BM ��

if �trivial�current�i�� continue	

checks �
 checks �	

if �C�current��i��solution�current���solution�i��
 �� ��� CBJ ��

conflicts�current��i� �
 �	 �� from CBJ ��

if �conflicts�current��current� � i� �� from CBJ ��

conflicts�current��current� �
 i	 �� from CBJ ��

return���	 � �

return���	

�

When a backjump occurs the information for the BM part of the algorithm�

array mbl� also has to be updated� This is done by replacing current��� the back�

step point in a BM algorithm� with jump� the backjump point in a CBJ algorithm�

just like in BMJ� The rest of the algorithm is similar to the previous ones�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Function BM�CBJ�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump� curr	

curr �
 count	

if �current
 �� �

clear�setup�n� k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���

else return�n�	 �

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 �� continue	

solution�current� �
 i	

if �consistent�C� solution� current�� �

jump �
 BM�CBJ�C� n� k� solution� current �� number� found�	

if �jump �� current�

return�jump�	� �

if �curr
 count� jump �
 conflicts�current��current�	

else jump �
 current � �	

mbl�current� �
 jump	 �� from BM� jump instead of current�� ��

union�conflicts�jump� current�	 �� from CBJ ��

for �i �
 jump �	 i �
 n	 i��� from BM� jump instead of current ��

if �mbl�i� � jump� mbl�i� �
 jump	 �� from BM� jump for current ��

empty�conflicts�jump� current�	 �� from CBJ ��

return�jump�	

�

The scenario that was constructed in which BMJ would perform worse than

BM is also applicable to BM�CBJ� Strictly speaking BM�CBJ might be even more

prone to it because of the increased number of backjumps it performs�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

��� Forward Checking with Backjumping �FC

BJ�

FC�BJ combines the moves of FC and BJ�While the FC part of the algorithm prunes

future variables of values that are not compatible with the current instantiations�

the BJ part enables the algorithm to jump back over more than one variable in

case of a con�ict�

In FC�BJ the functions check forward and restore are the same as for FC� The

consistent function changes and now returns the number of the future variable

whose domain was wiped out by the instantiation of the current variable� This

result is used by the main function to determine to which variable the algorithm

has to jump back� When all the forward checks were successful jump place	current

is set to current� �� just like in the BJ algorithm� to re�ect that this variable has

no con�icts with past variables�

Function consistent�C� n� k� current� value�

NETWORK C	

int n� k� current� value	

� int i	

for �i �
 current �	 i �
 n	 i� �

if �trivial�current�i�� continue	

if �check�forward�C� k� current� i� value�
 �� �� from FC ��

return�i�	� �� return wiped out variable ��

jump�place�current� �
 current � �	 �� from BJ ��

return���	

�

Since there were no consistency checks performed in the consistent function the

jump place�array has to be updated in the main function of FC�BJ� This happens

when consistent returns the variable whose domain was wiped out by the instan�

tiation of the current variable� In this case the algorithm searches for the deepest

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

past variable that also had a con�ict with this wiped�out variable� If this variable is

located deeper in the search�tree than the present value of jump place	current
 this

array�element is updated� Jumping back to this variable might make certain values

in the domain of the wiped�out variable available again� and this could prevent a

repeat of the wipe�out that occured as a result of the previous instantiations�

The real backjump however� is also dependent on the checking�array� The

algorithm will jump back to either a variable that also pruned values from the

variable that was wiped out �case �� or to a variable which pruned values from

the current variable �case �� The choice between these two options depends on

whichever one is located deeper in the search tree�

If a backjump occurs all the values that were pruned by the variables between

jump and current have to be restored� This task is performed by the restore

function� Although the restoration does not necessarily have to be done in reverse

order� it is usually done this way because this re�ects the way in which the algorithm

backtracks�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Function FC�BJ�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� j� jump� fail	

if �current
 �� �

clear�setup�n� k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���

else return�n�	 �

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 � or domains�current��i�� continue	

solution�current� �
 i	

fail �
 consistent�C� n� k� current� solution�current��	

if �not fail� �

jump �
 FC�BJ�C� n� k� solution� current �� number� found�	

if �jump �� current�

return�jump�	�

restore�current� n� k�	

if �fail�

for �j �
 �	 j � current	 j�

�� BJ adapted� case � ��

if �checking�j��fail� and jump�place�current� � j�

jump�place�current� �
 j	�

jump �
 jump�place�current�	 �� from BJ ��

�� BJ adapted� case � ��

for �i �
 �	 i �
 current	 i�

if �checking�i��current� and jump � i� jump �
 i	

for �i �
 current	 i � jump	 i��� � �� from BJ ��

jump�place�i� �
 �	 �� from BJ ��

restore�i� n� k�	� �� from FC ��

return�jump�	

�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

VOld-Gold = 2

V Chesterfield = 1

V Parliament = 3

V

VSnails = 2

Wipe-out

Backjump

current

future

fail

past

Possible backjump points

Forward checking

for current variable

Fox = X

Figure ���� FC�BJ scenario

In Figure ��� an example is shown of a scenario for FC�BJ� The instantiation

of VOld�Gold with value � prunes this value from the domains of VParliament and

VChesterfield because of constraint � �In every house a di�erent kind of cigarette is

smoked�� It also prunes the values �� �� � and � from the domain of VSnails because

constraint � says that �The Old�Gold smoker owns Snails�� Further down the tree

the instantiation of VChesterfield with value � prunes values �� �� � and � from the

domain of VFox because of constraint ��� �The Chester�eld smoker lives next to the

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Fox owner�� When the algorithm arrives at VSnails it notices that the domain of

VFox will be wiped out by a combination of constraints� FCBJ will now backjump

to the deepest variable in the tree which pruned values from either VFox or VSnails�

variable VChesterfield in this case�

��� Forward Checking with Con	ict
Directed Back

jumping �FC
CBJ��

FC�CBJ combines FC and CBJ and the advantages of this algorithm over FC�BJ

are the same as the advantages of CBJ over BJ� i�e�� the ability to jump back

multiple times in a row� The algorithm forward checks all the future variables and

if a wipe out occurs at a future level or at the current level the algorithm jumps

back to the cause of one of these con�icts� After trying all other values for this

variable it will continue to jump back using this same principle�

The functions check forward� union con�icts and restore are the same as for

FC and FC�BJ� The empty�con�icts function resets all the con�ict information for

variable i� The union checking function combines the information from the CBJ

part of the algorithm �the con�icts�array with the FC part of the algorithm �the

checking�array� this to ensure that the correct variables will not be missed�

Function union�checking�i� j�

int i� j	

� int m	

for �m �
 �	 m � i	 m�

conflicts�i��m� �
 conflicts�i��m� or checking�m��j�	

�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

The consistent function is the same as for FC�BJ except for the removal of the

BJ statements� No information is updated for the CBJ part of the algorithm so

this will all have to be done in the main FC�CBJ function�

Function consistent�C� n� k� current� value�

NETWORK C	

int n� k� current� value	

� int i	

for �i �
 current �	 i �
 n	 i� �

if �trivial�current�i�� continue	

if �check�forward�C� k� current� i� value�
 ��

return�i�	�

return���	

�

Again� like in BJ� the algorithm has to be determined whether to jump back

to the variable that helped wiping out the future variable� or to jump back to a

variable that pruned a value from the current domain� Ultimately the algorithm

will backjump to the deepest one of these two variables�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

Function FC�CBJ�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump� fail� curr	

curr �
 count	

if �current
 �� �

clear�setup�n� k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���

else return�n�	 �

for �i �
 �	 i �
 k	 i� �

if �C�current��current��i��i�
 � or domains�current��i�� continue	

solution�current� �
 i	

fail �
 consistent�C� n� k� current� solution�current��	

if �not fail� �

jump �
 FC�CBJ�C� n� k� solution� current �� number� found�	

if �jump �� current� return�jump�	�

if �fail�

union�checking�current� fail�	

restore�current� n� k�	� �� from FC ��

if �curr
 count� � �� didn�t come across a solution ��

jump �
 �	 �� set jump to the deepest variable i in either ��

for �i �
 �	 i � current	 i�

if �conflicts�current��i�� jump�
i	�� conflicts�current��i� or��

for �i �
 jump �	 i � current	 i�

if �checking�i��current�� jump �
 i	��� checking�i��current� ��

else jump �
 current � �	 �� came across a solution ��

�� update conflict�current��� with checking���current� ��

union�checking�current� current�	

union�conflicts�jump� current�	 �� from CBJ ��

for �i �
 current	 i � jump	 i��� �

empty�conflicts�i�	 �� from CBJ ��

restore�i� n� k�	� �� from FC ��

restore�jump� n� k�	 �� from FC ��

return�jump�	

�

CHAPTER �� PROSSER�S HYBRID ALGORITHMS ��

��� Summary

We can include BMJ� BM�CBJ� FC�BJ and FC�CBJ in the summary of the algo�

rithms and their properties as shown in table ����

Algorithm forward move backward move next variable

BT check against all past variables previous variable chronological

BJ check against all past variables single jump back chronological

CBJ check against all past variables multiple jumps back chronological

BM perform only new checks previous variable chronological

FC prune future variables previous variable chronological

BMJ perform only new checks single jump back chronological

BM�CBJ perform only new checks multiple jumps back chronological

FC�BJ prune future variables single jump back chronological

FC�CBJ prune future variables multiple jumps back chronological

Table ���� Summary of traditional and Prosser�s algorithms

Chapter �

Variable Reordering Heuristics

The algorithms in the previous chapter can all be improved by incorporating some

form of heuristics in them� A heuristic can be seen as a general rule of thumb�

a guideline to direct the search that generally improves its e�ciency� but o�ers

no guarantee that search will proceed directly to a solution� Usually a heuristic

is considered to be good if it is general and cheap to use� produces solutions and

prunes a large number of incorrect lines of attack 	��
� There are three kind of

heuristics that are often associated with CSP algorithms�

� Variable reordering� Changing the order in which the variables are instanti�

ated�

� Value reordering� Changing the order in which the domain values of a variable

are used for its instantiation�

� Constraint reordering� Changing the order in which the constraint are checked�

Combinations of these heuristics can also occur but the focus of this thesis will

be on variable reordering �also known as search rearrangement heuristics� This

��

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

72

72

68

68

60

60

10 12 14 14 12 10

10 12 12 12 12 10

10

10

10

10

12

12

10

12

14

10

12

14

10

12

12

10

10

10

1 2 3 4 5 6

1

2

3

4

5

6

Total

10 10 10 10 10 10

Number of restricted fields

Ordering

5

3

1

2

4

6

Figure ���� Global ordering in the n�Queens problem

heuristic involves the order in which the variables are instantiated� Instead of

doing this randomly the sequence of instantiations can be ordered� This can either

be done globally� before the search starts� or locally� at every node�

A global ordering orders the variables before the search commences� e�g�� by

selecting as variable vk the variable which leads to the least expected number of

nodes at level k in the search tree� Ties are broken by looking �deeper� into the

tree and chosing the variable that allows less nodes on level k��� and so on� In the

n�Queens problem� for instance this would lead to an ordering from the middle rows

outward� since a Queen in the middle row restricts the search more than one on the

top or bottom of the board� In Figure ��� an example of a global ordering for the

��Queens problem is given� The numbers indicate how many squares in other rows

would be made unavailable if a Queen would be placed in that particular square�

The columns to the right of the board indicate the totals per row and a possible

ordering resulting from those totals�

The order of the variables can also be determined dynamically at every node in

the tree� and vary from branch to branch� this is called a local ordering� The �rst

�For a de�nition of this problem see Section ����

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

reference to this rule comes from Warnsdor� who applied it in ���� to generate

knight�s tours� He suggested that a jump should be made to a square from which

the tour had fewest possible continuations� Bitner and Reingold 	�
 introduced it

in their backtrack algorithm by using nodes of low degree earlier in the search tree

than nodes of high degree� A lot of research on local variable reordering or search

rearrangement has been performed by Purdom and Brown	��� ��� ��� ��� ��
�

The basic heuristic used by Bitner and Reingold examines the set of unassigned

variables and instantiates the one with the fewest remaining values� This idea can

be generalized to selecting a set of k unassigned variables for some predetermined

number k and instantiating the variable that is the root of the smallest k�level

subtree� Simple Backtracking can then be considered to be the case k � �� and

Bitner and Reingold�s algorithm becomes k � � variable reordering Backtracking�

While more consistency checks are performed per node to �nd the best next variable�

an algorithm with variable reordering aims at visiting less nodes and thus improving

performance�

��� Incorporating the Heuristic

To incorporate variable reordering heuristics into the existing algorithms an extra

level of indirection has to be introduced� Instead of traversing the variables chrono�

logically we will now traverse the order of instantiations of those variables� Instead

of having variable i as the current variable we will be dealing with instantiation i�

which can be any variable between � an N �

To implement this indirection an array ins of size N is introduced� The invariant

belonging to this structure is�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

f	i� j � � � i� j � current � ins	i

 f� � � � Ng � ins	i
 � ins	j
� i � jg�

During the search ins is a permutation of a subset of the set of variables� and

when a solution is found ins is a permutation of the set of variables� When a variable

i is selected for instantiation� ins	current
 is assigned value i and solution	ins	current

is assigned the �rst domain value of variable i� For example� if �rst variable � gets

instantiated� secondly variable � and thirdly variable �� then ins we would have�

ins	�
 � �� ins	�
 � �� ins	�
 � �� and ins	�
 � � � ins	N
 would be unde�ned�

During the forward move of an algorithm a new variable will have to be selected

that will be instantiated next� The function next is introduced for this purpose and

it basically represents a ��level search rearrangement heuristic� Forward checking

algorithms utilize a slightly di�erent version of this function called nextFC which

uses the speci�c advantages of FC to reduce the number of checks needed to �nd

the next variable�

It is important to note that not all bookkeeping information that is stored by

the various algorithms will have to be accessed through the ins structure� Only

information that is related to the forward move of an algorithm needs this extra

level of indirection since the order in which future variables are accessed might be

di�erent from a order in which they were previously used�

Information needed for the backward move of an algorithm can be stored at a

speci�c node in the search tree� When the algorithm backtracks this information is

lost� The information needed for the forward move of an algorithm however� needs

to be stored at a speci�c variable� regardless of the node in the search tree where

this variable gets instantiated�

The information that is contained in the bookkeeping of the di�erent algorithms

should always pertain to nodes and not to variables� In FCvar for example� it is

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Backward move

Forward move

Use next or nextFC function

Bookkeeping needs extra indirection

(BJ, CBJ)

(BM, FC)

Current C-matrix, trivial function and solution need extra indirection

Bookkeeping does not need extra indirection

Figure ���� Use of extra indirection

important to know that node � pruned some values from the domain of VDog so

that these values can be restored if the algorithm backtracks across this node� It is

not of importance to know exactly which variable did the pruning�

��� Standard Algorithms with Variable Reorder

ing

Most research in this area focuses on the use of variable reordering for Backtracking

and Forward Checking� Backtracking is frequently used because it is a standard

algorithm for which complexity formulas can be derived� This enables us to compare

the behavior of simple Backtracking with Backtracking that uses a certain heuristics

analytically� Forward Checking has been the object of study� because it is one of

the best algorithm known and its rather simple structure lends itself well for the

incorporation of heuristics�

Introducing variable reordering into algorithms with a standard forward move

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

such as BT� BJ and CBJ is fairly straightforward because the heuristic does not

interfere with their backtrack or backjump structures� The jump place�array in

BJ and the con�icts�array in CBJ only hold information about the past for the

previous and the current variables� As soon as a backjump is made all information

regarding uninstantiated variables is lost� In BM and FC� the algorithms with a

more informed forward move� variable reordering does interfere more directly with

the stored information about the future� When one of these algorithms backtracks

up one branch of a search tree and then moves forward again down another branch

the ordering of the variables in the branch is likely to have changed� Therefore we

have to be more cautious that the information about the future is not disturbed

when chosing another ordering� Special care has to be given to the boundaries of

the di�erent loops that are used in the algorithms to restore part of the bookkeeping

information when a backtrack occurs� We have to make sure that only instantiated

variables get accessed through the ins structure� uninstantiated variables have to

be dealt with directly�

In the following discussion of the di�erent algorithms with variable reordering

heuristics the emphasis will be on the changes that have to be made on those

algorithms as compared to their originals� These changes are both indicated in the

code segments and explaned in the accompanying text� Auxiliary function that do

not need any changes are omitted and the reader is referred to the previous chapter

to �nd their de�nitions�

The notion of the transformation rules given in the previous section should be

su�cient to follow the process of incorporating variable reordering heuristics in

the given algorithms� Especially in the more complex algorithms like BM�CBJ

and FC�CBJ intuitive reasoning about how to include these heuristics gets rather

complicated� Strictly following the rules however� leads to correct new algorithms�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

����� Backtracking with Variable Reordering �BTvar�

The consistent function changes in two places� Firstly� the trivial function now has

to access the variables through the ins�array� It is no longer important if variable

current has a trivial constraint with variable i� but if the variable that was selected

as number current in the instantiation order has a trivial constraint with variable i

in that same order� Secondly� the constraint checks performed by accessing the C�

array now have to use the same indirection� ins	current
 has to be checked against

ins	i
� The values for these two instantiations are kept in solution	ins	current

 and

solution	ins	i

� instead of in solution	current
 and solution	i
� Since Backtracking

checks the consistency of the current variable with all the past variables we have

to use as precondition for this function that ins is de�ned for � � i � current�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

for �i �
 �	 i � current	 i� �

if �trivial�ins�current��ins�i��� continue	 �� extra indirection ��

checks �
 checks �	

if �C�ins�current���ins�i�� �� extra indirection ��

�solution�ins�current����solution�ins�i���
 ��

return���	

�

return���	

�

The function next is used to select the variable that will be instantiated next� this

is done by counting the number of values left in the domains of the uninstantiated

variables and returning the variable with the least number of values left� Ties are

broken in favor of the chronological order� if variable i and j both have the same

domain size then i will be selected if i � j� To determine if a variable is still

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

uninstantiated the function in ins is used� this function checks if a certain variable

appears in the list of instantiated variables� The search for the lowest number of

values is terminated as soon as a variable with zero remaining values has been found

or when all possible values have been counted� Counting the values for a speci�c

variable can be terminated as soon as its number is greater than the minimum

found thus far� Special �ags could be used to indicate the fact that a variable

with one value or a variable with zero values left has been sighted� but in order to

preserve as much of the original algorithms as possible this was not implemented�

Instead next will just return that speci�c variable and leave it to the search routine

to instantiate it with its only value or detect the dead�end�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function next �C�ins�solution�var�nvars�k�

NETWORK C	

int ins�N�	

SOLUTION solution	

int var�nvars�k	

� int count�i�j�l�max�nt�failed	

min �
 k �	 �� initialize min ��

�� count values for all variables� break off if wipe�out found ��

for �i�
�	 �i �
 nvars� and �min �� ��	i� �

if �not in�ins�i�ins�var�� � �� not yet instantiated ��

count �
 �	

�� check all their values� break off if count�min ��

for �j�
�	�j�
k� and �count�min�	j� �

if �C�i��i��j��j�
 �� failed �
 true	 �� in the domain ��

else failed �
 false	

�� check against instantiated variables ��

for �l�
�	 l �
 var and not failed	l� �

checks �
 checks �	 �� count this as a check ��

if �not C�i��ins�l���j��solution�ins�l����

failed �
 true	 �� not consistent ��

else failed �
 false	 �� consistent ��

if �not failed�

count �
 count �	� �� another value left for this var ��

if �count � min� � �� is the count smaller than the minimum ��

min �
 count	 �� record the new min ��

nt �
 i	 � � � �� set nt to number of this variable ��

return�nt�	 �� return variable with fewest values left ��

�

The main BT function will only have a few minor changes� In the initialization

the �rst variable that will be instantiated has to be selected� As in all the algorithms

that will be discussed here this will turn out to be the variable with the smallest

initial domain� The domain check and the value assignment have to be made on

ins	current
 instead of on current and to determine the next variable the function

next has to be called�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function BTvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i	

if �current
 �� �

ins��� �
 next�C�ins�solution���n�k�	 �� select first variable ��

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return���	�

for �i �
 �	 i �
 k	 i� �

�� check domain of ins�current� instead of current ��

if �C�ins�current���ins�current���i��i�
 �� continue	

solution�ins�current�� �
 i	 �� assign value to ins�current� ��

if �consistent�C� solution� current�� �

�� select the next variable ��

ins�current �� �
 next�C�ins�solution�current�n�k�	

if �BTvar�C� n� k� solution� current �� number� found��

return���	 � �

return���	

�

In Figure ��� an example is shown of BTvar� The �rst two variables that get

instantiated are VNorwegian and VMilk because these variables only have one value in

their domain due to constraints � and ��� �Milk is drunk in the middle house� and

�The Norwegian lives in the �rst house on the left�� The ordering of variables with

equal domain sizes is based on the underlying chronological ordering and therefore

VNorwegian is used before VMilk� VBlue is instantiated next as it only has one possible

value left due to the instantiation of VNorwegian� since constraint �� states that� �The

Norwegian lives next to the Blue house�� VRed� VIvory and VY ellow are the logical

next steps on the leftmost path of the shown search tree� When the algorithm

backtracks to VIvory� and assigns value � to the variable� VGreen is chosen as next

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

VRed = 1

V

V

Norwegian = 1

Milk = 3

VBlue = 2

VIvory = 3,4

VGreen = 5VYellow = 4Different order! current

past

Conflicts

Figure ���� BTvar scenario

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

variable instead of VY ellow because it only has one possible value left as a result of

constraint �� �The Green house is to the right of the Ivory house�� The di�erent

ordering does not pose any problems since BTvar uses only a primitive kind of

forward move�

����� Backjumping with Variable Reordering �BJvar�

The consistent function in BJvar is not very di�erent from the one in simple BJ�

Again� only the trivial function and the constraint matrix C get an extra level

of indirection� The jump place�array does not need this indirection because it

only has information about the past and this information will not change as a

result of the variable reordering� The meaning of this array does change however�

jump place	current
 is no longer a reference to the deepest variable with which

the current variable had a con�ict� but to the deepest instantiation with which the

current instantiation had a con�ict�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

for �i �
 �	 i � current	 i� �

if �trivial�ins�current��ins�i��� continue	 �� extra indirection ��

checks �
 checks �	

if �C�ins�current���ins�i�� �� extra indirection ��

�solution�ins�current����solution�ins�i���
 �� �

if �i � jump�place�current��

jump�place�current� �
 i	

return���	 � �

jump�place�current� �
 current � �	

return���	

�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

The code of BJvar is very similar to BJ except for the same changes that were

discussed for BTvar� the initialization of the �rst variable� the extra indirection for

the constraint matrix and a call to the next function�

Function BJvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump	

if �current
 �� �

clear�setup�n�	

ins��� �
 next�C�ins�solution���n�k�	 �� select first variable ��

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if�number
 �� return���	

else return�n�	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
�� �� extra indirection ��

continue	

solution�ins�current�� �
 i	 �� extra indirection ��

if �consistent�C� solution� current�� �

�� select the next variable ��

ins�current �� �
 next�C�ins�solution�current�n�k�	

jump �
 BJvar�C� n� k� solution� current �� number� found�	

if �jump �� current�

return�jump�	 � �

jump �
 jump�place�current�	

for �i�
jump�	 i �
 current	 i��

jump�place�i� �
 �	�

return�jump�	

�

Unfortunately BJvar will not o�er any improvements over BTvar� BJ was an

improvement of BT because it had the ability to jump back to the deepest node i

that was checked against when a domain wipe�out occured at the current node j�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

VRed = 1

V

V

Norwegian = 1

Milk = 3

VBlue = 2

V

VYellow = 4 current

past

Conflicts

Ivory = 3,4,5

VGreen = ?

Domain wipe out detected instantly,

backstep

no backjump but a backstep!

Figure ���� BJvar scenario

thus jumping back to the cause of the con�ict� This prevented the algorithm from

searching the subtree between i and j� As long as i is instantiated with its current

value this subtree was not going to give a solution because the search would fail

again as soon as the domain wipe�out at j occured again� In BJvar such backjumps

will not occur� because if the current instantiation of i wipes out the last remaining

values in the domain of future variable j� the heuristic will choose this variable as

the one to be instantiated next� The search will fail and the backjump will only

consist of a backstep to the previous node and therefore not o�er any improvements

over BTvar�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

An example of this behaviour is shown in Figure ���� When VIvory is instantiated

with value � the domain of VGreen is wiped out� The next function notices this and

returns this variable as the one to be instantiated next� The search will fail and

the algorithm will step back to VIvory � The resulting graph is identical to the one

in Figure ��� as predicted�

����� CBJ with Variable Reordering �CBJvar�

Since CBJ also only keeps information about the past there is no interference with

the variable reordering heuristic� In fact union conflicts and empty conflicts are

exactly the same as in the original algorithm and the consistent function only needs

minor changes�

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

for �i �
 �	 i � current	 i� �

if �trivial�ins�current��ins�i��� continue	 �� extra indirection ��

checks �
 checks �	

if �C�ins�current���ins�i�� �� extra indirection ��

�solution�ins�current����solution�ins�i���
 �� �

conflicts�current��i� �
 �	

if �conflicts�current��current� � i�

conflicts�current��current� �
 i	

return���	 � �

return���	

�

The main function for CBJvar is almost identical to the one for CBJ and only

in a few places do we need an extra level of indirection�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function CBJvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump� curr	

curr �
 count	

if �current
 �� �

clear�setup�n�	

ins��� �
 next�C�ins�solution���n�k�	 �� select first variable ��

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return�n�	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 ���� extra indirection ��

continue	

solution�ins�current�� �
 i	

if �consistent�C� solution� current�� �

�� selct next variable ��

ins�current �� �
 next�C�ins�solution�current�n�k�	

jump �
 CBJvar�C� n� k� solution� current �� number� found�	

if �jump �� current��

return�jump�	� � �

if �curr
 count � jump �
 conflicts�current��current�	

else jump �
 current � �	

union�conflicts�jump� current�	

empty�conflicts�jump� current�	

return�jump�	

�

In contrast to BJvar� variable reordering heuristics can be used with hybrids

involving CBJ because CBJ records the set of past nodes that failed consistency

test with the current node� When a domain wipe�out occurs at the current node

the initial scenario will be the same as described for BJvar� the node that pruned

the last remaining values from the domain of the current node will be the previous

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

VYellow = 5

VKools=5

VHorse = 4

Ivory = ?V VTea = ?

VGreen = 1,2,3,4,5

V

Backstep

Backjump

Lucky = 4

Figure ���� CBJvar scenario

node� and therefore only a backstep will occur� However� when all the values of

the previous node have been tried a real backjump can occur to the deepest node

in the union of the con�ict sets of the two nodes� This backjump will prune a part

of the search�tree and thus prevent performing some unnecessary checks� Some of

the advantages of the CBJ backward move are therefore preserved under variable

reordering�

Figure ��� shows an example of this behaviour� Instantiations of VIvory and

VTea both fail due to con�icts with earlier variables� When all the values for VGreen

are tried the algorithm backjumps to VY ellow since this is the deepest variable with

which VGreen had a con�ict�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

����	 Backmarking with Variable Reordering �BMvar�

In 	�
 Prosser claims that Backmarking cannot exploit heuristic knowledge during

the search process because it requires a static order of instantiation in order to

maintain the integrity of its search knowledge �arrays mcl and mbl� This would

suggest that BM� and the BM hybrids� cannot exploit heuristic knowledge during

the search process� Prosser considered this to be a severe limitation on the worth of

these algorithms� But� while incorporating value reordering heuristics in Backmark�

ing might prove to be hard� this is certainly not the case with variable reordering�

In 	�
 Haralick already used variable reordering with Backmarking and Forward

Checking� he presented the results of a comparison between these two algorithms�

although he did not include any actual code�

In order to correctly incorporate variable reordering in the BM algorithm� which

uses a more informed forward move� the search information of the algorithm will

also have to be stored using the extra indirection of the ins structure� Instead of

accessing mbl	i
� we will now have to access mbl	ins	i

� the maximum backup level

of the i�th instantiation� The same indirection has to be used in the mcl structure�

The modi�cations are shown in the consistent function of BMvar�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function consistent�C� solution� current�

NETWORK C	

int current	

SOLUTION solution	

� int i	

�� extra indirection for mbl and mcl ��

if �mcl�ins�current���solution�ins�current��� � mbl�ins�current���

return���	

for �i �
 mbl�ins�current��	 i � current	 i� � �� indirection mbl ��

mcl�ins�current���solution�ins�current����
i	 �� indirection mcl ��

if �trivial�ins�current��ins�i��� continue	

checks �
 checks �	

if �C�ins�current���ins�i�� �� extra indirection ��

�solution�ins�current����solution�ins�i���
 ��

return���	�

return���	

�

The same changes also have to be incorporated in the main function of BMvar�

The mbl structure now has to be accessed by using the ins�array�

The boundaries of the �nal for�loop in which the mbl information is restored

will also have to be changed� In case of a backtrack occurrence the mbl�array would

formerly be updated from current� � to n� Since these boundaries no longer re�ect

the range of uninstantiated variables� this will have to be changed� We cannot use

ins	current� �
 because this value is still unde�ned when the algorithm has reached

current �no variable has been assigned to spot current � � in the ins�array� To

make sure that all uninstantiated variables are reset the algorithm will reset all

mbl	i
 to the maximum of their current value and current � �� Since none of the

instantiated variables will have a mbl with a higher value it is guaranteed that no

search knowledge about those variables will be disturbed��

�If the in ins function �see Section ����� is used the results are exactly the same�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function BMvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i	

if �current
 �� �

clear�setup�n� k�	

ins��� �
 next�C�ins�solution���n�k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return���	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 �� continue	

solution�ins�current�� �
 i	

if �consistent�C� solution� current���

ins�current �� �
 next�C�ins�solution�current�n�k�	

if �BMvar�C� n� k� solution� current �� number� found��

return���	 � �

mbl�ins�current�� �
 current � �	 �� extra indirection mbl ��

for �i �
 �	 i �
 n	 i� �� new boundaries for�loop ��

if �mbl�i� � current � ��

mbl�i� �
 current � �	

return���	

�

In Figure ��� a BMvar scenario is shown� When the algorithm arrives at VGreen

for the �rst time values �� �� � and � are found to be inconsistent with respectively

VRed� VBlue� VIvory and VY ellow� This information is stored in the mcl structure and

the algorithm continues until a dead end or a solution is found� When a backtrack

to VIvory occurs the order of the instantiation changes because VGreen now only has

a single value left in its domain� By comparing the minimum backup level mbl with

the values in the mcl structure the algorithm can make the two kinds of savings�

From this example we can see that the search information should be kept with

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

VRed = 1

VGreen = 5

VGreen = 5

VYellow = 4

1

2

3

4

5

6

7

mcl[Green][1] = 4

mcl[Green][3] = 5
mcl[Green][2] = 3

mcl[Green][5] = 6
mcl[Green][4] = 6

mbl[Green] = 5

V

V

Norwegian = 1

Milk = 3

VBlue = 2

VIvory = 3,4

Information should be kept at
variables, not a nodes!

Information should contain
nodes, not variables!

BM savings, case 1

BM savings, case 2

Figure ���� BMvar scenario

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

the variable� not with the nodes� This means that this information should be

accessed through the ins structure� This information itself should contain nodes

and not variables� If you compare this �gure to Figure ��� the di�erences in the

stored information can also be seen� In BM the mcl and mbl structures refered to

speci�c variables� in BMvar they refer to nodes�

����
 FC with Variable Reordering �FCvar�

Algorithms that involve Forward Checking can make use of a slightly di�erent next

function called nextFC� In FC algorithms there is no need to check the consistency

of any of the remaining values of the current variable because inconsistent values

where pruned in earlier processing� This advantage of FC algorithms over non�

FC algorithms is the main contributer to a larger increase in performance from

variable reordering for these algorithms� Haralick already stated that variable rear�

rangement improves forward checking more than backmarking because it has more

information about the future 	�
�

The FCnext function is very similar to the original next function except for the

absence of consistency checks and the use of the domains�structure to check if a

domain value has been pruned earlier�

The checking�array in FC records the variables from which a particular variable

prunes values� If checking	i
	j
 was equal to one in the original FC algorithm this

meant that variable i pruned values from variable j�s domain and if domains	j
	l

was equal to i this meant that variable i pruned value l from variable j� In FCvar

however� the algorithm forward checks an instantiation� which could be any variable�

against all the future variables� So the �rst index in the checking�array needs an

extra level of indirection and is changed to ins	i
� Note that this indirection can not

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

be used for the second index because this index refers to an as yet uninstantiated

variable�

Function nextFC �C�ins�domains�var�nvars�k�

NETWORK C	

int ins�N�	

int domains�N��K�� var�nvars�k	

� int count�i�j�l�m�nt�failed	

min �
 k �	 �� initialize min ��

�� count values for all variables� break off if wipe�out found ��

for�i�
�	 �i �
 nvars� and �min �� ��	i� �

if �not in�ins�i�ins�var�� � �� not yet instantiated ��

count �
 �	

�� check all their values� break off if count�min ��

for �j�
�	 �j �
 k� and �count � min�	j� �

if �C�i��i��j��j�
 �� failed �
 true	 �� in the domain ��

else failed �
 false	

if ��domains�i��j�
 �� and not failed� �� not pruned ��

count �
 count �	� �� another value left for this var��

if �count � min� � �� is the count smaller than the minimum ��

min �
 count	 �� record the new min ��

nt �
 i	� � � �� set nt to number of this variable ��

return�nt�	 �� return variable with fewest values left ��

�

Function check�forward�C� k� i� j� value�

NETWORK C	

int k� i� j� value	

� int m� old�count� delete�count	

old�count �
 �� delete�count �
 �	

for �m �
 �	 m �
 k	 n�

if �C�j��j��m��m� and domains�j��m�
 �� �

old�count �
 old�count �	

checks �
 checks �	

if �C�ins�i���j��value��m�
 �� � �� indirection first index ��

domains�j��m� �
 i	

delete�count �
 delete�count �	 � �

if �delete�count�

checking�ins�i���j� �
 �	 �� indirection first index ��

return�old�count � delete�count�	

�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

In the restore function the algorithm can no longer assume that the variables

i � � to n are uninstantiated and therefore all the variables have to be checked�

This changes the boundaries of the for�loop now to � and n� The auxiliary function

in ins�j� ins� i checks if variable j is present in the list of instantiated variables� If

this is not the case and values from the domain of this variable where pruned by i

then these values are restored�

Function restore�i� n� k�

int i� n� k	

� int j� l	

for �j �
 �	 j �
 n	 j� �� new boundaries ��

if �not in�ins�j�ins�i� and �� �not instantiated� check ��

�checking�ins�i���j��� �

checking�ins�i���j� �
 �	 �� indirection first index ��

for �l �
 �	 l �
 k	 l�

if �domains�j��l�
 i�

domains�j��l� �
 �	 �

�

The same explanation holds for the consistent function� The boundaries of the

for loop change and an extra check is included to make sure that the algorithm

does not forward check against already instantiated variables�

Function consistent�C� n� k� current� value�

NETWORK C	

int n� k� current� value	

� int i	

for �i �
 �	 i �
 n	 i� � �� new boundaries ��

if �trivial�ins�current��i�� continue	

if �not in�ins�i�ins�current� �� �not instantiated� check ��

if �check�forward�C� k� current� i� value�
 ��

return���	 �

return���	

�

The main FCvar function does not need any changes beside the obvious ones�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function FCvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i	

if �current
 �� �

clear�setup�n� k�	

ins��� �
 nextFC�C�ins�domains���n�k�	 �� first variable ��

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return���	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 � �� extra indirection ��

or domains�ins�current���i�� �� extra indirection ��

continue	

solution�ins�current�� �
 i	 �� extra indirection ��

�� select next variable using nextFC ��

if �consistent�C� n� k� current� solution�ins�current���� �

ins�current �� �
 nextFC�C�ins�domains�current�n�k�	

if �FCvar�C� n� k� solution� current �� number� found��

return���	�

restore�current� n� k�	 �

return���	

�

In the Figure ��� an example of the behaviour of FCvar is shown� When

VNorwegian is instantiated is prunes all but one value from the domain of VBlue

since constraint �� states that �The Norwegian lives next to the Blue house�� Af�

ter the instantiation of VBlue and VMilk� VRed is left with four possible value �� ��

� or �� Value � fails consistency checks since it would wipe out the domain of a

future variable� VEnglishman in this case� as a result of the constraint that states that

�The Englishman lives in the Red house�� This house is already occupied by the

Norwegian�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

VNorwegian = 1

VMilk = 3

V

V

VEnglishman = 3

Yellow = 1,4

V VKools = 1 Kools = 4

VHorse = 2 V

Domain size

1

1

1

4

1

3

1 1

1 2

VBlue = 2

Red = 1,3

Green = 1,5

future wipe out

future wipe out

Figure ���� FCvar scenario

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

The search will continue along the branch with VEnglishman� VY ellow� VKools and

VHorse� and �nd a solution deeper in the tree� When the algorithm backtracks

looking for the next solution and instantiates VY ellow with its next possible value

and new branch will be formed� The ordering in this branch might be di�erent

from the previous one as we see happening in the example� After VKools it is VGreen�

and not VHorse that will be instantiated next� The cause of this change is constraint

��� �The Kools are smoked in the house next to the house with the Fox owner��

A value of � for VKools will eliminate all but one value from the domain of VHorse�

a value of � leaves two possible domain values� and since VGreen appears earlier in

the chronological ordering it will be selected �rst��

��� Prosser�s Hybrid Algorithms with Variable

Reordering

Now that variable reordering versions of the �ve traditional CSP algorithms have

been constructed the logical next step is to incorporate this heuristic into Prosser�s

hybrid algorithms� This results in four new algorithms� BMJvar� BM�CBJvar�

FC�BJvar and FC�CBJvar �see Figure ����

As shown in the discussion of the previous �ve algorithms the extra level of

indirection is only needed for algorithms with a more informed forward move� Since

Prosser�s algorithms are hybrid� combining the forward move of one algorithm with

the backward move of another� the extra indirection only has to be incorporated in

the parts of these algorithms related to this forward move�

�VY ellow and VIvory were swapped in the chronological ordering to simplify this example�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

BM

BT

FC

BTvar

BMvar

FCvar
FC-BJ
FC-BJvar

FC-CBJ
FC-CBJvar

BMJ BM-CBJ
BMJvar BM-CBJvar

CBJvar
CBJBJ

BJvar

Go
Forward

Go
Back

Extra indirection

No extra indirection

Figure ���� Variable reordering versions of Prosser�s algorithms

����� Backmarking with Backjumping and Variable Reorder�

ing �BMJvar�

Previously we saw that algorithms with only a forward move need an extra level

of indirection and algorithms with only a backward move do not� Since BMJ is

a combination of BM� representing the forward move� and BJ� representing the

backward move� and the information for these moves is not combined� BMJvar

only needs the extra indirection for its BM part� Because of this the ins�array

is only used in combination with mcl and mbl in the consistent function of this

algorithm�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function consistent�C� solution� current�

NETWORK C	 int current	 SOLUTION solution	

� int i	

�� BM� extra indirection ��

if �mcl�ins�current���solution�ins�current��� � mbl�ins�current���

return���	

�� BM� extra indirection ��

for �i �
 mbl�ins�current��	 i � current	 i� �

�� BM� extra indirection ��

mcl�ins�current���solution�ins�current��� �
 i	

if �trivial�ins�current��ins�i��� continue	

checks �
 checks �	

if �C�ins�current���ins�i��

�solution�ins�current����solution�ins�i���
 �� �

if �i � jump�place�current�� �� BJ� no indirection ��

jump�place�current� �
 i	 �� BJ� no indirection ��

return���	 � �

jump�place�current� �
 current � �	 �� BJ� no indirection ��

return���	

�

In the main function of BMJvar the information for both moves has to be

restored when a backtrack occurs� As in BJvar restoring the jump place�array

does not give any problems and as in BMvar the boundaries for the for�loop in

which mbl is restored need to be changed� The rest of the function is similar to the

original BMJ function� except for the obvious changes�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function BMJvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump	

if �current
 �� �

clear�setup�n� k�	

ins��� �
 next�C�ins�solution���n�k�	 �� select first variable ��

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return�n�	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 ���� extra indirection ��

continue	

solution�ins�current�� �
 i	 �� extra indirection ��

if �consistent�C� solution� current�� �

�� select next variable ��

ins�current �� �
 next�C�ins�solution�current�n�k�	

jump �
 BMJvar�C� n� k� solution� current �� number� found�	

if �jump �� current�

return�jump�	 � �

jump �
 jump�place�current�	

mbl�ins�current�� �
 jump	

for �i �
 � 	 i �
 n	 i� �� BM� boundaries changed ��

if �mbl�i� � jump� mbl�i� �
 jump	

for �i �
 jump�	 i �
 current	 i� �� BJ� boundaries unchanged ��

jump�place�i� �
 �	

return�jump�	

�

BMJvar shows no improvements over BMvar just like BJvar shows improve�

ments over BTvar� The variable reordering heuristic eliminates the usefulness of

Backjumping because the heuristic will select a variable with an empty domain

to be instantiated next� There will not be any instances where the source of a

con�ict is more than one position earlier in the search�tree and therefore all the

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

backjumps will be backsteps� In Figure ��� the equivalence of BTvar�BJvar and

BMvar�BMJvar is indicated by grouping them in the two small boxes�

����� Backmarking with Con�ict�Directed Backjumping and

Variable Reordering �BM�CBJvar�

The union conflicts and empty conflicts functions in BM�CBJ only involve infor�

mation from the CBJ part of the algorithm and therefore they remain unchanged

in BM�CBJvar�

Function consistent�C� solution� current�

NETWORK C	 int current	 SOLUTION solution	

� int i	

�� BM� everywhere extra indirection for mcl and mbl ��

if �mcl�ins�current���solution�ins�current��� � mbl�ins�current��� �

conflicts�current��mcl�ins�current���solution�ins�current���� �
 �	

if �conflicts�current��current� �

mcl�ins�current���solution�ins�current����

conflicts�current��current� �

mcl�ins�current���solution�ins�current���	

return���	�

for �i �
 mbl�ins�current��	 i � current	 i� �

mcl�ins�current���solution�ins�current��� �
 i	

if �trivial�ins�current��ins�i��� continue	

checks �
 checks �	

if �C�ins�current���ins�i��

�solution�ins�current����solution�ins�i���
 ���

conflicts�current��i� �
 �	 �� CBJ� no change� ��

if �conflicts�current��current� � i�

conflicts�current��current� �
 i	

return���	 � �

return���	

�

The consistent function does change since it also uses information from the BM

part of the algorithm� The mbl and mcl arrays get an extra level of indirection

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

because they hold BM information� the con�icts�array does not change because it

holds information for CBJ�

Function BM�CBJvar�C� n� k� solution� current� number� found�

NETWORK C	 int n� k� current� number� �found	 SOLUTION solution	

� int i�j� jump� curr	

curr �
 count	

if �current
 �� �

clear�setup�n� k�	

ins��� �
 next�C�ins�solution���n�k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return�n�	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 �� continue	

solution�ins�current�� �
 i	

if �consistent�C� solution� current�� �

ins�current �� �
 next�C�ins�solution�current�n�k�	

jump �
 BM�CBJvar�C� n� k� solution� current�� number� found�	

if �jump �� current��

return�jump�	� � �

if �curr
 count� jump �
 conflicts�current��current�	

else jump �
 current � �	

mbl�ins�current�� �
 jump	 �� BM� extra indirection ��

union�conflicts�jump� current�	

for �i �
 �	 i �
 n	 i� �� BM� boundaries changed ��

if �mbl�i� � jump� mbl�i� �
 jump	

empty�conflicts�jump� current�	

return�jump�	

�

The main function of BM�CBJvar is again very similar to BM�CBJ� Just like in

previous algorithms with a combination of BM and variable reordering the bound�

aries on the �nal for�loop have to be changed to ensure that all elements of mbl are

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

updated correctly�

����� Forward Checking with Backjumping and Variable

Reordering �FC�BJvar�

The check forward and restore functions of FC�BJvar are the same as those for

FCvar since they only deal with the FC part of the algorithm� The consistent

function is changed the same way the FCvar consistent function changed� the

boundaries of the for�loop are changed and an extra test is included to make sure

that the variable that is forward�checked against is not already instantiated�

Function consistent�C� n� k� current� value�

NETWORK C	

int n� k� current� value	

� int i	

for �i �
 �	 i �
 n	 i� � �� FC� boundaries changed ��

if �trivial�ins�current��i�� continue	

if �not in�ins�i�ins�current�� �� not already instantiated ��

if �check�forward�C� k� current� i� value�
 ��

return�i�	�

jump�place�current� �
 current � �	

return���	

�

The main function of FC�BJ is changed in the same way� The con�icts�array�

belonging to the FC part of the algorithm� gets an extra level of indirection for

its �rst index� The jump place�array does not change since it belongs to the BJ

part of the algorithm� The boundaries of the for�loops in this function do not have

to be changed because they deal with past variables� from � to current which are

guaranteed to be represented in the ins�array�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function FC�BJvar �C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� j� jump� fail	

if �current
 �� �

clear�setup�n� k�	

ins��� �
 nextFC�C�ins�domains���n�k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return �n�	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 � or

domains�ins�current���i�� continue	

solution�ins�current�� �
 i	

fail �
 consistent�C� n� k� current� solution�ins�current���	

if �not fail� �

ins�current �� �
 nextFC�C�ins�domains�current�n�k�	

jump �
 FC�BJvar�C� n� k� solution� current �� number� found�	

if �jump �� current� return�jump�	 �

restore�current� n� k�	

if �fail�

for �j �
 �	 j � current	 j�

if �checking�ins�j���fail� and jump�place�current� � j�

jump�place�current� �
 j	 �

jump �
 jump�place�current�	

for �i �
 �	 i �
 current	 i�

if �checking�ins�i���ins�current�� and jump � i�

jump �
 i	

for �i �
 current	 i � jump	 i��� �

jump�place�i� �
 �	

restore�i� n� k�	�

return�jump�	

�

In contrast to the equality of BMJvar and BMvar� Forward Checking with Back�

jumping and variable reordering �FC�BJvar does have some� albeit limited� bene�ts

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

over FCvar because in this algorithm the backjump information is used in a di�er�

ent way� The jump place�array is updated when a wipe�out has occurred in the

future and its information is then used to jump back to the cause of the con�ict

�see Figure ����

����	 Forward Checking with Con�ict�Directed Backjump�

ing and Variable Reordering �FC�CBJvar��

The union conflicts and empty conflicts functions do not change since they only

handle information from the FC part of the algorithm� The functions check forward�

restore and consistent are the same as in FCvar for the same reasons� The main

function is changed in the usual way� the checking�array gets an extra level of

indirection for its �rst index and the trivial changes are make to the C�matrix�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Function FC�CBJvar�C� n� k� solution� current� number� found�

NETWORK C	

int n� k� current� number� �found	

SOLUTION solution	

� int i� jump� fail� curr	

curr �
 count	

if �current
 �� �

clear�setup�n� k�	

ins��� �
 nextFC�C�ins�domains���n�k�	

�found �
 �	�

else if �current � n� �

process�solution�C� n� solution�	

�found �
 �	

count �
 count �	

if �number
 �� return���	

else return �n�	�

for �i �
 �	 i �
 k	 i� �

if �C�ins�current���ins�current���i��i�
 � or

domains�ins�current���i�� continue	

solution�ins�current�� �
 i	

fail �
 consistent�C� n� k� current� solution�ins�current���	

if �not fail� �

ins�current �� �
 nextFC�C�ins�domains�current�n�k�	

jump �
 FC�CBJvar�C� n� k� solution� current�� number� found�	

if �jump �� current� return�jump�	 �

if �fail� union�checking�current� fail�	

restore�current� n� k�	�

if �curr
 count� �

jump �
 �	

for �i �
 �	 i � current	 i�

if �conflicts�current��i�� jump �
 i	

for �i �
 jump �	 i � current	 i�

if �checking�ins�i���ins�current��� jump �
 i	 �

else jump �
 current � �	

union�checking�current� current�	

union�conflicts�jump� current�	

for �i �
 current	 i � jump	 i��� �

empty�conflicts�i�	

restore�i� n� k�	�

restore�jump� n� k�	

return�jump�	

�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

The union checking function combines the information from the con�icts�array�

from the CBJ part of the algorithm� with the checking�array of the FC part� Be�

cause this function is called with two di�erent sets of parameters� �current�fail� and

�current�current� a few additional changes have to be made to the original version�

If the function is called with �current�fail� the second parameter represents a vari�

able that is not yet instantiated� If it is called with �current�current� the second

parameter represent a variable that is instantiated and thus has to be accessed

through the ins�array�

Function union�checking�i�j�

int i� j	

� int m	

if �not in�ins�j�ins�i�� � �� is second parameter instantiated � ��

for �m �
 �	 m � i	 n�

�� j is not instantiated ��

conflicts�i��m� �
 conflicts�i��m� or checking�ins�m���j�	�

else �

for �m �
 �	 m � i	 n�

�� j is instantiated ��

conflicts�i��m� �
 conflicts�i��m� or checking�ins�m���ins�j��	�

�

��� Other heuristics

��	�� Value Reordering

Another heuristic that could be used to improve CSP algorithms is value reordering�

A value reordering heuristics selects the value from a variables domain that should

be used for the instantiation of the current variable� Some values will be more

restrictive for the future search than others and thus result in di�erent search�

trees� One heuristic attempts to select the value that least restricts the future

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

search� This way there will be a greater chance of �nding a solution on the current

search�path�

Value reordering is only useful when we are looking for the �rst k solutions to

a CSP� If we are looking for all solutions then all values for a particular variable

will have to be checked� which makes the ordering of the values unnecessary� The

same holds for a CSP that does not have any solutions� in order to determine this

the entire tree will have to be searched and value reordering does not have any

advantages� These two disadvantages pose a severe restriction on the use of value

reordering heuristics�

In 	�
 Kal e uses value rearrangement together with variable rearrangement to

�nd solutions for the n�Queens problem for all values of n from � to ����� This

heuristic appears to be almost perfect in the sense that it �nds a �rst solution

without any backtracks in most cases�

For value ordering heuristics we can again use both global and local orderings�

A global ordering is an ordering of the variables before the search starts and a local

ordering is an ordering that takes place during the search� A local value ordering is

not necessarily better than a global ordering� In the n�Queens problem for instance

we can use a very simple global ordering by instantiating the variables from �the

inside out�� This implies that we try values in the middle of a row �rst and then

move outward to the edges of the board� This heuristic works a lot better than one

level local value reordering in simple Backtracking because a local heuristic returns

the same values for all but the outer two squares� In order to break the ties between

all the identical values a local algorithm will have to look deeper into the search

tree� Because the n�Queens problem is a well�structured problem we can tell in

advance which ordering will result from this� �the inside out� order�

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

2 23333

2 22 233

22 2 2 2 2

22 22 11

1 2 3 4 5 6

1

2

3

4

5

6

Total

Number of restricted fields

current

10

12

14

16

Bottom up
Constraint checking

Figure ���� Global Constraint Reordering

��	�� Constraint Reordering

The order in which the constraints are checked can also have great impact on the

performance of the algorithm� If a new variable i in instantiated only a subset of the

total set of constraints has to be checked� this set contains only those constraints

that involve the newly instantiated variable� As soon as one of these constraints in

this subset is violated we know that we can abandon the current search path due

to the nature of our search� To improve the search we therefore desire to �nd a

con�icting constraint as early as possible� This approach leads us to an order in

which the most rigid constraints are checked �rst� The checking order can again be

determined globally or locally� Although the actual constraints do not change the

subset relevant to the instantiated variables does�

A good global ordering in the n�Queens problem would for example be to check

the constraints �bottom�up� �assuming a top�down instantiation of the rows start�

ing from the previous row� A Queen that is placed close to the current row con�

straints the possible values for this row more than a Queen that is placed further

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

away from it� A Queen in an adjacent row gives � � �n � � � � � � possible con�

�icts� the two corner squares each restrain two squares� the n� � other placements

each result in � possible con�icts� The general formula for the number of possible

con�icts is �n� �i��j with j � i� this formula decreases when i and j are further

apart �Figure ����

��� Summary

If we include the variable reordering versions of the algorithms into our summary

we get table ����

CHAPTER �� VARIABLE REORDERING HEURISTICS ��

Algorithm forward move backward move next variable

BT check against all past variables previous variable chronological

BJ check against all past variables single jump back chronological

CBJ check against all past variables multiple jumps back chronological

BM perform only new checks previous variable chronological

FC prune future variables previous variable chronological

BMJ perform only new checks single jump back chronological

BM�CBJ perform only new checks multiple jumps back chronological

FC�BJ prune future variables single jump back chronological

FC�CBJ prune future variables multiple jumps back chronological

BTvar check against all past variables previous variable least values

BJvar check against all past variables single jump back least values

CBJvar check against all past variables multiple jumps back least values

BMvar perform only new checks previous variable least values

FCvar prune future variables previous variable least values

BMJvar perform only new checks single jump back least values

BM�CBJvar perform only new checks multiple jumps back least values

FC�BJvar prune future variables single jump back least values

FC�CBJvar prune future variables multiple jumps back least values

Table ���� Summary of all algorithms

Chapter �

Results

��� Estimating the cost of CSP algorithms

To estimate the cost of a speci�c instance of a backtrack search tree we can use

an approach by Knuth 	�
� Instead of giving a mathematical formula Knuth uses

a Monte Carlo approach to predict the number of nodes in a search tree when

looking for all solutions� This approach is based on a random exploration of the

search tree� For each partial solution �v�� � � � � vk for � � k � n a value for vk��

is chosen from among the set of all possible continuations� By taking into account

the number of possibilities at every level that are encounter during the random

walk� an estimate for the total cost of the search can be computed� The expected

value of this computed cost is proven to be equal to the cost of the tree� However�

just knowing that executing the algorithm yields the right expected value is not

very useful in practise� Therefore it is always necessary to use a number of trials

to come up with a reasonable estimate� Purdom gave a number of improvements

on Knuth�s algorithm 	��
� as he found it to be ine�ective in certain cases� His

��

CHAPTER �� RESULTS ��

partial backtracking results in exponential improvements over Knuth�s algorithm

for estimating the tree size� by occasionally following more than one path from a

node� This e�ect is particularly important for trees with a lot of dead�end branches

�slender trees and for tall trees�

The use of this Monte Carlo approach is mathematically well de�ned and this

might suggest that it should also be possible to derive a single closed form for�

mula of the same scope and accuracy� However� such a formula might be rather

useless if its parameterization is not rich enough� The mean performance of the

backtrack algorithm in solving all csp�s with N variables might not be a very infor�

mative number because it ranges over a vast area of problems� from �n�Queens� and

�Zebra�problems� to �instant insanity� and �uncrossed knight tours�� This stands

in contrast to� e�g�� sorting where a one parameter formula is usually su�cient to

describe the average behavior of an algorithm 	�
� Therefore we need more problem

speci�c parameters to distinguish one problem from all the others in the domain

of the algorithm� and the need for computational models arises� Two examples of

these models are�

Model � Purdom and Brown derived an asymptotic expression for the number of

nodes in a tree constructed by a backtracking algorithm that �nds all the

solutions of conjunctive normal form formulas� These formulas range over v

variables with s literals per term and v� terms �� � � � s� The number of

nodes is the backtrack tree will have is then� e��v
�s�����s������

This shows that� since exhaustive search requires time e��v� and �s����s�

� � �� simple backtracking saves an exponential amount of time but still

has exponential complexity� This set of problems had been selected because

���g�n�� � ff�n�
 �c�� c�� n� � �
 � � c�g�n� � f�n� � c�g�n�� �n � n�g

CHAPTER �� RESULTS ��

they lead to a relatively straightforward analysis� However� these problems

are unlike typical problems that are solved by backtracking� Care is therefore

needed in interpreting the results of this analysis 	��
�

Model � Haralick and Elliot 	�
 assume that a given pair of variables with a given

pair of values are consistent with a �xed probability p� where p is independent

of which variables or values have already been used in prior instantiations�

They also assume that each variable has the same number of possible values

M � Using these assumptions they arrive at�

NX

k	�

�Mkp�k����k�����
�� pk��

�� p

for the total estimated number of consistency checks in a BT algorithm�

Unfortunately both models rely heavily on very speci�c assumptions that are

quite restrictive� Since backtracking is the simplest of the algorithms discussed in

this thesis no attempt is made to derive analytical expressions for the more complex

other algorithms� Instead we employ an empirical analysis�

��� Empirical results

	���� Zebra problem

In order to compare the variable reordering versions of the hybrid algorithms with

the originals by Prosser 	�
 we use the same problem he did to obtain our empirical

results� In his paper Prosser uses instances of the Zebra problem �see Section �����

with di�erent bandwidths�

CHAPTER �� RESULTS ��

The bandwidth of a variable v in a constraint graph under an ordering h is the

maximum value of j h�v�h�w j over all variables w connected to v� The bandwidth

of a graph under an ordering is the maximum bandwidth of any variable 	��
� To

get a sizable test set ��� di�erent orderings were used� �� orderings of each of �

di�erent bandwidths between �� and ��� The following results were obtained using

the same orderings Prosser used�

In table ��� the �rst column shows the �� di�erent algorithms that were tested�

The second column shows the total number of consistency checks needed by these

algorithms to �nd the �rst solution for the ��� di�erent orderings of the Zebra

problem and the third column shows Prosser�s results as a comparison� The last

column shows the total number of consistency checks needed to �nd all �� solutions

to the problem�

The �rst observation we can make from table ��� is that the results con�rm that

the author�s recursive algorithms are indeed functionally equivalent to Prosser�s

non�recursive algorithms� since they result in exactly the same number of average

checks over ��� problems� Furthermore� it also con�rms the earlier claim that

BTvar and BJvar will result in the same number of checks because no backjumps

will occur in a variable reordering version of BJ� The same can be said about BMvar

and BMJvar which also result in the exact same number of checks�

In the table we can also see that all the variable reordering versions of the tree�

search algorithms BT� BJ� CBJ� BM� BMJ and BM�CBJ result in approximately the

same number of checks� around ������� Apparently the added value of combining

the forward and backward moves of di�erent algorithms diminishes when variable

reordering heuristics are implemented in these combinations�

As expected the Forward Checking algorithms bene�t the most from the heuris�

CHAPTER �� RESULTS ��

First solution All solutions Ratio

Algorithm van Run Prosser van Run one � all

BT ����������� ��������� 	
�	�
������ ���

BTvar ����	��� 	������	 ��

BJ ��������� ������� �������	�� ���

BJvar ����	��� 	������	 ��

CBJ
���		��
���	� �����	�
��

CBJvar ������� 	��������
��

BM ��
������ ��
���� 	�
����
� ���

BMvar ���	�	� 	�	�����	
��

BMJ 	������� 	����� ���	���� ���

BMJvar ���	�	� 	�	�����	
��

BM�CBJ ������� ����� 	
��		��

��

BM�CBJvar ����
��� 	������
��

FC �������� ������ 	�	����� ��	

FCvar ���� ������� ���

FC�BJ 	
������ 	
���� 	�	������
��

FC�BJvar ����� ������� ���

FC�CBJ 	���
	�� 	���
	
������	
��

FC�CBJvar ����� ����	�� ���

Table ���� Constraint checks� �rst and all solutions

CHAPTER �� RESULTS ��

tic and the di�erence between them and the tree�search algorithms becomes larger�

Although BM�CBJ was better than FC in the original versions� the variable reorder�

ing version FCvar surpassed BM�CBJvar by two orders of magnitude� Furthermore

there seems to be no clear split in the Forward Checking algorithms between FCvar

on one side and FC�BJvar and FC�CBJvar on the other� Just like with the tree�

search algorithms� combining the forward and backward moves of two algorithms

does not seem to pay o��

We can now order the algorithms again according to the average number of

checks they perform on this problem�

BT � BJ � BM � BMJ � CBJ � FC � �BTvar � BJvar � CBJvar � �BMvar �

BMJvar � BM�CBJvar � FC�BJ � FC�CBJ � FCvar � FC�BJvar � FC�CBJvar

There seem to be no signi�cant other observations that can be made by looking

at the number of checks to �nd all solutions� The ordering of the algorithms stays

the same� and the ratio for the di�erence in number of checks to �nd one solution

and to �nd all solutions only ranges from ��� for BM to ��� for BTvar and BJvar�

The only algorithms for which this ratio improves after the variable reordering

heuristic is added are FC�BJ and FC�CBJ� These ratios might prove to be very

problem speci�c� so their value should not be overrated�

Table ��� shows how often one algorithm �row performed better than another

�column in the ��� di�erent problems� Not performing better does not mean per�

forming worse because in many cases the results from two algorithms were exactly

the same� If we compare the table to the one in 	�
 it is again con�rmed that the

author�s algorithms are equivalent to Prosser�s as the tables match each other on

CHAPTER �� RESULTS ��

B
T

B
T

B
J

B
J

C
B
J

C
B
J

B
M

B
M

B
M
J

B
M
J

B
M
�

B
M
�

F
C

F
C

F
C
�

F
C
�

F
C
�

F
C
�

va
r

va
r

va
r

va
r

va
r

C
B
J

C
B
J

v
a
r

B
J

B
J

C
B
J

C
B
J

va
r

va
r

va
r

B
T

�

	

�

	

�

	

�

	

�

	

�

	

�

�

�

�

�

�

B
T
v
a
r

�
�
�

�

�

�

�

�
	

�

�
�
�

�

�

�

�

	
�
�

�

	
�
�

�

	
	
	

�

�

�

B
J

�
�
�

�
	

�

�
	

�

�
	

	
�
�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

B
J
v
a
r

�
�
�

�

�

�

�

�
	

�

�
�
�

�

�

�

�

	
�
�

�

	
�
�

�

	
	
	

�

�

�

C
B
J

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

	
�
�

�

�
�

�

�

�

C
B
J
v
a
r

�
�
�

�
	
	

�

�

�
	
	

�
	

�

�
�
�

	
�

�

�

	
�

	
�
�

�

	
�
�

�

	
	
	

�

�

�

B
M

�
�
�

	
	
�

�
	
�

	
	
�

�
�

	
	
�

�

	
�
�

�
	

	
�
�

�

	
�
�

	
�

�

�

�

�

�

B
M
va
r

�
�
�

�
�
�

�

�

�
�
�

�
	
�

�
�
�

�
�
	

�

�

�

�

	
�
�

	

	
�
�

�

	
	
�

�

�

�

B
M
J

�
�
�

	

�

�
�
�

	

�

	

�

	

�

�
	
�

	

�

	

	

	

�
�

�

�

�

�

B
M
J
v
a
r

�
�
�

�
�
�

�

�

�
�
�

�
	
�

�
�
�

�
�
	

�

�

�

�

	
�
�

	

	
�
�

�

	
	
�

�

�

�

B
M
�C
B
J

�
�
�

�
	
�

�
�
�

�
	
�

�
�
�

�
	
�

�
�
�

�
	
�

�
�
�

�
	
�

�

�
	
�

�
�

	

	
	

�

�
�

�

B
M
�C
B
J
va
r

�
�
�

�
�
�

�

�

�
�
�

�
	
�

�
�
�

�
�
	

	
�
�

�

�

	
�
�

	
�
�

�

	
�
�

�

	
	
�

�

�

�

F
C

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�
	

�
�
�

	

�

�
�
�

�

	

�

	

�

	

F
C
va
r

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�

�

�
�
�

�

F
C
�B
J

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

F
C
�B
J
v
a
r

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�

�

�
�
�

�

F
C
�C
B
J

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�

�
	
�

�
�

�
�
�

�
�
�

�

�

F
C
�C
B
J
va
r

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

	
�

�
�

�
�
�

�

T
ab
le
��
��
H
ow
of
te
n
is
on
e
al
go
ri
th
m
�r
ow

b
et
te
r
th
an
an
ot
h
er
�c
ol
u
m
n

CHAPTER �� RESULTS ��

similar positions� The following conclusions can be made regarding these results�

Tree�search algorithms seem to have a declining rate of outperforming their orig�

inals� The better the original algorithm was� the smaller the chance that its variable

reordering version outperforms the original� The rate ranges from ������� � ��!

for BT to ������� � ��! for BM�CBJ� The mutual di�erences between related

algorithms also seem to get smaller� for example in contrast to the relation between

BMJ and BM�CBJ� BM�CBJvar is not often much better than BMJvar�

The scenario described in Chapter � in which BM outperforms BMJ and BM�

CBJ must be rather rare because both BMJ and BM�CBJ outperform BM in more

than ��! of the cases�

CBJvar only outperforms CBJ in ��� cases� in ��� cases CBJ is better and

there are no cases in which they perform the same� Since CBJvar still outperforms

CBJ in total by a factor of about �� this means that the margin by which CBJvar

outperforms CBJ in those cases must be signi�cantly larger than the margin by

which it performs worse in the other cases� The same can be said about BM�

CBJvar� which only outperforms BM�CBJ in ��� cases and is worse in ��� cases�

However� since the di�erence between the total values of these two algorithms in

table ��� is rather small �only ��!� this is less of a surprise�

The forward checking algorithms with variable reordering show a signi�cantly

larger rate of outperforming their originals� FCvar� FC�BJvar and FC�CBJvar all

perform better then their non�reordering counterparts in more than ��� out of ���

cases� However� FC�BJvar and FC�CBJvar only outperform FCvar in respectively

� and �� cases and in all other cases they perform the same� Similarly FC�CBJvar

is only better than FC�BJvar in � cases and equal in all the others�

CHAPTER �� RESULTS ��

	���� N�Queens problem

The n�Queens problem is often used by researchers in the AI�community as a bench�

mark for their programs because it can be solved by algorithms and heuristics that

are widely applicable in other constraint�based optimization problems very common

to computing practice� The results of the use of a standard problem to compare dif�

ferent CSP�algorithms must be handled with care though because they only re�ect

the behavior of the algorithms in one particular case� The general CSP is a very

richly parameterized problem� and an algorithm that performs well for a problem

like n�Queens with very speci�c characteristics� like N � K and a complete graph

representing its constraint matrix� can perform very di�erently on a problem with

di�erent characteristics�

n�Queens problem� place n�Queens on a n � n chess board in such a way that

neither Queen attacks another one� Since every row can only hold one Queen�

the problem is usually transformed to �nding a position on every row of a

chess board for one Queen without them attacking each other�

Again we can be interested in the �rst� any� or all solutions to the problem�

Two examples of solutions for n � � and n � � are given in Figure ���� the latter

being one of �� possible solutions to this particular problem�

Although �nding one explicit solution to the n�Queens problem can be solved

analytically 	�
� �nding the �rst� any or all solutions cannot� and thus o�ers an

interesting benchmark for search algorithms�

In Figure ��� and ��� the graphs are displayed for the number of checks needed

to �nd the �rst and all solutions to the n�Queens problem� The algorithms used are

CHAPTER �� RESULTS ��

Figure ���� A solution to the n�Queens problem for n�� and n��

the best ones from the previous section� BM�CBJvar� FC� FCvar and FC�CBJvar�

FC�BJvar is not used because it behaves almost identically to FC�CBJvar�

In Figure ��� we can see that FC now performs worse than BM�CBJvar �and very

likely also the other tree�search hybrids based on the number of consistency checks

it needs to �nd the �rst solution� The n�Queens problem has a very dense �complete

constraint matrix and since there are no trivial constraints FC has to forward check

against every other variable� This results in a larger number of consistency checks�

The FC hybrids that were combined with the variable reordering heuristic do remain

faster than the tree�search hybrids� However� there seems to be no important

advantage from the use of hybrid FC algorithms with variable reordering �e�g�� FC�

CBJvar over variable reordering with the standard FC algorithms �FCvar since

the graphs for these two algorithms coincide�

Figure ��� shows that BM CBJvar needs considerably more consistency checks

to �nd all solutions to the n�Queens problems than FC� The advantage it had in

�nding the �rst solution seems to have disappeared� While the overhead of the

FC algorithm proves to be the determining negative factor in the case with the

�rst solution� it pays o� when the search continues for more solutions� FCvar and

CHAPTER �� RESULTS ��

N-queens, first solution

FC

BM-CBJvar

FCvar

FC_CBJvar

checks(log)

#queens2

5

1e+02

2

5

1e+03

2

5

1e+04

2

5

1e+05

2

5

1e+06

2

5

1e+07

2

10.00 20.00 30.00 40.00 50.00

Figure ���� N�Queens� �rst solutions

CHAPTER �� RESULTS ��

N-queens, all solutions

FC

FCvar

FC-CBJvar

BM-CBJvar

checks(log)

#queens
5

1e+02

2

5

1e+03

2

5

1e+04

2

5

1e+05

2

5

1e+06

2

5

1e+07

2

5

1e+08

4.00 6.00 8.00 10.00 12.00

Figure ���� N�Queens� all solutions

CHAPTER �� RESULTS ��

FC�CBJvar coincide again but they form a consistent improvement of performance

over FC�

	���� Random problems

Both the n�Queens and the Zebra problem have a very speci�c structure� In the

n�Queens problem the constraint matrix represents a complete graph� there is a

constraint between every pair of Queens� The Zebra problem also has a very dis�

tinctly shaped graph with variables grouped in �ve hexagons� The variables in

each hexagon are highly constraint among themselves and loosely constraint with

variables from other hexagons �see Figure ���� The third problem used for testing

has therefore a more randomly constructed constraint matrix�

The problem has �� variables �n� each with �� di�erent values �k� The con�

straint matrix was build randomly using two parameters p and q� where p is the

independent probability that a constraint between two variables is not trivial and

q is the independent probability of a � as an entry in a non�trivial constraint�

The results are obtained by taking the average number of checks needed to �nd

the �rst solution in �� problems with a speci�c p and q� Tests are performed for p

and q ranging from � to ��� with step size ��� All problems are guaranteed to have

at least one solution because one solution was put into every matrix in a random

fashion�

The three best algorithms discovered so far were subjected to this test� FCvar�

FC�BJvar� and FC�CBJvar�

FC�CBJvar� FC�BJvar and FCvar demonstrated very similar behavior and since

putting more results in the same graph would make it di�cult to read only a graph

for FC�CBJvar is given� As we can see in Figure ��� �logarithmic the highest

CHAPTER �� RESULTS ��

FC-CBJvar

0

50

100 0

50

100

1
10

100
1000

10000
100000
1e+06
1e+07

p q

checks

Figure ���� Checks for FC�CBJvar

number of checks are needed for problem with p between �� and ��� p and q between

�� and ��� A higher number of checks for a higher value of p is predictable� more

non�trivial constraints lead to more failures and thus to more checks� The same

can be said for the low number of checks for q � �� or q � ���� since these values

of q turn the non�trivial constraints into almost trivial or trivial ones� The peak

at q between �� and �� can be explained by looking at ��q as a cuto� probability�

When q is low a high number of branches in the search tree are cut o� early� When

q grows larger and the cuto� probability decreases it takes the algorithm longer to

identify a branch as being unsuccessful�

In Figure ��� �linear the di�erences are shown between FCvar and FC�BJvar�

The �rst observation we can make is that FCvar never outperforms FC�BJvar� this

corresponds to what we saw in the previous two problems� FC�BJvar outperforms

FCvar in a few cases� especially in the case when p is between �� and ��� and

CHAPTER �� RESULTS ���

"difference FCvar abd FC-BJvar"

0

50

100 0

50

100

0
500
1000
1500
2000
2500
3000
3500
4000

p q

checks

Figure ���� Di�erence between FCvar and FC�BJvar

q ��� This is the area in which all algorithms need the largest number of checks

and these di�cult problems seem to result in relatively larger gains for FC�BJvar�

The di�erences between FC�CBJvar and FC�BJvar are shown in Figure ���

�linear and they are of a larger order than those between FC�BJvar and FCvar

�notice the di�erence in scale on the checks axis� The di�erences between FC�

BJvar and FC�CBJvar also seem to be more scattered although the peak at p � ��

and q � �� is in accordance with what we saw in the previous comparison� the

more complex hybrids perform better on the more di�cult problems� The rest

of the di�erences lie mostly around ��� � p�q � �� Even though the di�erence

between the two algorithms might seem large for these particular problems it still

represents a di�erence of less than �! in the total number of checks�

CHAPTER �� RESULTS ���

differences FC-BJvar and FC-CBJvar

0

50

100 0

50

100

0

10000

20000

30000

40000

50000

p q

checks

Figure ���� Di�erence between FC�BJvar and FC�CBJvar

��� In	uence of Uniform Domain sizes

The loss of e�ectiveness of the hybrid algorithms can possibly be explained by

the uniformity of the domain sizes� The Zebra problem� the n�Queens problem

and the random problems all have variables with �xed domain sizes� The variable

reordering heuristic that was used tends to select variables that have been �ltered

by past variables� This causes the source of a con�ict to be close to its occurence

and therefore the e�ect of the backward move diminishes� When the initial domain

sizes have larger size di�erences the hybrid algorithms might regain some of their

value�

In Figure ��� an example of a problem with non�uniform domain sizes is given in

which FC�CBJvar would retain more of its beni�ts compared to the problems that

were used previously� The large domain of Vm gets wiped out by a combination

of variables that are not located closely together in the search tree� Therefore the

CBJ backward move of the algorithm enables it to jump back using large jumps�

CHAPTER �� RESULTS ���

V i

Vj

Vk

V i Vj Vk

V

Backjump 1

Backjump 2

Backstep

m

Pruned by:

Figure ���� Non�uniform domain sizes

CHAPTER �� RESULTS ���

thus eliminating large sections of the search tree�

��� Conclusions

The major �ndings reported in this thesis are summarized in this �nal section�

Variable reordering heuristics can be implemented in BM algorithms contrary

to what Prosser claimed in 	�
� They can also be included in all of the hybrid

algorithms by Prosser� improving them signi�cantly�

Using one extra level of indirection was shown to be su�cient to incorporate

variable reordering in any of the discussed algorithms� This extra indirection only

has to be used for the current variable and for the part of the algorithm that

performs the forward move� Following this basic rule provides a standard way of

introducing this heuristic in any of the algorithms�

Backjumping as a backward move in a hybrid non�FC algorithm loses its ef�

fectiveness when the variable reordering heuristic is used� Consequently we see

no di�erences in the number of checks performed by Backtracking with variable

reordering �BTvar and Backjumping with variable reordering �BJvar� We can

make the same observation concerning the number of checks performed by Back�

marking with variable reordering �BMvar and Backmark Jumping with variable

reordering �BMJvar� The equality in the number of consistency checks for these

two sets of algorithms indicate that no backjumps occur in the adapted versions�

An explanation for this behavior has been given in the discussion of the various

algorithms in question�

All the tree�search algorithms perform approximately the same number of con�

sistency checks when variable reordering heuristics are added to them� Even the

CHAPTER �� RESULTS ���

hybrid algorithms lose the relative increase of performance they received from com�

bining the forward and backward moves of two algorithms� The forward checking

hybrids show a substantially larger increase in performance than the tree search al�

gorithms but the value of a more complex backward move also diminishes compared

to simple forward checking with variable reordering�

Overall FC�CBJvar turns out to be the best algorithm tested� but FC�BJvar� and

especially FCvar� are good and simpler alternatives that only perform signi�cantly

worse in very hard problem cases�

The in�uence of the uniform domain sizes in the problems that were used can

be considered a major in�uence to the loss of e�ectiveness of the hybrid algorithms�

Although the results of the n�Queens problem are always considered to be of less

importance because of the particular structure of this problem� the Zebra problem

seems to have a more natural structure and is considered to be more representative

of real world problems 	�
�

For future research it might be interesting to look for hybrid algorithms that do

retain the advantage of combining the forward and backward move of two di�erent

algorithms after variable reordering� and that do so even for problems with �xed

domain sizes� The incorporation of value or constraint reordering heuristics� or

any combination of them with variable reordering� in hybrid algorithms might also

produce interesting results� Research into the behaviour of hybrid algorithms with

dynamic variable reordering on problems with variable domain sizes is currently

underway�

Appendix A

Programming conventions

The program�code in this thesis is presented in a C�like syntax with the following

conventions�

� �f� and �g� indicate the begin and the end of a program block�

� A ��� in front of a variable name means that it is a call�by�reference param�

eter� a variable whose value is returned to the calling function�

� ���� means not equal�

� All functions return integers�

� for�i � �� i �� current� i � � represents a for�loop with i going from � to

current in steps of one�

� if �trivial�current�i�� continue� causes the next iteration of the enclosing loop

to begin if the condition trivial�current�i� is true�

� ��� represents False� �� �� represent True�

���

Bibliography

	�
 Ahrens� W�� Mathematische Unterhaltungen und Spiele �In German�� B�G�

Teubner Publishers� Leipzig ���������

	�
 Bitner� J�R� " Reingold� E�M�� Backtrack Programming Techniques�CACM vol�

�� ����� �� �������

	�
 Beek� P� van� CSP C function library� University of Alberta� faculty of Com�

puter Science�

	�
 Gaschnig� J�� A general backtrack algorithm that eliminates most redundant

tests� Proceedings of the international joint conference on arti�cial intelligence�

Cambridge� MA� ����� ���

	�
 Gaschnig� J�� Performance measurement and analysis of certain search algo�

rithms� Ph�D thesis CS department� Carnegie�Mellon university PA� ����

	�
 Haralick R�M� " Elliot G�L�� Increasing tree search e�ciency for constraint

satisfaction problems� AI vol��� ����� �������

	�
 Kal e L�V�� An almost perfect heuristic for the n nonattacking queens problem�

Information processing letters vol��� ����� no���apr �������

	�
 Knuth� D�E�� Estimating the e�ciency of backtrack programs� Math� Comp� ��

����� �������

���

BIBLIOGRAPHY ���

	�
 Prosser� P�� Hybrid algorithms for constraint satisfaction problems� ����� Uni�

versity of Strathclyde� Scotland� Computational Intelligence� vol�� ������

number ��

	��
 Purdom� P�W�� Tree size by partial backtracking� Siam J� Comput� vol�� �����

� �������

	��
 Purdom� P�W�� " Brown� C�A� " Robertson� E�L�� Backtracking with multi�

level dynamic search rearrangement� Acta Inf� vol� �� ����� ������

	��
 Purdom� P�W� " Brown� C�A�� An average time analysis of backtracking� Siam

j� Comput� vol��� ����� ��aug �������

	��
 Purdom� P�W� " Brown� C�A�� An emperical comparison of backtracking algo�

rithms� IEEE PAMI vol�� ����� no���may �������

	��
 Purdom� P�W�� Search rearrangement backtracking and polynomial average

time� AI vol� �� ����� �������

	��
 Purdom� P�W� " Brown� C�A�� An analysis of backtracking with search rear�

rangement� Siam j� Comput� vol��� ����� no���nov �������

	��
 Purdom� P�W� " Brown� C�A�� The analysis of algorithms� Holt� Rinehart and

Winston Inc�� ����

	��
 Rossi� F�� Petrie� C�� Dhar� V�� Equivalence of constraint satisfaction problems�

����� Technical report ACT�AI�������� MCC Corp�� Austin� Texas

	��
 Slagle� J�R�� Arti	cial Intelligence
 The heuristic programming approach�

McGraww�Hill Inc�� ����

BIBLIOGRAPHY ���

	��
 Stone� H�S� " Sipala� P�� The average complexity of depth 	rst search with

backtracking and cuto�� IBM j� res� develp vol��� ����� no���may �������

	��
 Walker� R�L�� An enumerative technique for a class of combinatorial problems�

Combinatorial Analysis �Proceedings of the Symposium on Applied Mathe�

matics� vol� X� American Mathematical Society� Providence RI������� ����

	��
 Zabih� R�� Some applications of graph bandwidth to constraint satisfaction prob�

lems� Proc AAAI ����� vol I� �����

