
A Uniform View of Backtracking

Fahiem Bacchus�

Department. of Computer Science, 6 Kings College Road, University Of Toronto,
Toronto, Ontario, Canada, M5S 1A4, fbacchus@cs.toronto.edu �

Abstract. Backtracking search is a standard mechanism for solving constraint
satisfaction problems (CSPs). Over the years a wide range of improvements of
generic backtracking have been developed. These improvements have employed a
seemingly wide range of insights, each accompanied by its own algorithmic tech-
niques and data structures. In this paper we demonstrate that despite this seeming
variety there is in fact a uniform way of viewing these improvements. In partic-
ular, we demonstrate that different backtracking algorithms can be categorized
by the manner in which they discover, use, and store for future use, no-goods.
This understanding can be used to provide a simplified presentation, a uniform
implementation, and a simple theoretical framework for these algorithms. This
unification also provides us with the appropriate conceptual apparatus to extend
these algorithms in the non-binary case, and to identify new improvements.

1 Introduction

The chronological backtracking algorithm (BT) has a long history [1], and much re-
search has been devoted to improving it. Backtracking algorithms are systematic and
hence they can be used both to demonstrate that a CSP has no solution and as a ba-
sis for branch and bound optimization. For these applications and others backtracking
algorithms are still among the best methods in practice. Hence, achieving a better under-
standing of backtracking so that, e.g., further improvements can be developed, remains
important.

A vast array of improvements to BT have been developed in the literature. [2] made
an important step towards systematizing these improvements by showing that their pro-
cessing can be split into forward and backward phases. The forward phase consists of
the processing performed when a new assignment is made, while the backward phase
consists of the processing performed when backtracking occurs and assignments are
undone. Furthermore, Prosser showed that the processing in these two phases was rela-
tively independent. This allowed him to develop a new set of hybrid algorithms by mix-
ing and matching the forward and backwards phases of different existing algorithms.

In this paper we go beyond this point of view, and show that the backwards and
forward phases are not so distinct after all. In fact, both phases are doing exactly the
same thing! They are simply discovering no-goods, albeit via different techniques. Fur-
thermore, the backwards phase discovers no-goods using exactly the same technique in
all of these different algorithms. This is in sharp contrast to Prosser’s view where there

� This research was supported by the Canadian Government through their NSERC program.



2 Fahiem Bacchus

were a range of more sophisticated backwards phases from simple chronological back-
tracking, to conflict directed backjumping. Rather we will show that the backjumping
ability of an algorithm is completely determined by no-goods it discovers during by
the backwards phase. And in turn, these no-goods are completely determined by the
no-goods discovered during the previous forward and backwards phases, and by the
manner in which these no-goods were stored.

This uniform view of the processing performed by backtracking algorithms yields
a simple framework under which the various improvements can be viewed: most of
these improvements are simply better ways of discovering no-goods or better ways of
storing them for use in future backwards phases. [3] proved a number of important
results about existing backtracking algorithms, showing for the first time that a number
of popular algorithms are in fact sound and complete. However, their proofs required
a number of algorithm specific techniques. Our framework yields a very systematic
and simple method for proving these results. Furthermore, because this method is not
algorithm specific it can easily be applied to prove the correctness of new backtracking
algorithms.

The distinction between backward and forward phases has also lead to an unnec-
essary distinction in the field in the use of the no-goods discovered by these different
phases. By recognizing that a no-good discovered in a backward phase is no different
from a no-good discover in a forward phase, we can more fully utilize these no-goods.
In particular, the no-goods discovered in the backward phase can be used to perform
domain pruning as well as intelligent backtracking. This yields a very simple to imple-
ment improvement to a number of standard backtracking algorithms, and also allows
new algorithms to be developed.

Finally, our framework is inherently non-binary. Many previous backtracking algo-
rithms were developed specifically for binary CSP. The extension of these algorithms to
general n-ary CSPs can sometimes be non-trivial: the algorithms often make subtle use
of the binary restriction in their data structures or processing. In our framework these
algorithms can be abstracted to the notions of discovering, storing, and using no-goods.
This makes it much simpler to understand the issues involved in extending and imple-
menting them for the n-ary case. In fact, our framework provides a uniform scheme for
implementing a range of n-ary backtracking algorithms. 1

In summary, we provide a simple a uniform view of backtracking algorithms. This
view provides conceptual clarity to the range of improvements that have been devel-
oped in the literature. This is important for the task of communicating CSP technology
and promoting its use in practical applications. On the theoretical side our view yields
simple proof techniques for verifying the correctness of backtracking algorithms new
and old. And on the practical side our view makes it easier to construct n-ary algo-
rithms, immediately yields simple improvements to existing algorithms, and facilitates
the development of new backtracking algorithms.

In the rest of the paper we will first give the background and notation we need. Then
we present our framework and use it to explain the behavior of some existing backtrack-
ing algorithms. Simple proof techniques for verifying the correctness of backtracking

1 Utilizing this uniform scheme we have developed a library of n-ary CSP algorithms that will
soon be released for public use.



A Uniform View of Backtracking 3

algorithms are presented next. And we close with a description of some of the improve-
ments and new algorithms that our framework provides.

2 Background and Notation

A CSP consists of a set of variables ���� � � � � ��� and a set of constraints ���� � � � � ���.
Each variable � has a finite domain of values Dom�� �, and can be assigned a value �,
� � �, if and only if � � Dom�� �. Let � be a set of assignments. No variable can be
assigned more than one value, so ��� � � (i.e., the cardinality of this set is at most �).
When ��� � � we call � a complete set of assignments. The set of variables assigned
in � is VarsOf ���.

Each constraint � is over some set of variables VarsOf ���, and has an arity equal
to �VarsOf ����. A constraint is a set of sets of assignments: if the arity of � is �, then
each element of � is a set of � assignments, one for each of the variables in VarsOf ���.
We say that a set of assignments � satisfies a constraint � if VarsOf ��� � VarsOf ���
and there exists an element of � that is a subset of �.

We say that � is consistent if it satisfies all constraints � such that VarsOf ��� �
VarsOf ���, i.e., it satisfies all constraints it fully instantiates. Further, � is a consistent
with a value � (of some variable �) if �	 �� � �� is consistent. A solution to a CSP
is a complete and consistent set of assignments.

Note that consistency is a local notion. It involves testing only those constraints a
set of assignments fully instantiates. A no-good is a global notion. A set of assignments
� is a no-good if there is no unenumerated solution containing �. Any superset of a
no-good must also be a no-good. No-goods depend on all of the constraints (they are
global in nature). As a result although any inconsistent set of assignments must be a
no-good, a consistency set might also be a no-good. Furthermore, there is no efficient
complete decision procedure for detecting no-goods. For example, for an unsatisfiable
CSP the empty set is a no-good, but proving this is co-NP complete.

A set of assignments� is said to be a value-no-good for a value � (of some variable
� � VarsOf ���) if�	�� � �� is a no-good. Note that a value-no-good need not be a
no-good: all we know is that it will become a no-good if we add a particular assignment
to it. However, if there is some variable � 
� VarsOf ��� such that� is a value-no-good
for every value � � Dom�� �, then we can conclude that � is a no-good. This follows
immediately from the fact that every solution must contain an assignment � � � to � ,
but we already know that � 	 �� � �� is not part of any unenumerated solution for
every value � of � .

Two more consequences of our notation are worth noting. (1) If� is a no-good then
for any assignment � � � � �, we have that � � �� � �� is a value-no-good
for �. (2) We have defined no-goods in terms of the set of unenumerated solutions.
Backtracking algorithms are systematic and are capable of enumerating all solutions.
When all solutions are been enumerated it is convenient have a notion of no-good that
depends only on the remaining unenumerated solutions. This will allow us to treat the
two cases, searching for a single solution and searching for all solutions, identically. In
the first case, there are no unenumerated solutions prior to the first one being found,
and our definition of a no-good becomes identical with the standard definition. In the



4 Fahiem Bacchus

second case, after each solution has been enumerated all sets contained in this and
previous solutions only become no-goods.

2.1 Backtracking

A variable assignment tree is a tree in which every node is a set of assignments. The
root is the empty set of assignments. At each node � a variable unassigned by � is
selected. If that this variable is � with Dom�� � � ���� � � � � ���, then � will have �

children, with the �-th child being � 	 �� � ���: the children of � extend � with all
possible assignment to � . The terminal nodes are hence all possible complete sets of
assignments.

Backtracking algorithms perform depth-first search in these variable assignment
trees.2 Using various techniques, like constraint checking, they avoid visiting various
nodes (and the subtrees below them). We call the subtree actually explored by the algo-
rithm the algorithm’s backtracking search tree.

Since each node adds only one more assignment to its parent, each node in fact
corresponds to an ordered set of assignments. Each assignment in the node will have an
associated level at which it was made. We call the deepest assignment of a node � the
assignment made by �.

The foundation of our unified framework is observation that complete backtracking
algorithms will not visit a node �, or will backtrack from �, if and only if they are able
to discover that � is a no-good.

Once � has been discovered to be a no-good it is known that no unenumerated
solution extends it. Hence, there is no need to explore any of its descendants as they
also are no-goods (they extend �). If some of them have already been explored, then
there is no need to explore any more of them. So the algorithm can either immediately
backtrack from � or never visit it in the first place. On the other hand if the algorithm
never visits � or if it backtracks from �, it must have discovered that � is a no-good.
If � is not known to be a no-good there might be a unenumerated solution extending
�. By not visiting � or by backtracking from it the algorithm would miss this solution.
Hence, for the algorithm to be complete3 it can only avoid visiting � or backtrack from
� when it has verified that � is a no-good.

3 No-goods

During search backtracking algorithms have various opportunities to discover no-goods.
This fact has been exploited by a number of previous authors to develop alternative
backtracking algorithms. In [2] no-goods, called conflicts, are used to generate more
powerful backjumps in the conflict directed backjumping (CBJ) algorithm. In [4] no-
goods, called eliminating explanations, are used to control a dynamic reordering of the
branches in the search tree in the dynamic backtracking algorithm. In [5] no-goods

2 In practice, the variable that is chosen to be instantiated next under a node � is determined
heuristically by the algorithm.

3 Completeness is the raison d’être of systematic backtracking algorithms.



A Uniform View of Backtracking 5

are learned at deadends and used to improve the subsequent search. [6–9] also contain
useful insights about the relation between no-goods and backtracking.

However, what has not previously been recognized is that, as demonstrated above,
every backtracking algorithm uses no-goods to control its search, even if it manipu-
lates these no-goods implicitly rather than explicitly. A unified understanding of back-
tracking algorithms can be achieved by categorizing the mechanisms they employ to
discover, store, and use no-goods.

Discovering Standard algorithms use only a small number of different methods to
discover no-goods during search.
Constraint checks. The algorithm can check if a node � is consistent when it visits
it by checking that it satisfies all of the constraints it fully instantiates. If � is found
to violate some constraint �, then the set of assignments to the variables of � is a
no-good. This set is a subset of �. Constraint checks are utilized by algorithms like
generic Backtracking (BT), backjumping (BJ), conflict-directed backjumping (CBJ),
and dynamic backtracking (DBT).
Constraint propagation. When the algorithm is visiting node � it can enforce some
level of local consistency among the unassigned (future) variable. By doing this it can
discover that some 	 � � is a value-no-good for a value � of an as yet unassigned vari-
able � . Constraint propagation is utilized by algorithms like forward checking (FC),
maintain arc consistency (MAC), and maintain generalized arc consistency (GAC). 4

Detection of Solutions. If the algorithm is visiting � and it discovers that � is a so-
lution, it can be enumerated. Once � has been enumerated, it becomes a no-good: no
unenumerated solution can contain it.
Unioning value-no-goods. If a value-no-good has been discovered for every value � of
a variable � , then the union of these value-no-goods, 	, will be a value-no-good for
every value of � . Hence 	 is a (new) no-good.

Unlike constraint checks and constraint propagation, successive unioning of value-
no-goods is a complete method for discovering no-goods. Each union corresponds to
a step in the construction of a resolution refutation (where the input clauses to the
refutation are the no-goods discover at the leaves of the backtracking search tree) [8].

Using Once we have discovered a no-good we can use it to save work in the subsequent
search. Current backtracking algorithms use no-goods consistencies in only two ways.
Let 	 be a subset of the node � currently being visited by the backtracking algorithm.
Value pruning. If 	 is a value-no-good for a value �, then we can remove � from the
domain of its variable and not return it until at least one assignment in 	 has been
undone by backtracking. (That is, until we backtrack to the deepest assignment in 	).

4 Both constraint checks and constraint propagation also allow the algorithm to discover that
various sets of assignments are consistent. This information is utilized in these algorithms to
avoid redundant constraint checks. For example, in FC it is know that �’s parent � is consistent
with every unpruned value � of every future variable � . FC can maintain this condition at �
without rechecking any constraint � with VarsOf ��� � �VarsOf ��� � ��. Our framework
can be extended to account for these savings in constraint checks, but we will not do this for
reasons of space.



6 Fahiem Bacchus

� cannot appear in any unenumerated solution along with 	. Hence, there is no need to
attempt using it in any subtree extending 	.
Backtracking If 	 is a no-good we can force backtracking. No unenumerated solu-
tions extending 	 exist, so we can backtrack out of the subtree extending 	. As noted
above this is always what justifies backtracking. Say that � � � is the deepest assign-
ment in 	, and that � is the node that made this assignment. Not only does 	 justifies
backtracking from �, but we also have that 	 � �� � �� is a value-no-good for �.

Note that in both cases if 	 is not a subset of the current node, then its assignments
are not currently in force. Thus along the current path we cannot use 	 to justify back-
tracking or value pruning. However, some algorithms (e.g., [10]) will save 	 for future
use in case the search ever visits a node extending 	.

Storing The critical factor in most backtracking algorithms is the manner in which they
store no-goods for future use. As we will demonstrate below, it is the quality of infor-
mation that is stored about the value-no-goods discovered during search that completely
determines the backjumping ability of the algorithm.

Backtracking algorithms can potentially discover an exponential number of no-
goods during search. So various mechanisms must be used to manage the storage of
these no-goods. In this paper we focus on storage schemes that utilize “automatic for-
getting on backtrack.”

In standard backtracking algorithms the (value) no-goods they discover are always
subsets of the current node. Automatic forgetting on backtrack solves the storage prob-
lem by forgetting these no-goods as soon as they are no longer a subset of the current
node, i.e., once we backtrack to a point where we undo one of the assignments in the
no-good we forget the no-good. This ensures that at every stage of the search all of
the stored no-goods will be subsets of the node the algorithm is currently visiting. One
important practical implication of this is that instead of representing no-goods as sets of
assignments we can represent them as sets of levels (the root is level 0): the assignments
made along the current path at these levels is the no-good proper. 5

Even with automatic forgetting on backtrack, backtracking algorithms additionally
employ different compression schemes when they store the (value) no-goods they dis-
cover.
Existence. Instead of storing no-good we simply mark, in some way, that a value-no-
good for various values exists. This “storage” scheme is used by generic backtracking
(BT). The consequence of this is that later when we want to use the value-no-good
again, all that we will be justified in assuming is that it consisted of the complete set of
previous assignments.
Maximums. The level of the deepest assignment in the no-good can be stored. For ex-
ample, the no-good ��� �� �� (represented as a set of levels) we be stored as the number

5 If the algorithms stores no-goods for use in future parts of the search it cannot employ auto-
matic forgetting on backtrack nor can it store the no-goods as sets of levels (as the assignments
made at these levels might change by the time the no-good is to be used again). Such algo-
rithms must find some other scheme to avoid storing too many no-goods. Nevertheless, even
in these algorithms, the no-goods are still discovered using the same mechanisms and can still
be put to the same uses as described above.



A Uniform View of Backtracking 7

5. The consequence of this is that later when we want to use the no-good again, all that
we will be justified in assuming is that ��� �� �� �� �� is a no-good. We have forgotten
that levels 2 and 3 were not originally included in the no-good. BJ, FC, MAC, and GAC
(maintain generalized arc consistency [11]) use this compression scheme when storing
no-goods.
One value-no-good per variable. A common scheme to have one value-no-good set
per variable, and to store in this set the running union of the value-no-goods discovered
for the variable’s values. CBJ, e.g., uses this scheme. BJ uses this scheme in conjunction
with the previous one: it stores a single deepest level over all of the value-no-goods
for the values for the variable. The alternative is to maintain each value-no-good in a
separate set. This alternative is used by dynamic backtracking and by the backtracking
algorithms developed in [12].

4 Using the framework

4.1 Understanding Previous Algorithms

BT, BJ and CBJ. A useful illustration of our framework is provided by the three al-
gorithms, BT, BJ, and CBJ. These algorithms are identical in the way they discover
no-goods (via constraint checks and unioning of value-no-goods) and in the way they
use these no-goods (exclusively to perform backtracking). The only difference lies in
how they store no-goods, which in turn determines their backtracking abilities. An ex-
ample best illustrates the difference.

Let � be a consistent node at level 10 that is currently being visited. Say that at level
�, � � � � �	, the assignment �� � �� was made. Let variable � with Dom�� � �
�
� �� �� be the variable next instantiated by �’s children, with �� � � 	 �� � 
�,
�� � � 	 �� � ��, and �� � � 	 �� � �� being �’s three children. Finally, let ��,
��� and �� be constraints with VarsOf ���� � ���� ��� ��, VarsOf ���� � ���� ��,
and VarsOf ���� � ���� ��� ��. Each of these algorithms will proceed to visit each of
�’s children and check whether or not they are consistent. Say that each child � � violates
constraint ��. Then the sets ��� � ��� �� � ��� � � 
�, ��� � ��� � � ��, and
��� � ��� �� � ��� � � �� will be discovered to be no-goods. Each of these
no-goods yields a value-no-good for one of �’s values.

CBJ unions these value-no-good into a single conflict set. So after visiting all of
the children it has discovered that ��� � ��� �� � ��� �� � ��� �� � ��� is a
no-good. It then uses this no-good to immediately backtrack to level 7 where it undoes
the assignment �� � ��. Furthermore, it has also discovered that ��� � ��� �� �
��� �� � ��� is a value-no-good for the �� of��. Say that�� has no other values, then
this single value-no-good covers all of ��’s values, and it must also be a no-good. CBJ
uses this no-good to immediately backtrack to level 3 where it undoes the assignment
�� � ��.

Under the same circumstances, BJ only stores the maximum level over the value-no-
goods it has discovered for �’s values, i.e., level 7. Hence after visiting all of the chil-
dren it is only able to discover the weaker no-good �� � � ��� � � � � ���� ��� �� �
���. It then uses this no-good to immediately backtrack to level 7, and since � � has



8 Fahiem Bacchus

no other values it can conclude that ��� � ��� � � � � �� � ��� is a no-good, and use
this no-good to backtrack to level 6. BJ looses much of the backtracking ability of CBJ
simply because it forgets information about the no-goods it discovers. In particular, the
no-goods it uses to justify backtracking always include a complete sequence of levels
from 1 to the maximum level it stored. Hence, any variable backtracked to will have at
least one value whose value-no-good is the complete set of prior levels, and BJ cannot
subsequently make a non-trivial backtrack from such variables. That is, BJ does not
have the no-goods to make non-trivial backtracks at the internal nodes its search tree.

BT stores even less information. After visiting all of the children it only remembers
that a value-nogood exists for all of �’s values, and the only conclusion it can justify is
that ��� � ��� � � � � 
�� � ���� is a no-good. Hence it can only justify backtracking
to level �	. In fact, it is not difficult to see that the full set of previous levels is the only
no-good that BT is capable of discovering since it forgets so much information about
the no-goods it learns at the leaf nodes. Hence BT can never justify anything stronger
than a backtrack to the previous level.6

Constraint Propagation. Constraint propagating algorithms like FC, MAC and GAC
discover no-goods involving values of future variables. For example, at level � GAC
may discover that an assignment � � � has no supporting tuple in a constraint �
where as it did have support in � at level �� �. Hence, the assignments made at levels
1 through � must contain a value-no-good for �, and this value-no-good must have � as
its maximum level.

Various value-no-goods for � are easy to compute. The simplest is the full set of
levels ��� � � � � ��. This is the value-no-good utilized by the FC, MAC and GAC algo-
rithms. They utilize this value-no-good to prune � from Dom�� � at level �, restoring it
only when the assignment at level � is undone. They store the level � is pruned, which
corresponds to storing the maximum of the discovered value-no-good. A leaf node � for
these algorithms is a node at which constraint propagation deletes all remaining values
from the domain of some future variable � , i.e., a value-no-good has been discovered
for each of �’s values. Since at least one value was deleted by the assignment at level �,
at least one of these value-no-goods has been stored as the full set of levels ��� � � � � ��.
Hence, when these value-no-goods are (implicitly) unioned the strongest conclusion is
that the full set of prior assignments is a no-good, and these algorithms can only justify
backtracking to the previous level. This also implies that recursively any variable back-
tracked to will have at least one value whose value-no-good is the complete set of prior
levels. In other words, like BJ, FC, MAC and GAC can never justify non-trivial back-
tracks because of limited information they store about the value-no-goods they discover
during their constraint propagation phase.

Better value-no-goods can be discovered and stored, and various methods have been
developed for doing this (e.g., [11]). Algorithm that do value pruning pose the difficulty
that a value-no-good for a value � of a variable � can be discovered at level �, in-

6 Because BT and BJ discover such simple no-goods (complete sequences of levels) they do
not need to maintain these no-goods explicitly. Thus in their specification one will not see any
explicit manipulation of no-goods. Nevertheless, their processing is determined by the implicit
no-goods they are discovering.



A Uniform View of Backtracking 9

validated on backtrack, and then a different value-no-good for � discovered when we
descend the search tree again. If only a running union of the value-no-goods is main-
tained, additional information will have to be maintained so that value-no-goods can be
deleted from this union when they are invalidated by backtracking. In [2]’s version of
FC-CBJ the levels at which the deleted values were pruned are unioned into the conflict
set just prior to backtrack. This method only works for binary CSPs. If � � Dom�� � is
pruned by FC at level �, the assignment � � � must have violated a binary constraint
whose only other variable was assigned at level �. Hence, ��� is the complete value-no-
good for �, and no information is lost by storing only this pruning level. If � was pruned
by a non-binary constraint, then there will be other assignments in its value-no-good,
and the pruning level will be only the maximum of the value-no-good. Thus in the n-ary
case if only the pruning level is stored, no non-trivial backtracks can be justified. [11]
provides one method for avoiding this problem.

However, a much cleaner scheme is to store the value-no-goods for each value in a
separate set. This requires more space, but is quite practical given the amount of RAM
on todays machines. With separately stored value-no-goods we can update then on an
individual basis, computing their union only when we backtrack. Another key advan-
tage of separate value-no-goods is that they can be manipulated in more sophisticated
ways to discover better no-goods. For example, say that we have a value-no-good for
all values of the variable � , and that the maximum level in these sets is � where the as-
signment �� � �� was made. Then we can backtrack to level � and there set the union
of �’s value-no-goods minus � to be a new value-no-good for � �. However, suppose
that there is a binary constraint � between �� and � . Then it can easily be proved that
a better value-no-good for �� is the union of the value-no-goods for all values of � that
are consistent with �� under �. This is a union over a smaller set of value-no-goods,
and thus it can be smaller. If it is smaller, it might support superior backjumping from
level �. This method and some others have been used in the backtracking algorithms
presented in [12], but many other methods that can be developed.

4.2 Uniform proofs of completeness

Consider an algorithm that does a depth-first search of the entire variable assignment
tree. It does not stop to do constraint checking, rather it proceeds directly to visit all
complete assignments. At these leaf nodes it then checks whether or not the node is
consistent. If it is, it reports it to be a solution. Clearly this algorithm is sound and com-
plete, as it checks every possible complete assignment. That is, any solution it reports
is a solution (sound) and it will report all solutions (complete).

Say that 	 � ��� � ��� � � � � �� � ��� is a no-good. If we allow the above
algorithm do either or both of (1) immediately backtrack from any node � extending
	, and (2) at any node � that makes � � � of the assignments in 	 prune the value
used in the remaining assignment from the domain of its variable, then soundness and
completeness is retained.

As we have pointed out all standard backtracking algorithms can be viewed as dis-
covering no-goods and using them in these two ways. That is, at this level of abstraction
all standard backtracking algorithms are exactly the above algorithm taking advantage
of discovered no-goods to optimize their search.



10 Fahiem Bacchus

Thus all we need to do to prove a backtracking algorithm sound and complete is
to demonstrate that the no-goods it uses to justify value-pruning and backtracking are
in fact sound no-goods. This means that the algorithm must use sound mechanisms to
discover these no-goods, and if it subsequently compresses them, it must take proper
account of the information lost.

4.3 Improving Backtracking Algorithms

One possible improvement to existing backtracking algorithms was described above:
store separate value-no-goods and develop improved methods of manipulating them
to discover new no-goods. More generally, external algorithms can also be used; if
these algorithms return no-goods then they can easily be plugged into the backtracking
process.

As pointed out above, each of the no-goods used for backtracking also yields a
value-no-good for the value assigned at the level to which backtracking occurs. The
existence of this new value-no-goodhas not previously been recognized in the literature,
but once it is apparent that it exists it can be put to better use. This yields a simple to
implement improvement for any backtracking algorithm that computes non-sequential
no-goods for backtracking, e.g., any algorithm that does CBJ type backtracking. In
particular, when we use the no-good 	 to justify backtracking to level �, the deepest
level in 	, we can prune the value assigned at level � back to the deepest level in 	����.
For example, say that at level 10 the no-good ��� � ��� �� � ��� �� � ��� �� �
��� is computed, where �� is the variable assigned at level �. Then this no-good can be
used to immediately backtrack to level 7, and there prune value � � of variable �� back
to level 3: ��� � ��� �� � ��� �� � ��� is the newly discovered value-no-good
for �� justifying this pruning. Thus even if we once again attempt to assign a value to
�� we will not need to consider �� until we backtrack to level 3. This could yield an
exponential savings, as it might require exponential search to backtrack out of a subtree
rooted by �� � �� if this value was not pruned.

As a small test of the practical impact of this idea we altered an implementation of
GAC-CBJ [13] so that it used the conflicts it computes for domain pruning as well as
for backtracking. All of the apparatus for domain pruning and conflict set is already in
place in GAC-CBJ, and thus the changes amounted to adding only 4 simple lines of
code. To test the change we then ran the 6 hardest the logistic planning problems that
came with their distribution. The results are given in following Table. This is only a
small test, and the gains are moderate (the maximum being a 3 fold improvement for
problem 27), and minor losses can occur. Nevertheless, considering the extra coding
effort of 4 more lines, it is a worthwhile improvement inspired by the unified view of
backtracking algorithms we have presented here.



A Uniform View of Backtracking 11

Problem GAC-CBJ GAC-CBJ+P
6 12.38 8.22
15 133.22 101.29
18 811.17 809.13
20 31.53 25.81
25 14.48 14.47
27 64.82 22.02

The numbers in the table are CPU seconds require to find the shortest solution to the
planning problem on a Pentium III 500MHz machine with 1GB RAM. GAC-CBJ+P
is the version of GAC-CBJ that makes additional use of conflicts to pruning values
backtracked to.

References

1. J. R. Bitner and E. Reingold. Backtracking programming techniques. Communications of
the ACM, 18(11):651–656, 1975.

2. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelli-
gence, 9(3), 1993.

3. Grzegorz Kondrak and Peter van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89:365–387, 1997.

4. Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993.

5. Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings of the AAAI
National Conference, pages 294–300, 1994.

6. R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed backtrack-
ing in a system for computer-aided circuit analysis. Artificial Intelligence, 9:135–196, 1977.

7. J. de Kleer. A comparison of ATMS and CSP techniques. In Procceedings of the Inter-
national Joint Conference on Artifical Intelligence (IJCAI), pages 290–296, Detroit, Mich.,
1989.

8. David Mitchell. Hard prolems for csp algorithms. In Proceedings of the AAAI National
Conference, pages 398–405, 1998.

9. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experimental
and Theoretical Results. PhD thesis, University of Oregon, 1995.

10. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and
cutset decomposition. Artificial Intelligence, 41:273–312, 1990.

11. X. Chen. A Theoretical Comparison of Selected CSP Solving and Modeling Techniques. PhD
thesis, University of Alberta, 2000.

12. Fahiem Bacchus. Extending forward checking. Submitted to this conference, 2000.
13. P. van Beek and X. Chen. CPlan: A constraint programming approach to planning. In

Proceedings of the AAAI National Conference, pages 585–590, Orlando, Florida, 1999.


