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Abstract

A new approach for learning Bayesian belief networks from raw data is presented. The
approach is based on Rissanen’s Minimal Description Length (MDL) principle, which is partic-
ularly well suited for this task. Our approach does not require any prior assumptions about the
distribution being learned. In particular, our method can learn unrestricted multiply-connected
belief networks. Furthermore, unlike other approaches our method allows us to tradeoff accuracy
against complexity in the learned model. This is important since if the learned model is very
complex (highly connected), it can be computationally intractable to use. In such a case it would
be preferable to use a simpler model even if it is less accurate. MDL offers a principled method
for making this tradeoff. We also show that our method generalizes previous approaches based
on Kullback cross-entropy. Experiments have been conducted to demonstrate the feasibility of
the approach.

1 Introduction

Bayesian belief networks, advanced by Pearl [9], have become an important paradigm for represent-
ing and reasoning with uncertainty. Systems based on Bayesian networks have been constructed
in a number of different application areas, ranging from medical diagnosis, e.g., [2], to reasoning
about the oil market, e.g., [1]. Despite these successes, a major obstacle to using Bayesian networks
lies in the difficulty of constructing them in complex domains. It can be a very time-consuming
and error-prone task to specify a network that can serve as an accurate probabilistic model of the
problem domain; there is a knowledge engineering bottleneck. Clearly, any mechanism that can
help automate this task would be beneficial. A promising approach to this problem is to try to
construct, or learn, such network representations ;from raw data. In many areas raw data can
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be obtained from databases of records. If techniques can be developed for automatically learning
Bayesian networks from data not only will this help address the knowledge engineering problem,
but it will also facilitate the automatic refinement of the representation as new data is accumulated.

In this paper we present a new approach to learning Bayesian networks. Our method can
discover arbitrary network structures from raw data without relying on any assumptions about the
underlying probability distribution that generated the data. In particular, the method can learn
unrestricted multiply-connected networks. Multiply-connected networks are more expressive than
tree or polytree networks, and that extra expressiveness is sometimes essential if the network is
to be a sufficiently accurate model of the underlying distribution. Our approach is theoretically
founded on Rissanen’s Minimum Description Length (MDL) Principle [13].

It is well known that multiply-connected Bayesian networks are in the worst case computation-
ally intractable to reason with; to be precise the reasoning algorithms are NP-Hard [4]. The com-
plexity of reasoning with a particular network is a function of its connectivity; the more connected
it is the more difficult is reasoning. Hence, there is limited utility in learning a multiply-connected
network that is too complex to support efficient reasoning. We feel that the main advantage of our
approach is that it offers a principled method, the MDL principle, of trading off the complexity and
accuracy of the learned model. It will learn a less complex network if that network is sufficiently
accurate, and at the same time, unlike some previous methods, it is still capable of learning complex
networks if no simple network is sufficiently accurate.

This is particularly important when learning from raw data as we do not have direct access to
the underlying distribution. Instead we can only approximate that distribution through the data
that it has generated. Since our information is only approximate it seems inappropriate to try
to recover the “true” structure. Rather, the purpose of building a network is to model the true
distribution, not to recover it. Just as in physics where Newtonian mechanics often provides a
more useful model of the real phenomena than a relativistic model even though it is less accurate,
a simpler, less accurate, network might well provide a more useful model than a more complex and
more accurate one.!

The MDL principle says that the best model of a set of data is that model which minimizes the
sum of the encoding lengths of the data and the model itself. That is, with the aid of the model
we can represent, or encode, the data more compactly, by exploiting probabilistic regularities
described by the model. However, the model itself will require some representation. The MDL
principle specifies that both these components should be taken into consideration. More accurate
models minimize the encoding length of the data, but the more complex a model is, the longer will
be its encoding. Hence, by minimizing the sum of these two factors the MDL principle offers a
tradeoff between complexity and accuracy.

Finding the network (model) that minimizes the sum of these two components is a computation-
ally intractable task however: there are simply too many networks to search. Hence, our realization
of the MDL principle is based on a heuristic search algorithm that tries to find a network that has
low, but not necessarily minimum, description length. We have conducted a number of experiments
that successfully demonstrate the feasibility of our method.

In the sequel we will first discuss related work on learning Bayesian Networks. Then we will

! Rissanen provides a lucid and convincing argument that discovering useful models is the real concern of science
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discuss in more detail the MDL principle and the manner in which it can be applied to the task
at hand. A discussion of our heuristic algorithm follows along with a presentation of our empirical
results. We conclude with some discussion of future work.

2 Related Work

The earliest work that can be viewed as learning network models was that of Chow and Liu
[3]. Their approach was able to recover simple tree-structured belief networks from a database
of records. If the database was generated by a distribution that had a tree-structure, it could
be exactly recovered. Otherwise their method guaranteed that the probability distribution of the
learned tree network was the closest of all tree networks to the underlying distribution of the raw
data. The criterion of “closeness” they used was based on the well-known Kullback-Leibler cross-
entropy measure [7]. The main restriction of this work was that it could only learn tree structures.
Hence, if the raw data was the result of a non-tree structured distribution, the learned structure
could be very inaccurate. Rebane and Pearl [12] extended Chow and Liu’s methods to the recovery
of networks of singly connected trees (polytrees). If the underlying distribution had a polytree
structure, its topological structure could be exactly recovered (modulo the orientation of some of
the arcs). But again if the raw data came from a non-polytree distribution, the learned structure
could be very inaccurate.

Given a set of independence assertions of the form I(X, Z,Y) interpreted as “X is independent
of Y, given Z”, Geiger et al. developed an approach [6] that can discover a minimal-edge I-map[10].
However, their approach is again limited to polytrees; it is only guaranteed to work in the case
where the underlying distribution has an exact polytree structure.

All of the above approaches fail to recover the richer and more realistic class of multiply-
connected networks, which topologically are directed acyclic graphs (dags). Recently, Spirtes et
al. [16] have developed an algorithm that can construct multiply-connected networks. And Verma
and Pearl [17, 11] have developed what they call an IC-Algorithm that can also recover these kinds
of structures. However, both approaches require that the underlying distribution being learned
be dag-isomorphic.? But, not all distributions are. As a result, both of these methods have the
common drawback that they are not guaranteed to work when the underlying distribution fails to
be dag-isomorphic. In such cases no conclusions can be drawn about the closeness of fit between
the learned structure and the underlying distribution.

All of these methods share the common disadvantage that they make assumptions about the
underlying distribution. Unfortunately, we are hardly ever in a position to know the underlying
distribution. This is what we are trying to learn! Hence, we have no assurance that these methods
will work well in practice. These methods might produce very inaccurate models if the underlying
distribution fails to fall into the category of distributions they can deal with. Nevertheless, these
works have provided a great deal of information pertinent to learning Bayesian networks.

An interesting alternate approach which can deal with multiply-connected networks is that of
Cooper and Herskovits [5]. Their approach tries to find the most probable network using a Bayesian
approach. As with all Bayesian approaches, they must assume a prior distribution over the space

2 A distribution is dag-isomorphic if there is some dag that displays all of its dependencies and independencies [10].



of all possible network structures. They have taken this prior to be uniform.?> Unfortunately, it
seems to us that this is the wrong choice. By choosing this prior their method will always prefer a
more accurate network, even if that network is much more complex and only slightly more accurate.
Given that we must perform learning with only a limited amount of data, this insistence on accuracy
is questionable.

One way of viewing the MDL principle is as a Bayesian approach in which the prior distribution
over the models is inversely related to their encoding length, i.e., their complexity. Hence, the
MDL principle has a bias towards learning models that are as simple as possible. This seems to
us to be a far more reasonable approach, given that the data is only approximately representative
of the underlying distribution. Another advantage is that the MDL principle can be applied to
all components of the model, including, e.g., the conditional probabilities that parameterize the
network; although we have not done this yet. In Cooper and Herskovits’s approach they must
also place a prior distribution on these parameters, and again it is not clear that their choice of a
uniform distribution is the appropriate one.

Cooper and Herskovits face the same problem as we do: the space of possible network struc-
tures is simply too large to explore. Hence, they also develop a heuristic method that searches a
constrained set of structures looking, in their case, for the one with highest posterior probability,
and in our case for the one with minimal description length. The heuristic method they choose
depends on an inputted ordering of the variables, and the network that they learn respects this
ordering (i.e., parents of a node are always lower in the ordering). The heuristic method we de-
velop, however, does not require such an ordering, which is an advantage in situations where there
is insufficient causal information to generate a total ordering.

3 The MDL Principle

The MDL principle is based on the idea that the best model of a collection of data items is the
model that minimizes the sum of (1) the length of the encoding of the model, and (2) the length
of the encoding of the data given the model, both of which are measured in bits.

To apply the MDL principle to Bayesian networks we need to specify how we can perform the
two encodings, the network itself (1) and the raw data given a network (2).

3.1 Encoding the Network

To represent a particular Bayesian network, the following information is necessary and sufficient:
(a) A list of the parents of each node, and (b) the set of conditional probabilities associated with
each node that are required to parameterize the network.

Suppose there are n nodes in the problem domain. For a node with k parents, we need k log,(n)
bits to list its parents. To represent the conditional probabilities, the encoding length will be the
product of the number of bits required to store the numerical value of each conditional probability
and the total number of conditional probabilities that are required. In a Bayesian network, a
conditional probability is needed for every distinct instantiation of the parent nodes and node itself

3Cooper and Herskovits have also considered other priors. However, an essential difficulty remains in justifying
any particular choice. With the MDL principle there is a natural justification for preferring less complex networks.



(except that one of these conditional probabilities can be computed ;from the others due to the
fact that they all sum to 1). For example, if a node that can take on 5 distinct values has 4 parents
each of which can take on 3 distinct values, we will need 3* x (5 — 1) conditional probabilities.
Hence, under this simple scheme the total description length for a particular network will be:

n

> lkilog,(n) +d(si — 1) ] 551, 1)

i=1 JEF;

where k; is the number of parents node ¢ has, s; is the number of values it can take on, F; is the
set of its parents, and d represents the number of bits required to store a numerical value. For
a particular problem domain, n and d will be constants. This is not the only encoding scheme
possible, but it is simple and it performs well in our experiments.

By looking at this equation, we see that highly connected networks require longer encodings.
First, for many nodes the list of parents will get larger, and second the list of conditional prob-
abilities we need to store for that node will also increase. In addition, networks in which nodes
that have a larger number of values have parents with a large number of values will require longer
encodings. Hence, the MDL principle will tend to favor networks in which the nodes have a smaller
number of parents (i.e., networks that are less connected) and also networks in which nodes taking
on a large number of values are not parents of nodes that also take on a large number of values.

It also happens that for Bayesian networks the degree of connectivity is closely related to the
computational complexity of using the network. For example, extremely efficient algorithms exist
for trees, and tractable (polynomial) algorithms exist for singly connected networks [10].* Hence,
our encoding scheme generates a preference for more efficient networks. The encoding length of
the model is, however, not the only factor in determining the description length; we also have to
consider the encoding length of the data.

3.2 Encoding the Data Using the Model

Let us first be more precise about the form of the raw data. The task is to learn the joint distribution
of a collection of random variables X = {X;, ..., X,,}. Each variable X; has an associated collection
of values {z},...,zF} that it can take on, where the number of values k will in general depend on
1. Every distinct choice of values for the variables in X defines an atomic event in the underlying
joint distribution and is assigned a particular probability by that distribution.

For example, we might have three random variables X;, X,, and X3, with X; having {1, 2}, X,
having {1, 2, 3}, and X3 having {1, 2} as possible values. There are 2x 3 x 2 different complete instan-
tiations of the variables. Each of these is an atomic event in the underlying joint distribution, and
has a particular probability of occurring. For example, the event in which {X; =1, X, = 3, X; = 1}
is one of these atomic events.

We assume that the data points in the raw data are all atomic events. That is, each data point
specifies a value for every random variable in X. Furthermore, we assume that the data points are
the result of independent random trials. Hence, we would expect, via the central limit theorem,
that each particular instantiation of the variables would appear in the database with a relative

*This preference is not exact as our simple encoding does not take into consideration all of the factors that
contribute to computational complexity. Future work will address this limitation.



frequency approximately equal to its probability. These assumptions are standard ones in work in
this area.

Given a Bayesian network model we can determine its conditional probability parameters from
the raw data. Every variable X; is a particular node in the network, and an unbiased estimator for
node X; taking on the value v when its parents in the network take on values represented by u is
N, ../N,, where N, , is the number of data points in which X, and its parents take on the values
v and u, and N, is the number of data points in which X,’s parents take on the values wu.

Given our Bayesian network model we can calculate the probability ¢; (according to our model)
of every atomic event e;. Given that we are using the model as a best “guess” representation
of the underlying probabilities, the optimal encoding of the data using the probabilities ¢; will
use approximately — log,(g¢;) bits to encode each occurrence of the event e;, i.e., each data point
representing event e; will require that many bits in the encoding.

For example, given the set of variables X;, X, and X3 as above, our model might assign
probability 1/2 to the event e; = {X; =1, X, = 3, X3 = 1} and probability 1/4 to the event e, =
{X1=2,X,=2,X3=1}. We could then use the binary code 1 to represent e¢; and the code 01
to represent e, reserving the longer codes 001, 0001, etc., for the other less probable events. If the
database consists of the sequence of events e;, ey, €5, we could encode it as the 4 bit sequence 1101.°
Here the database has twice as many occurrences of e; as e,; the probabilities predicted by our
model are corroborated by the database. However, if the database consisted of the event sequence
€s, €2, €1, the encoding dictated by our model would require a 5 bit sequence 01011 to encode the
database. In this case a model that reversed the probability assignments to e; and e, would have
yielded a shorter encoding of the database; such a model would represent e, with the shorter code
rather than e;.

If the true probability of event e; was p; and the database consisted of IV data points, we would
expect that on average there would be Np; occurrences of e; in the database. Hence, given a model
that assigns probability ¢; to event e;, it would require

- N Zpi log,(g;) (2)

bits to encode the database. The following theorem, due to Gibbs [13], provides important infor-
mation about the properties of this encoding.

Theorem 3.1 (Gibbs) Let p; and ¢;, i = 1,...,n, be non-negative real numbers that sum to 1.
Then . .
— > pilogy(pi) < — Y pilog, (),
i=1 i=1

with equality holding if and only if p; = q;, where we take 0log,(0) to be 0.

This theorem implies that on average the encoding of the data is minimized only by an absolutely
accurate model, i.e., a model that assigns probabilities ¢; that are equal to the true underlying
probabilities p;.

Furthermore, the theorem allows us to relate the MDL principle to the procedure of minimizing
cross-entropy, an important technique in previous work.

®Note the code is a prefix code: we do not need any “spacers” to indicate where the codes for the individual events
start and stop.



Definition 3.2 [Kullback-Leibler Cross-Entropy| Let P and @ be distributions defined over the
same event space. The Kullback-Leibler cross-entropy between P and Q, C(P,Q), is a measure of
how close @ is to P and is defined by the equation

Cc(PQ)= Zpi(logz(l?i) — log,(gi))- (3)

It follows from Gibbs’s theorem that this quantity is always non-negative and that it is zero if and
only if P = @, i.e., Vi.g; = p;.

JFrom Equation 2 if follows that the minimal possible encoding length of the data will be
—N >, pilog,(p:;). Hence, when using a model that assigns probabilities ¢; the encoding length will
increase by N (Y, pi(log,(p:) — log,(g;))). That is, we have the following theorem.

Theorem 3.3 The encoding length of the data is a monotonically increasing function of the cross-
entropy between the distribution defined by the model and the true distribution.

In previous work Chow and Liu [3] developed a method for finding a tree structure that min-
imized the cross-entropy, and their method was extended by Rebane and Pearl [12] to finding
polytrees with minimal cross-entropy. This theorem shows that in a certain sense the MDL prin-
ciple can be viewed as a generalization of these approaches. If we were to ignore the complexity
(encoding length) of the model and were to restrict the class of models being examined, the MDL
principle would duplicate their results. The advantage of considering both the data and the model
(i.e., the sum of Equations 1 and 2) is that we can learn a more complex model if no simpler model
is sufficiently accurate, i.e., if every simpler model has very high cross-entropy.

4 Applying the MDL Principle

In theory the MDL principle can be applied by simply examining every possible Bayesian network
that can be constructed over our set of random variables X. For each of these networks we
could evaluate the encoding length of the data and of the network searching for the network that
minimized the sum of these encodings.

However, this approach is impractical as there are an exponential number of networks over n
variables.® Hence, we must resort to a heuristic search through the space of possible networks
trying to find one that yields a low, albeit not necessarily minimal, sum of Equations 1 and 2.

We accomplish this search by dividing the problem into two. There can be between 0 and
n(n — 1)/2 arcs in a dag. For each possible number of different arcs we search heuristically for a
network with that many arcs and low cross-entropy. By Theorem 3.3 we know that this network
will yield a relatively low encoding length for the data. We then examine these different networks,
each with a different number of arcs, and find the one that minimizes the sum of Equations 1 and
2. That is, of these low cross-entropy networks we find the one that is best according to the MDL
principle.

To perform the first part of the search, i.e., to find a network with low cross-entropy, we develop
some additional results that are based on the work of Chow and Liu [3].

®Robinson [15] gives a recurrence that can be used to calculate this number.



4.1 Evaluating Cross-Entropy

The underlying distribution P is a joint distribution over the variables X = {X;,...,X,}, and
any Bayesian network model will also define a joint distribution @ over these variables. Using this
notation the equation for the cross-entropy between P and Q@ becomes

P(X)

C(P,Q) =) P(X)log, o)’

where the sum extends over all distinct vectors of values of the variables in X, i.e., all atomic

events.
In an arbitrary Bayesian network Q(X) will take the form [10]:

QX) = QX1|Fx,)Q(X2]|Fx,)...Q(Xxn | Fx,)
= P(X1| Fx,)P(Xs | Fx,)...P(Xu | Fx.), (4)

where Fx, is the, possibly empty, set of parents of X;. We can replace the terms Q(X;|Fx,)
by P(X:|Fx,) since we are estimating these conditional probability terms, i.e., the parameters of
the Bayesian network, through frequency counts taken over the raw data (as described above).
This equality assumes that these estimates are approximately equal to the true underlying values
P(X;|Fx,). By the central limit theorem they will be close, with high probability, if we have a
sufficient number of data points.
We can extend Chow and Liu’s work by defining a weight measure for a node, X;, with respect
to its parents as follows:

P(XZ’FXz)

WX Fr) = 3 P(X B oty prn ) )

XiFx;

where we are summing over all possible values that X; and its parents Fx, can take. And we can
prove the following theorem.

Theorem 4.1 C(P,Q) is a monotonically decreasing function of 37,\_; p. .9 W(Xy, Fx,). Hence,
it will be mintmized if and only if the sum is mazimized.

The proof of this and the other theorems is given in our full report [8]. The summation term is the
total weight of the directed acyclic graph according to the weight measure defined in Equation 5.
In conclusion, given probabilities computed from the raw data, we can calculate the weight of
any proposed network structure. Our theorem shows that structures with greater weight are closer
to the underlying distribution. If we can find a directed acyclic graph with maximum total weight,
then the probability distribution of this structure will be closest to the underlying distribution of

the raw data, and thus it will yield the shortest encoding of the data.
However, it should be noted that we cannot simply use Theorem 4.1 without considering the
encoding length of the network. In fact, for every probability distribution P, if we let

QX)=P(X1| Xa,...,Xn)P (X2 | X3,...,Xp) ... P(X,), (6)

then Q = P. In other words, if we construct the multiply-connected network corresponding to
the structure on the right side of the above expression, the probability distribution defined by



this structure will absolutely coincide with the underlying distribution of the raw data, and hence
it will have lowest possible cross-entropy and highest possible weight. However, this structure
is a complete graph, and worse still, it does not convey any meaning since it can represent any
distribution. This indicates that if we allow structures of arbitrarily complex topology, we can
obtain a trivial match with the underlying distribution.

To further understand the problem, consider the following theorem.

Theorem 4.2 Let M; be the mazimum weight of all networks that have i arcs, then
1> 7= M; > M;.

That is, we can always increase the quality of the learned network, i.e., decrease the error in the
sense of decreasing the cross-entropy, by increasing the topological complexity, i.e., by learning
networks with more arcs. It is by considering in addition the encoding length of the network that
we resolve this difficulty.

4.2 Searching for Low Cross-Entropy Networks

Given our ability to evaluate the cross-entropy of a network through an evaluation of its weight,
we have developed a heuristic search algorithm that uses local search to find networks with low
cross-entropy. We search for low cross-entropy networks with varying numbers of arcs, and then
we choose among the networks found that one which minimizes the total description length, i.e.,
that is best by the MDL principle.

A complete description of the heuristic search algorithm is given in our full report [8]. In
empirical tests of this algorithm we have found that when provided with time polynomial in the
number of data points and the number of variables (nodes in the net), the search procedure can
successfully find good networks models of the raw data. Furthermore, it can find such models
without being provided with a prior “causality” ordering of the variables, as is required by Cooper
and Herskovits’s procedure [5].

5 Experimental Results

A common approach to evaluating various learning algorithms has been to generate raw data from a
predetermined network and then to compare the network learned from that data with the original,
the aim being to recapture the original. For example, this is the technique used by Cooper and
Herskovits [5]. An implicit assumption of this approach is that the aim of learning is to reconstruct
the true distribution. However, if one takes the aim of learning to be the construction of a useful
model, i.e., one that is a good tradeoff between accuracy and complexity, as we have argued for,
then this approach is not suitable. In particular, the aim of our approach is not to recapture the
original distribution.

To evaluate our experimental results we have developed a new approach for comparing the
learned network with the original. Our approach involves a measure of the closeness between
two networks. This measure is actualized in two different ways, one using Kullback-Leibler cross-
entropy and the other using an average of the difference between the distributions specified by the



two networks evaluated a various points. The details of our closeness measure are given in the full
report [8].

We have performed three sets of experiments to demonstrate the feasibility of our approach.
The first set of experiments consisted of a number of Bayesian networks that were composed of
small number of variables (5) as shown in Figure 1. Some of these structures are multiply-connected
networks.

The second experiment consisted of learning a Bayesian network with a fairly large number of
variables (37 nodes and 46 arcs). This network was derived from a real-world application in medical
diagnosis [2] and is known as the ALARM network (see [8] for a diagram of this network).

The third experiment consisted of learning a small Bayesian network, as shown in in Figure 2.
We experimented by varying the conditional probability parameters of this network. Here the aim
was to demonstrate that our procedure could often learn a simpler network that was very close to
the original.

During the first set of experiments after calculating the description lengths of the networks, the
network with the minimum description length was selected. In all these cases we found that the
learned network was exactly the same as the one used to generate the raw data.

In the second experiment the Bayesian network recovered by the algorithm was found to be
close to the original network structure. Two different arcs and three missing arcs were found, out
of 46 arcs. Furthermore, our evaluated closeness between the original network and this learned
structure was very small, under both of our measures. One additional feature of our approach, in
particular a feature of our heuristic search algorithm, is that we did not require a user supplied
ordering of variables (cf. Cooper and Herskovits [5]). We feel that this experiment demonstrates
that our approach is feasible for recovering Bayesian networks of practical size.

In the third set of experiments, the original Bayesian network G4 consisted of 5 nodes and 5
arcs. We varied the conditional probability parameters during the process of generating the raw
data obtaining four different sets of raw data. Exhaustive searching was then carried out and the
MDL learning algorithm was applied to each of these sets of raw data. Different learned structures
were obtained, all of which were extremely close to the original network as measured by both of
our distance formulas. In one case the original network was recovered.

This experiment demonstrates that our algorithm yields a tradeoff between accuracy and com-
plexity of the learned structures: in all cases where the original network was not recovered a simpler
network was learned. The type of structure learned depends on the parameters, as each set of pa-
rameters, in conjunction with the structure, defines a different probability distribution. Some of
these distributions can be accurately modeled with simpler structures. In the first case, the distri-
bution defined by the parameters did not have a simpler model of sufficient accuracy, but in the
other cases it did.

6 Conclusions

We have argued in this paper that the purpose of learning a Bayesian network from raw data is not
to recover the underlying distribution, as this distribution might be too complex to use. Rather,
we should attempt to learn a useful model of the underlying phenomena. Hence, there should
be some tradeoff between accuracy and complexity. The MDL principle has as its rational this

10



same tradeoff, and it can be naturally applied to this particular problem. We have discussed in
detail how the MDL principle can be applied and have pointed out its relationship to the method
of minimizing cross-entropy. Using this relationship we have extended the results of Chow and
Liu relating cross-entropy to a weighing function on the nodes. This has allowed us to develop
a heuristic search algorithm for networks that minimize cross-entropy. These networks minimize
the encoding length of the data, and when we also consid