
Learning Bayesian Belief NetworksAn approach based on the MDL Principle�Wai Lam and Fahiem BacchusDepartment of Computer ScienceUniversity of WaterlooWaterloo, Ontario,Canada, N2L 3G1May 19, 1994AbstractA new approach for learning Bayesian belief networks from raw data is presented. Theapproach is based on Rissanen's Minimal Description Length (MDL) principle, which is partic-ularly well suited for this task. Our approach does not require any prior assumptions about thedistribution being learned. In particular, our method can learn unrestricted multiply-connectedbelief networks. Furthermore, unlike other approaches our method allows us to tradeo� accuracyagainst complexity in the learned model. This is important since if the learned model is verycomplex (highly connected), it can be computationally intractable to use. In such a case it wouldbe preferable to use a simpler model even if it is less accurate. MDL o�ers a principled methodfor making this tradeo�. We also show that our method generalizes previous approaches basedon Kullback cross-entropy. Experiments have been conducted to demonstrate the feasibility ofthe approach.1 IntroductionBayesian belief networks, advanced by Pearl [9], have become an important paradigm for represent-ing and reasoning with uncertainty. Systems based on Bayesian networks have been constructedin a number of di�erent application areas, ranging from medical diagnosis, e.g., [2], to reasoningabout the oil market, e.g., [1]. Despite these successes, a major obstacle to using Bayesian networkslies in the di�culty of constructing them in complex domains. It can be a very time-consumingand error-prone task to specify a network that can serve as an accurate probabilistic model of theproblem domain; there is a knowledge engineering bottleneck. Clearly, any mechanism that canhelp automate this task would be bene�cial. A promising approach to this problem is to try toconstruct, or learn, such network representations >from raw data. In many areas raw data can�This work was supported by NSERC under their OperatingGrants Program and by the Institute for Robotics and Intelligent Systems. The authors' e-mail addresses arefwlam1,fbacchusg@logos.waterloo.edu. 1



be obtained from databases of records. If techniques can be developed for automatically learningBayesian networks from data not only will this help address the knowledge engineering problem,but it will also facilitate the automatic re�nement of the representation as new data is accumulated.In this paper we present a new approach to learning Bayesian networks. Our method candiscover arbitrary network structures from raw data without relying on any assumptions about theunderlying probability distribution that generated the data. In particular, the method can learnunrestricted multiply-connected networks . Multiply-connected networks are more expressive thantree or polytree networks, and that extra expressiveness is sometimes essential if the network isto be a su�ciently accurate model of the underlying distribution. Our approach is theoreticallyfounded on Rissanen's Minimum Description Length (MDL) Principle [13].It is well known that multiply-connected Bayesian networks are in the worst case computation-ally intractable to reason with; to be precise the reasoning algorithms are NP-Hard [4]. The com-plexity of reasoning with a particular network is a function of its connectivity; the more connectedit is the more di�cult is reasoning. Hence, there is limited utility in learning a multiply-connectednetwork that is too complex to support e�cient reasoning. We feel that the main advantage of ourapproach is that it o�ers a principled method, the MDL principle, of trading o� the complexity andaccuracy of the learned model. It will learn a less complex network if that network is su�cientlyaccurate, and at the same time, unlike some previous methods, it is still capable of learning complexnetworks if no simple network is su�ciently accurate.This is particularly important when learning from raw data as we do not have direct access tothe underlying distribution. Instead we can only approximate that distribution through the datathat it has generated. Since our information is only approximate it seems inappropriate to tryto recover the \true" structure. Rather, the purpose of building a network is to model the truedistribution, not to recover it. Just as in physics where Newtonian mechanics often provides amore useful model of the real phenomena than a relativistic model even though it is less accurate,a simpler, less accurate, network might well provide a more useful model than a more complex andmore accurate one.1The MDL principle says that the best model of a set of data is that model which minimizes thesum of the encoding lengths of the data and the model itself. That is, with the aid of the modelwe can represent, or encode, the data more compactly, by exploiting probabilistic regularitiesdescribed by the model. However, the model itself will require some representation. The MDLprinciple speci�es that both these components should be taken into consideration. More accuratemodels minimize the encoding length of the data, but the more complex a model is, the longer willbe its encoding. Hence, by minimizing the sum of these two factors the MDL principle o�ers atradeo� between complexity and accuracy.Finding the network (model) that minimizes the sum of these two components is a computation-ally intractable task however: there are simply too many networks to search. Hence, our realizationof the MDL principle is based on a heuristic search algorithm that tries to �nd a network that haslow, but not necessarily minimum, description length. We have conducted a number of experimentsthat successfully demonstrate the feasibility of our method.In the sequel we will �rst discuss related work on learning Bayesian Networks. Then we will1Rissanen provides a lucid and convincing argument that discovering useful models is the real concern of science[14]. 2



discuss in more detail the MDL principle and the manner in which it can be applied to the taskat hand. A discussion of our heuristic algorithm follows along with a presentation of our empiricalresults. We conclude with some discussion of future work.2 Related WorkThe earliest work that can be viewed as learning network models was that of Chow and Liu[3]. Their approach was able to recover simple tree-structured belief networks from a databaseof records. If the database was generated by a distribution that had a tree-structure, it couldbe exactly recovered. Otherwise their method guaranteed that the probability distribution of thelearned tree network was the closest of all tree networks to the underlying distribution of the rawdata. The criterion of \closeness" they used was based on the well-known Kullback-Leibler cross-entropy measure [7]. The main restriction of this work was that it could only learn tree structures.Hence, if the raw data was the result of a non-tree structured distribution, the learned structurecould be very inaccurate. Rebane and Pearl [12] extended Chow and Liu's methods to the recoveryof networks of singly connected trees (polytrees). If the underlying distribution had a polytreestructure, its topological structure could be exactly recovered (modulo the orientation of some ofthe arcs). But again if the raw data came from a non-polytree distribution, the learned structurecould be very inaccurate.Given a set of independence assertions of the form I(X;Z; Y ) interpreted as \X is independentof Y, given Z", Geiger et al. developed an approach [6] that can discover a minimal-edge I-map[10].However, their approach is again limited to polytrees; it is only guaranteed to work in the casewhere the underlying distribution has an exact polytree structure.All of the above approaches fail to recover the richer and more realistic class of multiply-connected networks, which topologically are directed acyclic graphs (dags). Recently, Spirtes etal. [16] have developed an algorithm that can construct multiply-connected networks. And Vermaand Pearl [17, 11] have developed what they call an IC-Algorithm that can also recover these kindsof structures. However, both approaches require that the underlying distribution being learnedbe dag-isomorphic.2 But, not all distributions are. As a result, both of these methods have thecommon drawback that they are not guaranteed to work when the underlying distribution fails tobe dag-isomorphic. In such cases no conclusions can be drawn about the closeness of �t betweenthe learned structure and the underlying distribution.All of these methods share the common disadvantage that they make assumptions about theunderlying distribution. Unfortunately, we are hardly ever in a position to know the underlyingdistribution. This is what we are trying to learn! Hence, we have no assurance that these methodswill work well in practice. These methods might produce very inaccurate models if the underlyingdistribution fails to fall into the category of distributions they can deal with. Nevertheless, theseworks have provided a great deal of information pertinent to learning Bayesian networks.An interesting alternate approach which can deal with multiply-connected networks is that ofCooper and Herskovits [5]. Their approach tries to �nd the most probable network using a Bayesianapproach. As with all Bayesian approaches, they must assume a prior distribution over the space2A distribution is dag-isomorphic if there is some dag that displays all of its dependencies and independencies [10].3



of all possible network structures. They have taken this prior to be uniform.3 Unfortunately, itseems to us that this is the wrong choice. By choosing this prior their method will always prefer amore accurate network, even if that network is much more complex and only slightly more accurate.Given that we must perform learning with only a limited amount of data, this insistence on accuracyis questionable.One way of viewing the MDL principle is as a Bayesian approach in which the prior distributionover the models is inversely related to their encoding length, i.e., their complexity. Hence, theMDL principle has a bias towards learning models that are as simple as possible. This seems tous to be a far more reasonable approach, given that the data is only approximately representativeof the underlying distribution. Another advantage is that the MDL principle can be applied toall components of the model, including, e.g., the conditional probabilities that parameterize thenetwork; although we have not done this yet. In Cooper and Herskovits's approach they mustalso place a prior distribution on these parameters, and again it is not clear that their choice of auniform distribution is the appropriate one.Cooper and Herskovits face the same problem as we do: the space of possible network struc-tures is simply too large to explore. Hence, they also develop a heuristic method that searches aconstrained set of structures looking, in their case, for the one with highest posterior probability,and in our case for the one with minimal description length. The heuristic method they choosedepends on an inputted ordering of the variables, and the network that they learn respects thisordering (i.e., parents of a node are always lower in the ordering). The heuristic method we de-velop, however, does not require such an ordering, which is an advantage in situations where thereis insu�cient causal information to generate a total ordering.3 The MDL PrincipleThe MDL principle is based on the idea that the best model of a collection of data items is themodel that minimizes the sum of (1) the length of the encoding of the model, and (2) the lengthof the encoding of the data given the model, both of which are measured in bits.To apply the MDL principle to Bayesian networks we need to specify how we can perform thetwo encodings, the network itself (1) and the raw data given a network (2).3.1 Encoding the NetworkTo represent a particular Bayesian network, the following information is necessary and su�cient:(a) A list of the parents of each node, and (b) the set of conditional probabilities associated witheach node that are required to parameterize the network.Suppose there are n nodes in the problem domain. For a node with k parents, we need k log2(n)bits to list its parents. To represent the conditional probabilities, the encoding length will be theproduct of the number of bits required to store the numerical value of each conditional probabilityand the total number of conditional probabilities that are required. In a Bayesian network, aconditional probability is needed for every distinct instantiation of the parent nodes and node itself3Cooper and Herskovits have also considered other priors. However, an essential di�culty remains in justifyingany particular choice. With the MDL principle there is a natural justi�cation for preferring less complex networks.4



(except that one of these conditional probabilities can be computed >from the others due to thefact that they all sum to 1). For example, if a node that can take on 5 distinct values has 4 parentseach of which can take on 3 distinct values, we will need 34 � (5 � 1) conditional probabilities.Hence, under this simple scheme the total description length for a particular network will be:nXi=1[ki log2(n) + d(si � 1) Yj2Fi sj ]; (1)where ki is the number of parents node i has, si is the number of values it can take on, Fi is theset of its parents, and d represents the number of bits required to store a numerical value. Fora particular problem domain, n and d will be constants. This is not the only encoding schemepossible, but it is simple and it performs well in our experiments.By looking at this equation, we see that highly connected networks require longer encodings.First, for many nodes the list of parents will get larger, and second the list of conditional prob-abilities we need to store for that node will also increase. In addition, networks in which nodesthat have a larger number of values have parents with a large number of values will require longerencodings. Hence, the MDL principle will tend to favor networks in which the nodes have a smallernumber of parents (i.e., networks that are less connected) and also networks in which nodes takingon a large number of values are not parents of nodes that also take on a large number of values.It also happens that for Bayesian networks the degree of connectivity is closely related to thecomputational complexity of using the network. For example, extremely e�cient algorithms existfor trees, and tractable (polynomial) algorithms exist for singly connected networks [10].4 Hence,our encoding scheme generates a preference for more e�cient networks. The encoding length ofthe model is, however, not the only factor in determining the description length; we also have toconsider the encoding length of the data.3.2 Encoding the Data Using the ModelLet us �rst be more precise about the form of the raw data. The task is to learn the joint distributionof a collection of random variablesX = fX1; : : : ; Xng. Each variableXi has an associated collectionof values fx1i ; : : : ; xki g that it can take on, where the number of values k will in general depend oni. Every distinct choice of values for the variables in X de�nes an atomic event in the underlyingjoint distribution and is assigned a particular probability by that distribution.For example, we might have three random variables X1, X2, and X3, with X1 having f1; 2g, X2having f1; 2; 3g, andX3 having f1; 2g as possible values. There are 2�3�2 di�erent complete instan-tiations of the variables. Each of these is an atomic event in the underlying joint distribution, andhas a particular probability of occurring. For example, the event in which fX1 = 1; X2 = 3; X3 = 1gis one of these atomic events.We assume that the data points in the raw data are all atomic events. That is, each data pointspeci�es a value for every random variable in X . Furthermore, we assume that the data points arethe result of independent random trials. Hence, we would expect, via the central limit theorem,that each particular instantiation of the variables would appear in the database with a relative4This preference is not exact as our simple encoding does not take into consideration all of the factors thatcontribute to computational complexity. Future work will address this limitation.5



frequency approximately equal to its probability. These assumptions are standard ones in work inthis area.Given a Bayesian network model we can determine its conditional probability parameters fromthe raw data. Every variable Xi is a particular node in the network, and an unbiased estimator fornode Xi taking on the value v when its parents in the network take on values represented by u isNv;u=Nu, where Nv;u is the number of data points in which Xi and its parents take on the valuesv and u, and Nu is the number of data points in which Xi's parents take on the values u.Given our Bayesian network model we can calculate the probability qi (according to our model)of every atomic event ei. Given that we are using the model as a best \guess" representationof the underlying probabilities, the optimal encoding of the data using the probabilities qi willuse approximately � log2(qi) bits to encode each occurrence of the event ei, i.e., each data pointrepresenting event ei will require that many bits in the encoding.For example, given the set of variables X1, X2 and X3 as above, our model might assignprobability 1/2 to the event e1 = fX1 = 1; X2 = 3; X3 = 1g and probability 1/4 to the event e2 =fX1 = 2; X2 = 2; X3 = 1g. We could then use the binary code 1 to represent e1 and the code 01to represent e2 reserving the longer codes 001, 0001, etc., for the other less probable events. If thedatabase consists of the sequence of events e1; e1; e2, we could encode it as the 4 bit sequence 1101.5Here the database has twice as many occurrences of e1 as e2; the probabilities predicted by ourmodel are corroborated by the database. However, if the database consisted of the event sequencee2; e2; e1, the encoding dictated by our model would require a 5 bit sequence 01011 to encode thedatabase. In this case a model that reversed the probability assignments to e1 and e2 would haveyielded a shorter encoding of the database; such a model would represent e2 with the shorter coderather than e1.If the true probability of event ei was pi and the database consisted of N data points, we wouldexpect that on average there would be Npi occurrences of ei in the database. Hence, given a modelthat assigns probability qi to event ei, it would require�NXi pi log2(qi) (2)bits to encode the database. The following theorem, due to Gibbs [13], provides important infor-mation about the properties of this encoding.Theorem 3.1 (Gibbs) Let pi and qi, i = 1; : : : ; n, be non-negative real numbers that sum to 1.Then � nXi=1 pi log2(pi) � � nXi=1 pi log2(qi);with equality holding if and only if pi = qi, where we take 0 log2(0) to be 0.This theorem implies that on average the encoding of the data is minimized only by an absolutelyaccurate model, i.e., a model that assigns probabilities qi that are equal to the true underlyingprobabilities pi.Furthermore, the theorem allows us to relate the MDL principle to the procedure of minimizingcross-entropy, an important technique in previous work.5Note the code is a pre�x code: we do not need any \spacers" to indicate where the codes for the individual eventsstart and stop. 6



De�nition 3.2 [Kullback-Leibler Cross-Entropy] Let P and Q be distributions de�ned over thesame event space. The Kullback-Leibler cross-entropy between P and Q, C(P;Q), is a measure ofhow close Q is to P and is de�ned by the equationC(P;Q) =Xi pi(log2(pi)� log2(qi)): (3)It follows from Gibbs's theorem that this quantity is always non-negative and that it is zero if andonly if P � Q, i.e., 8i:qi = pi.>From Equation 2 if follows that the minimal possible encoding length of the data will be�NPi pi log2(pi). Hence, when using a model that assigns probabilities qi the encoding length willincrease by N(Pi pi(log2(pi)� log2(qi))). That is, we have the following theorem.Theorem 3.3 The encoding length of the data is a monotonically increasing function of the cross-entropy between the distribution de�ned by the model and the true distribution.In previous work Chow and Liu [3] developed a method for �nding a tree structure that min-imized the cross-entropy, and their method was extended by Rebane and Pearl [12] to �ndingpolytrees with minimal cross-entropy. This theorem shows that in a certain sense the MDL prin-ciple can be viewed as a generalization of these approaches. If we were to ignore the complexity(encoding length) of the model and were to restrict the class of models being examined, the MDLprinciple would duplicate their results. The advantage of considering both the data and the model(i.e., the sum of Equations 1 and 2) is that we can learn a more complex model if no simpler modelis su�ciently accurate, i.e., if every simpler model has very high cross-entropy.4 Applying the MDL PrincipleIn theory the MDL principle can be applied by simply examining every possible Bayesian networkthat can be constructed over our set of random variables X . For each of these networks wecould evaluate the encoding length of the data and of the network searching for the network thatminimized the sum of these encodings.However, this approach is impractical as there are an exponential number of networks over nvariables.6 Hence, we must resort to a heuristic search through the space of possible networkstrying to �nd one that yields a low, albeit not necessarily minimal, sum of Equations 1 and 2.We accomplish this search by dividing the problem into two. There can be between 0 andn(n � 1)=2 arcs in a dag. For each possible number of di�erent arcs we search heuristically for anetwork with that many arcs and low cross-entropy. By Theorem 3.3 we know that this networkwill yield a relatively low encoding length for the data. We then examine these di�erent networks,each with a di�erent number of arcs, and �nd the one that minimizes the sum of Equations 1 and2. That is, of these low cross-entropy networks we �nd the one that is best according to the MDLprinciple.To perform the �rst part of the search, i.e., to �nd a network with low cross-entropy, we developsome additional results that are based on the work of Chow and Liu [3].6Robinson [15] gives a recurrence that can be used to calculate this number.7



4.1 Evaluating Cross-EntropyThe underlying distribution P is a joint distribution over the variables X = fX1; : : : ; Xng, andany Bayesian network model will also de�ne a joint distribution Q over these variables. Using thisnotation the equation for the cross-entropy between P and Q becomesC(P;Q) =XX P (X) log2 P (X)Q(X) ;where the sum extends over all distinct vectors of values of the variables in X , i.e., all atomicevents.In an arbitrary Bayesian network Q(X) will take the form [10]:Q(X) = Q(X1 j FX1 )Q(X2 j FX2) : : :Q(Xn j FXn )= P (X1 j FX1)P (X2 j FX2 ) : : :P (Xn j FXn ); (4)where FXi is the, possibly empty, set of parents of Xi. We can replace the terms Q(XijFXi)by P (XijFXi) since we are estimating these conditional probability terms, i.e., the parameters ofthe Bayesian network, through frequency counts taken over the raw data (as described above).This equality assumes that these estimates are approximately equal to the true underlying valuesP (XijFXi). By the central limit theorem they will be close, with high probability, if we have asu�cient number of data points.We can extend Chow and Liu's work by de�ning a weight measure for a node, Xi, with respectto its parents as follows:W (Xi; FXi) = XXi ;FXi P (Xi; FXi) log2 P (Xi; FXi)P (Xi)P (FXi) (5)where we are summing over all possible values that Xi and its parents FXi can take. And we canprove the following theorem.Theorem 4.1 C(P;Q) is a monotonically decreasing function of Pni=1;FXi 6=;W (Xi; FXi). Hence,it will be minimized if and only if the sum is maximized.The proof of this and the other theorems is given in our full report [8]. The summation term is thetotal weight of the directed acyclic graph according to the weight measure de�ned in Equation 5.In conclusion, given probabilities computed from the raw data, we can calculate the weight ofany proposed network structure. Our theorem shows that structures with greater weight are closerto the underlying distribution. If we can �nd a directed acyclic graph with maximum total weight,then the probability distribution of this structure will be closest to the underlying distribution ofthe raw data, and thus it will yield the shortest encoding of the data.However, it should be noted that we cannot simply use Theorem 4.1 without considering theencoding length of the network. In fact, for every probability distribution P , if we letQ(X) = P (X1 j X2; : : : ; Xn)P (X2 j X3; : : : ; Xn) : : : P (Xn); (6)then Q � P . In other words, if we construct the multiply-connected network corresponding tothe structure on the right side of the above expression, the probability distribution de�ned by8



this structure will absolutely coincide with the underlying distribution of the raw data, and henceit will have lowest possible cross-entropy and highest possible weight. However, this structureis a complete graph, and worse still, it does not convey any meaning since it can represent anydistribution. This indicates that if we allow structures of arbitrarily complex topology, we canobtain a trivial match with the underlying distribution.To further understand the problem, consider the following theorem.Theorem 4.2 Let Mi be the maximum weight of all networks that have i arcs, theni > j )Mi �Mj:That is, we can always increase the quality of the learned network, i.e., decrease the error in thesense of decreasing the cross-entropy, by increasing the topological complexity, i.e., by learningnetworks with more arcs. It is by considering in addition the encoding length of the network thatwe resolve this di�culty.4.2 Searching for Low Cross-Entropy NetworksGiven our ability to evaluate the cross-entropy of a network through an evaluation of its weight,we have developed a heuristic search algorithm that uses local search to �nd networks with lowcross-entropy. We search for low cross-entropy networks with varying numbers of arcs, and thenwe choose among the networks found that one which minimizes the total description length, i.e.,that is best by the MDL principle.A complete description of the heuristic search algorithm is given in our full report [8]. Inempirical tests of this algorithm we have found that when provided with time polynomial in thenumber of data points and the number of variables (nodes in the net), the search procedure cansuccessfully �nd good networks models of the raw data. Furthermore, it can �nd such modelswithout being provided with a prior \causality" ordering of the variables, as is required by Cooperand Herskovits's procedure [5].5 Experimental ResultsA common approach to evaluating various learning algorithms has been to generate raw data from apredetermined network and then to compare the network learned from that data with the original,the aim being to recapture the original. For example, this is the technique used by Cooper andHerskovits [5]. An implicit assumption of this approach is that the aim of learning is to reconstructthe true distribution. However, if one takes the aim of learning to be the construction of a usefulmodel, i.e., one that is a good tradeo� between accuracy and complexity, as we have argued for,then this approach is not suitable. In particular, the aim of our approach is not to recapture theoriginal distribution.To evaluate our experimental results we have developed a new approach for comparing thelearned network with the original. Our approach involves a measure of the closeness betweentwo networks. This measure is actualized in two di�erent ways, one using Kullback-Leibler cross-entropy and the other using an average of the di�erence between the distributions speci�ed by the9



two networks evaluated a various points. The details of our closeness measure are given in the fullreport [8].We have performed three sets of experiments to demonstrate the feasibility of our approach.The �rst set of experiments consisted of a number of Bayesian networks that were composed ofsmall number of variables (5) as shown in Figure 1. Some of these structures are multiply-connectednetworks.The second experiment consisted of learning a Bayesian network with a fairly large number ofvariables (37 nodes and 46 arcs). This network was derived from a real-world application in medicaldiagnosis [2] and is known as the ALARM network (see [8] for a diagram of this network).The third experiment consisted of learning a small Bayesian network, as shown in in Figure 2.We experimented by varying the conditional probability parameters of this network. Here the aimwas to demonstrate that our procedure could often learn a simpler network that was very close tothe original.During the �rst set of experiments after calculating the description lengths of the networks, thenetwork with the minimum description length was selected. In all these cases we found that thelearned network was exactly the same as the one used to generate the raw data.In the second experiment the Bayesian network recovered by the algorithm was found to beclose to the original network structure. Two di�erent arcs and three missing arcs were found, outof 46 arcs. Furthermore, our evaluated closeness between the original network and this learnedstructure was very small, under both of our measures. One additional feature of our approach, inparticular a feature of our heuristic search algorithm, is that we did not require a user suppliedordering of variables (cf. Cooper and Herskovits [5]). We feel that this experiment demonstratesthat our approach is feasible for recovering Bayesian networks of practical size.In the third set of experiments, the original Bayesian network G4 consisted of 5 nodes and 5arcs. We varied the conditional probability parameters during the process of generating the rawdata obtaining four di�erent sets of raw data. Exhaustive searching was then carried out and theMDL learning algorithm was applied to each of these sets of raw data. Di�erent learned structureswere obtained, all of which were extremely close to the original network as measured by both ofour distance formulas. In one case the original network was recovered.This experiment demonstrates that our algorithm yields a tradeo� between accuracy and com-plexity of the learned structures: in all cases where the original network was not recovered a simplernetwork was learned. The type of structure learned depends on the parameters, as each set of pa-rameters, in conjunction with the structure, de�nes a di�erent probability distribution. Some ofthese distributions can be accurately modeled with simpler structures. In the �rst case, the distri-bution de�ned by the parameters did not have a simpler model of su�cient accuracy, but in theother cases it did.6 ConclusionsWe have argued in this paper that the purpose of learning a Bayesian network from raw data is notto recover the underlying distribution, as this distribution might be too complex to use. Rather,we should attempt to learn a useful model of the underlying phenomena. Hence, there shouldbe some tradeo� between accuracy and complexity. The MDL principle has as its rational this10



same tradeo�, and it can be naturally applied to this particular problem. We have discussed indetail how the MDL principle can be applied and have pointed out its relationship to the methodof minimizing cross-entropy. Using this relationship we have extended the results of Chow andLiu relating cross-entropy to a weighing function on the nodes. This has allowed us to developa heuristic search algorithm for networks that minimize cross-entropy. These networks minimizethe encoding length of the data, and when we also consider the complexity of the network we canobtain models that are good under the MDL metric. Our experimental results demonstrate thatour algorithm does in fact perform this tradeo�, and further that it can be applied to networks ofreasonable size.There are a number of issues that arise which require future research. One issue is the searchmechanism. We are currently dividing the task into �rst searching for a network that minimizesthe encoding length of the data and then searching through the resulting networks for one thatminimizes the total description length. This method has been successful in practice, but we arealso investigating other mechanisms. In particular, it seems reasonable to combine both phasesinto one search. Another important component that has not yet been addressed is the accuracyof the raw data. In general, there will be a limited quantity of raw data, and certain parameterscan only be estimated with limited accuracy. We are investigating methods for taking into accountthe accuracy of the data in the construction. For example, nodes with many parents will requirecomplex joint probabilities as parameters. Estimates of such parameters from the raw data willin general be less accurate. Hence, there might be additional reasons to discourage the learningof complex networks. Finally, there might be partial information about the domain. For example,we might know of causal relationships in the domain that bias us towards making certain nodesparents of other nodes. The issue that arises is how can this information be used during learning.We are investigating some approaches to this problem.References[1] B. Abramson. ARCO1: An application of belief networks to the oil market. In Proceedings ofthe Conference on Uncertainty in Arti�cial Intelligence, pages 1{8, 1991.[2] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM monitoringsystem: A case study with two probabilistic inference techniques for belief networks. InProceedings of the 2nd European Conference on Arti�cial Intelligence in Medicine, pages 247{256, 1989.[3] C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependencetrees. IEEE Transactions on Information Theory, 14(3):462{467, 1968.[4] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian beliefnetworks. Arti�cial Intelligence, 42:393{405, 1990.[5] G. F. Cooper and E. Herskovits. A Bayesian method for constructing Bayesian belief networksfrom databases. In Proceedings of the Conference on Uncertainty in Arti�cial Intelligence,pages 86{94, 1991. 11
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Figure 2: The Quality of Learned Networks14


