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Abstract

Many problems in AI can be modeled as constraint satisfaction problems 	CSPs
�

Hence the development of e�ective solution techniques for CSPs is an important

research problem� Forward checking 	FC
 with some other heuristics has been

traditionally considered to be the best algorithm for solving CSPs while recently

there have been a number of claims that maintaining arc consistency 	MAC
 is

more e�cient on large and hard CSPs� In this thesis� we provide a systematic

comparison empirically of the performances of the MAC and FC algorithms on

large and hard CSPs� In particular� we compare their performance with regard to

the size� constraint density and constraint tightness of the problems� Though there

is a trend that MAC eventually outperforms FC on hard problems as we increase

the problem size� we found that the superiority of MAC over FC would not be

revealed on the hard problems with low constraint tightness and high constraint

density until the size of these problems is quite large� We also devised a new FC

algorithm 
 FC�� which shows good performance on the hard problems with low

constraint tightness and high constraint density�
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Chapter �

Introduction

Many problems in AI can be modeled as constraint satisfaction problems 	CSPs
�
Hence the development of e�ective solution techniques for CSPs is an important
research problem� In this thesis� we �rst review some algorithms for CSP solving�
and then provide an empirical analysis of some recently suggested techniques using
randomly generated problems�

��� What is a CSP�

Examples and applications of CSPs can be found in many areas� such as resource
allocation in scheduling� temporal reasoning� natural language processing� query
optimization in database� etc�

In general� a CSP is a problem composed of a �nite set of variables� each of
which has a �nite domain of values� and a set of constraints� Each constraint is
de�ned over some subset of the original set of variables and restricts the values
these variables can simultaneously take� The task is to �nd an assignment of a
value for each variable such that the assignments satisfy all the constraints� In
some problems� the goal is to �nd all such assignments�

A great many �real�world� problems can be formulated as CSPs� For example�
we can take a look at the area of resource allocation� One application is exami�
nation scheduling� Examinations are to be scheduled in a number of given time
slots� With a limited number of classrooms� each examination needs a classroom�

�
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Di�erent classrooms are of di�erent capacity and an examination can only be sched�
uled in a classroom that has enough seats for students who are going to take that
examination� Some students may take part in several examinations and these ex�
aminations cannot be scheduled in the same time slot� To model this problem�
we can make each examination a variable� the possible time slots and classrooms
are its domain� and the constraints are that certain examinations cannot be held
together� A more complicated but more realistic example of resource allocation is
airport gate allocation� Usually both the physical constraints 	e�g�� certain jet�ways
can only accommodate certain types of aircraft
 and user preferences 	e�g�� di�erent
airlines prefer to park in certain parts of an airport
 need to be considered� This
problem can be modeled as a CSP so that a solution to the CSP would be a solu�
tion to the airport gate allocation problem� In all areas of industry and business�
resource allocation is a key factor to making a pro�t and a loss� Hence modeling
these problems as CSPs to �nd an e�ective solution is an interesting research topic�
In this thesis� we will focus on how to solve a given CSP�

Since modeling of realistic problems as CSPs is not the topic of this thesis� we
illustrate the formalization of a CSP by two simple examples�

The N�queens problem can be modeled as a CSP� Given an integer N � the
problem is to place N queens on N distinct squares in an N � N chess board�
satisfying the constraint that no two queens should threaten each other� Two
queens threaten each other if and only if they are on the same row� column or
diagonal� Figure ��� gives one possible solution to the ��queens problem�

1 2 3 4

V1

V2

V3

V4

Figure ���� A possible solution to the ��queens problem
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Another example of a CSP is the map�coloring problem ���� In this problem� we
need to color each region of the map with one of a given set of colors such that no
two adjacent regions have the same color� Figure ��� shows a simple map�coloring
problem� The map has four regions that are to be colored red� green� or blue�
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red green blue

Figure ���� A map�coloring problem

A CSP is called an n�ary CSP when n is the maximum number of distinct
variables over which a constraint is speci�ed� For instance� a binary CSP only has
constraints involving two variables� It is well known that any n�ary CSP can be
converted to a binary CSP ��� ��� and in this thesis we restrict our attention to
binary CSPs� Both the N�queens and map�coloring problems are binary CSPs�

More formally� a binary CSP can be de�ned to consist of a triple 	V�D�R

where�

� V is a set fV�� ���� Vi� ���� Vng of n variables�

� D is a set fD�� ����Di� ����Dng of domains� such that� �i� � � i � n� Di �
fvi�� ���� v

i
j� ���� v

i
ki
g is the �nite set of possible values for Vi�
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� R is a sequence f���� Rij� ���g of binary constraint relations such that �Rij � R�
Rij constrains the two variables Vi and Vj and is de�ned by a subset of the
Cartesian product Di � Dj � The set of pairs of values in R speci�es the
allowed pairs of values for variables Vi and Vj � If 	vil� v

j
m
 � Ri�j � we say that

the assignment fVi � vil� Vj � vjmg is consistent�

Thus� we can encode the ��queens problem as a CSP as follows�

� Make each of the � rows a variable� V � fV�� V�� V�� V�g�
The value of each variable will represent the column in which the queen in
rowi 	� � i � �
 is placed�

� Domains� D � fD��D��D��D�g
Each of these � variables can take one of the � columns as its value� with
labels � to �� The domains of the � variables are�
D� � D� � D� � D� � f�� �� �� �g�

� Constraints� R � fRijji � j and � � i� j � �g
For each constraint Rij�

�� No two queens on the same row� This constraint becomes trivial given
the variable encoding�

�� No two queens on the same column � Vi �� Vj �

�� No two queens on the same diagonal� ji	 jj �� jVi 	 Vj j�

In a similar manner� the map�coloring problem in Figure ��� can be represented
as a CSP as follows�

� Variables� V
Each variable represents a region in the map� V � fV�� V�� V�� V�g�
The value of each variable will represent the color assigned to that region�

� Domains� D � fD��D��D��D�g
The domain Di of variable Vi will be the set of legal colors for regioni	� �
i � �
� Assuming that we have three possible colors r 	red
� b 	blue
 and g
	green
 for each region� the domains of the four variables become�
D� � D� � D� � D� � fr� g� bg�
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� Constraints� R � fR��� R��� R��� R��� R��g
There is a constraint between two adjacent regions�
For each constraint Rij� Vi �� Vj�

Associated with every binary CSP is a constraint graph� The constraint graph
contains a node for each variable and an edge between each pair of nodes for which
there is a constraint between the corresponding two variables�

V1

V3

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

V2

V4

Figure ���� Graph representation of the ��queens problem

Figure ��� is the constraint graph for the ��queens problem which is a complete
graph because there is a constraint for each pair of variables� Figure ��� shows the
constraint graph for the map�coloring problem in Figure ���� Each edge represents
two adjacent regions in the map�

Finding a solution to a CSP is an NP�complete problem� On one hand� we
can guess the assignments of all variables and it is not di�cult to check whether
all the constraints are satis�ed given these assignments� So it is in NP � On the
other hand� the satis�ability problem 	SAT
� which is known to be NP�hard� can
be encoded as a CSP problem�

Therefore� it is unlikely to have a polynomial time solution for CSPs� Never�
theless� there is great interest in �nding algorithms for solving CSPs that perform
well empirically�
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V1

V2

V3

V4
{r,g,b}

{r,g,b}

{r,g,b}

{r,g,b}

Figure ���� Graph representation of the map�coloring problem in Figure ���

��� General approaches for CSP solving

A most naive approach to solving a CSP is the �generate�and�test� method� Each
possible assignment of values to variables is systematically generated and then
tested to see if it satis�es all the constraints� The �rst assignment that satis�es all
the constraints is the solution� In the worst case 	or when we are trying to �nd all
the solutions for a CSP
� the number of assignments to be considered is the size
of the Cartesian product of all the variable domains� Thus the time complexity of
this approach is exponential in the number of variables� Empirically this method
performs very poorly�

Randomized �generate�and�test� algorithms that select the assignments to test
at random in accord with some biased distribution 	e�g�� the distribution might be
biased by the most recently tested assignments as in randomized hill�climbing ����

can sometimes perform extremely well� but unfortunately� lose systematicity� That
is� these randomized methods are unable to prove that no solution exists since they
do not necessarily test all assignments�

In general� there are three standard approaches for CSP solving�

����� Tree Search

Tree search is a standard technique for solving CSPs� The basic algorithm is sim�
ple backtracking 	BT
 ����� a general search strategy which has been widely used
in problem solving� In solving CSPs� it also serves as the basis for many other
algorithms�
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In BT� variables are instantiated one by one� When a variable is instantiated�
a value from its domain is picked and assigned to it� Then constraint checks are
performed to make sure that the new instantiation is compatible with all the in�
stantiations made so far� If all the completed constraints are satis�ed� this variable
has been instantiated successfully and we can move on to instantiate the next vari�
able� If it violates certain constraints� then an alternative value� when available� is
picked� If all the variables have a value� noting that all the assignments are consis�
tent� the problem is solved� If at any stage no value can be assigned to a variable
without violating a constraint� backtracking occurs� That means� the most recent
instantiated variable has its instantiation revised and a new value� if available� is
assigned to it� At this point we continue on to try instantiating the other variables�
or we backtrack farther� This carries on until either a solution is found or all the
combinations of instantiation have been tried and have failed which means that
there is no solution�

Here is the BT algorithm speci�ed in pseudo code�

�� function CONSISTENT 	Vi� vil


� Check against past variables

�� for each 	Vj � vjm
 � Solution

�� if Rij � R and 	vil � v
j
m
 �� Rij

�� return FALSE

�� return TRUE
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�� function SEARCH BT 	V ars� Level


� Try to instantiate Vi� then recurse

�� select a variable Vi � V ars

�� for each value vil � Di

�� if CONSISTENT 	Vi� vil


�� Solution� Solution� 	Vi� vil


�� if Vi is the only variable in V ars

� Found a solution

�� return TRUE

�� else

�� if SEARCH BT 	V arsnfVig� Level� �


�� return TRUE

� No solution down this branch

�� return FALSE

�� function BT

�� Solution� 


�� return SEARCH BT 	V� �


The CSP to be solved is given as 	V�D�R
 and we assume that if Rij � R� then
we also have Rji � R� The BT algorithm is made up of three functions� BT is the
main function� It calls SEARCH BT 	V� �
 to solve the problem� It returns TRUE
if it �nds a solution and returns FALSE if there is no solution� SEARCH BT
calls itself recursively to explore the search tree� Each invocation of SEARCH BT
corresponds to a node in the search tree� except the root� SEARCH BT has
two parameters� V ars is a subset of V � It contains all the uninstantiated vari�
ables� Level indicates the recursive level of the current invocation of the function
SEARCH BT � Level is � when it is �rst invoked by BT � Each invocation of
SEARCH BT tries to assign a value to an uninstantiated variable� At this point�
we call the 	Level	 �
 variables which have already been successfully instantiated
the past variables� the variable currently being instantiated the current variable�
and the remaining variables the future variables� If the assignment is successful�
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it calls itself with increasing Level to search for a consistent assignment of the re�
maining variables� Otherwise� it tries the next value of the current variable� If all
of the values of the current variable are tried and fail� the current invocation of
SEARCH BT exits and returns FALSE� This returns as to the previous invoca�
tion of SEARCH BT at Level	 �� where the next value of the previous variable
is tried� If the return is from the the �rst invocation of SEARCH BT � we return
to the main function BT with value FALSE and we know that no solution to the
CSP exists� On the other hand� if all the variables are instantiated successfully�
a solution is found and the current SEARCH BT which has the deepest Level
exits and returns TRUE� It will keep on going back to previous invocations of
SEARCH BT until it returns TRUE to the main function BT � CONSISTENT
is called by SEARCH BT to check whether the current instantiation is consistent
with the instantiation of all the past variables� Only those constraints between
the current variable and the past variables need to be checked� 	Constraints that
involve only past variables were checked in the previous stages and constraints that
involve any future variables cannot be checked now because these variables have
not yet been instantiated�
 If any of the constraints fail� it returns FALSE� Other�
wise� it returns TRUE� Solution is a global variable used to remember the current
partial assignment� Initially it is empty and it will contain the solution in the end
if one is found�

Figure ��� shows the tree searched by BT on the ��queens problem� The node
in a circle is the solution found by BT� V� � �� V� � �� V� � �� V� � �� The number
of constraint checks performed is often used as a measurement of the e�ciency
of a CSP algorithm as this corresponds quite closely to the number of atomic
operations performed by the algorithm� In the graph� the number beside each node
indicates the number of constraint checks for that instantiation and total number
of constraint checks and total number of nodes visited are also calculated�

BT is strictly better than generate�and�test in that it is able to eliminate a
subspace from the Cartesian product of all the variable domains whenever a partial
assignment of variables violates any of the constraints� However� since it essen�
tially performs a depth��rst search of the space of potential CSP solutions� its time
complexity for most problems is still exponential�

Previous studies ��� have shown that there are two main reasons for the poor
performance of BT� thrashing and redundant constraint checks� Some re�ned al�
gorithms of BT have been developed to avoid these problems�



CHAPTER �� INTRODUCTION ��

3

0 0

1 1 1 1 1 1 1 1

1 2 2 2 2 2

3 3
Total nodes visited:        27

assigned value
still possible value

1 1

1 2 1

1

1

Total constraint checks: 36

Figure ���� Search tree of the ��queens problem using BT

BT su�ers from thrashing� That is� search in di�erent parts of the space keeps
failing for the same reasons� Thrashing can be avoided by using some strategies
so that backtracking is done directly to the variable that caused the failure� Back�
jumping 	BJ
 is an algorithm developed by Gaschnig ��� that jumps back multiple
levels� directly to the cause of a con�ict to avoid thrashing� Con�ict�directed back�
jumping 	CBJ
 is an improvement of BJ that can perform multiple backjumps� In
both algorithms� the number of nodes visited in the search tree can be reduced�
resulting in a reduction in the number of constraint checks�

Sometimes BT has to perform redundant constraint checks� Backmarking 	BM

also developed by Gaschnig ��� is aimed at eliminating redundant constraint checks
by preventing the same constraint from being tested repeatedly�
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All of these algorithms improve the performance of BT to a certain level but still
cannot avoid the problem of thrashing and redundant constraint checks completely�

����� Constraint propagation

Constraint propagation is aimed at transforming a CSP into an equivalent prob�
lem that is hopefully easier to solve� Constraint propagation works by reducing
the domain size of the variables in such a manner that no solutions are ruled
out� It involves removing redundant values from the domains of the variables and
propagating the e�ects of these removals throughout the constraints� Constraint
propagation can be performed to di�erent degrees�

As mentioned earlier� binary CSPs have associated constraint graphs� where the
nodes represent variables and the edges binary constraints� Constraint propagation
algorithms are best described in terms of these constraint graphs� Hence the related
consistency concepts are named using terminology borrowed from graph theory�

As we know� binary CSPs have only two kinds of constraints� unary constraints
and binary constraints� The simplest degree of consistency that can be enforced
on a CSP is node consistency which concerns only the unary constraints� A CSP
is node consistent if and only if for all variables all values in its domain satisfy the
unary constraints on that variable� If a CSP is not node consistent� then there exists
a certain variable Vi� and a certain value a in its domain such that value a does not
satisfy the unary constraints on variable Vi� That means� the instantiation of Vi to
a always results in an immediate failure� In other words� value a is redundant and
will not be in any solution tuples� Hence it can be removed�

In this thesis� we assume that all our CSPs are already node consistent� If a
variable has a value in its domain that does not satisfy the unary constraints on it�
then that value is regarded to not be in its domain� All the values in the domains
of all the variables have to satisfy the unary constraints on these variables�

A stronger degree of consistency is arc consistency� Arc consistency concerns
the binary constraints in a CSP and considers binary constraints between one pair
of variables at a time� An edge 	Vi� Vj
 in the constraint graph can be seen as a
pair of arcs 	Vi� Vj
 and 	Vj � Vi
� We say arc 	Vi� Vj
 is arc consistent if and only
if for every value a in the current domain of Vi� there exists some value b in the
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domain of Vj such that Vi � a and Vj � b are permitted by the binary constraint
between Vi and Vj � The concept of arc consistency is directional� that is� if an arc
	Vi� Vj
 is consistent� then it does not automatically mean that 	Vj � Vi
 is also arc
consistent� For example� given the map�coloring problem in Figure ���� 	V�� V�
 is
arc consistent� because b is the only value in the domain of V� and there exists a
value g in the domain of V� that V� � b and V� � g are compatible� However�
	V�� V�
 is not arc consistent� For V� � b� V� � b is not compatible with it and there
is no other value in the domain of V��

V1

V3V2
not-same

not-same

{r,g}

{b}

not-same

{g,b}

Figure ���� An example of arc consistency and inconsistency

An arc 	Vi� Vj
 can be made consistent by simply deleting those values from the
domain of Vi for which there is no value in the domain of Vj compatible with them�
Those values will not be in any solutions and therefore are redundant�

Function REV ISE	Vi� Vj
 makes arc 	Vi� Vj
 consistent� It deletes all the values
in the domain of Vi that are redundant and returns TRUE� Otherwise� if 	Vi� Vj

is initially arc consistent and no value needs to be removed� it returns FALSE�
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�� function REV ISE	Vi� Vj


�� Deleted� FALSE

�� for each vil � Di

�� Found� FALSE

�� for each vjm � Dj

�� if 	vil � v
j
m
 � Ri�j

�� Found� TRUE

�� break

�� if not Found

�� Di � Di 	 vil

�� Deleted� TRUE

�� return 	Deleted


A CSP is arc consistent if and only if every arc in the constraint graph is arc
consistent� This can be done by executing REV ISE for each arc� But because
the removal of some values of one domain may a�ect the consistency of other arcs
and make more values redundant� it is not su�cient to execute REV ISE just once
for each arc� Again consider the example in Figure ���� 	V�� V�
 is initially arc
consistent� After arc 	V�� V�
 is made consistent by deleting b from the domain
of V�� arc 	V�� V�
 is no longer arc consistent and g in the domain of V� becomes
redundant� In order to make the whole graph fully arc consistent� we have to
propagate the removal of values throughout the graph until no more values can be
removed�
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A naive algorithm AC� ���� for achieving arc consistency is given below�

�� function AC�

� First part� initialization

�� Q� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� Q� Q � 	Vi� Vj


� Second part� examination and propagation

�� repeat

�� Changed� FALSE

�� for each 	Vi� Vj
 � Q

�� if REV ISE	Vi� Vj


�� if Di � 


�� return FALSE

�� Changed� TRUE

�� until not 	Changed


�� return TRUE

Q is a list of arcs to be examined� For each constraint Rij in the problem� both
arc 	Vi� Vj
 and arc 	Vj � Vi
 are put into Q� AC� examines every arc 	Vi� Vj
 in Q
and calls REV ISE to delete from the domain of Vi all those values that do not
satisfy Rij � If any value is removed� all the arcs will be examined again� The loop
will be repeated until no arc is revised�
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Applying AC� on the example in Figure ���� we get�

REVISE
Arcs �st Iteration �nd Iteration �rd Iteration

	V�� V�
 FALSE FALSE FALSE

	V�� V�
 FALSE FALSE FALSE

	V�� V�
 FALSE FALSE FALSE

	V�� V�
 FALSE TRUE FALSE
	V�� g
 is removed

	V�� V�
 TRUE FALSE FALSE
	V�� b
 is removed

	V�� V�
 FALSE FALSE FALSE

Changed� TRUE TRUE FALSE

The reduced problem which is made arc consistent is given in Figure ���� Clearly�
we have a solution for this problem with V� � b� V� � r and V� � g�

V1

V3V2
not-same

not-same

{b}

not-same

{r} {g}

Figure ���� After obtaining arc consistency for the example in Figure ���

AC� could be very ine�cient because the removal of any value from any domain
causes all the elements of Q to be re�examined� A simple examining shows that
the removal of a value will not a�ect all the arcs and only the possibly a�ected
arcs need to be re�examined� In the above example� the removal of 	V�� g
 has no
e�ect on arc 	V�� V�
� thus arc 	V�� V�
 need not to be re�examined� An improved
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algorithm AC� ���� is given below�

�� function AC�

� First part� initialization

�� Q� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� Q� Q � 	Vi� Vj


� Second part� examination and propagation

�� while Q �� 


�� select and remove 	Vi� Vj
 from Q

�� if REV ISE	Vi� Vj


�� if Di � 


�� return FALSE

�� else

�� for each variable Vk � V such that k �� j

�� if Rki � R

�� Q� Q � 	Vk� Vi


�� return TRUE

In this algorithm� if REV ISE	Vi� Vj
 removes any value from the domain of
Vi� then only the domain of any variable Vk that is constrained with Vi has to be
re�examined� This is because the removed value in the domain of Vi may be the
only one that is compatible with some value of Vk� Therefore arcs 	Vk� Vi
 are added
to Q to be re�examined for all k such that there is an arc from Vk to Vi� However�
arc 	Vj � Vi
 does not need to be re�examined as the removed values of Vi have no
compatible values in the domains of Vj � In fact� this is the reason that they are
removed� Their removal will not cause any values of Vj to lose compatible value in
the domain of Vi� It is clear that we do not need to worry about the domains of
other variables that are not constrained with Vi�
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Applying AC� on the example in Figure ���� we get�

Arcs REVISE

	V�� V�
 FALSE
	V�� V�
 FALSE
	V�� V�
 FALSE
	V�� V�
 FALSE
	V�� V�
 TRUE

	V�� b
 is removed
Arcs 	V�� V�
� 	V�� V�
 are added

	V�� V�
 FALSE

	V�� V�
 FALSE
	V�� V�
 TRUE

	V�� g
 is removed
Arcs 	V�� V�
� 	V�� V�
 are added

	V�� V�
 FALSE
	V�� V�
 FALSE

We have the same result as using AC�� However� the number of arcs we need
to check for revising is reduced�

In general� achieving arc consistency alone rarely generates solutions except for
three special cases�

�� If any of the domains is wiped out during the execution� then no solution
exists�

�� If the domain size of each variable becomes exactly one after obtaining arc
consistency� then there is one solution�

�� If the domain size of N 	 � variables becomes one 	N is the total number of
variables
 and the other domain has k	� �
 values� then there are k solutions�

We have already seen an example of case �� Figure ��� and Figure ��� are
examples of case � and case � respectively�

On the other hand� in some cases� even after obtaining arc consistency� we still
do not know the solution	s
� Figure ����� Figure ���� and Figure ���� show three
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V1

V3V2

{r}

{r,g}

{g}

not-same

not-same

not-same not-samenot-same

not-same

V1

V3V2

{}

{r} {g}

Figure ���� No solution after obtaining arc consistency

V1

V3V2

{r} {g}

not-same

not-same

not-same not-samenot-same

not-same
V3V2

{r} {g}

{r,g,b,y} {b,y}

V1

Figure ���� Two solutions after obtaining arc consistency� 	b� r� g
 and 	y� r� g


examples that are all arc consistent but have no solution� one solution and two
solutions respectively�

The ��queens problem we discussed earlier is initially arc consistent� so the arc
consistency algorithms have no e�ect�

Besides node consistency and arc consistency� there are even stronger degrees of
consistency� In general� we say a constraint graph is K�consistent if the following is
true� Choose values of any 	K 	 �
 variables that satisfy all the constraints among
these variables� then choose any K th variable� A value for this variable exists
that satis�es all of the constraints among these K variables� Furthermore� we can
achieve K�consistency by pruning away any values of the K s variable that fail to
satisfy this condition 	doing the pruning in a repeated manner as when achieving
arc consistency
� A constraint graph is strongly K consistent if it is J consistent
for all J � K� Node consistency and arc consistency are actually equivalent to
strong ��consistency and strong ��consistency respectively�

An N �variable CSP can be solved by achieving N �consistency� However� this
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V1

V3V2

{r,g}

not-same

not-same

not-same

{r,g} {r,g}

Figure ����� No solution

V1

V3V2
not-same

not-same

{r,g} {r,g}

{b,g}

not-same +
V1=b & V2=r

not allowed

Figure ����� One solution� 	b� r� g


V1

V3V2

not-same

not-same

not-same

{r,g} {r,g}

{b,g}

Figure ����� Two solutions� 	b� r� g
 and 	b� g� r


approach is seldom used due to its high cost 	considerably more expensive than
simple backtracking
� Usually it is only useful to achieve arc consistency when
performing constraint propagation� As pointed out above� however� this does not
guarantee we will �nd the solution	s
� To �nd solution	s
 when employing arc
consistency we must combine constraint propagation with backtracking search�
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����� Combining backtracking search and constraint prop�

agation

In the previous two sections� two rather di�erent approaches are discussed for solv�
ing CSPs� backtracking search and constraint propagation� Backtracking search
guarantees that a solution will be found if one exists� but it su�ers from thrashing
and redundant constraint checks� Constraint propagation may simplify the prob�
lem� but such simpli�cation is usually insu�cient to actually solve the problem�
A third approach is to combine these two approaches by embedding a constraint
propagation algorithm inside a backtracking search algorithm�

The basic idea is as follows� In the search tree of the backtracking algorithm�
whenever a node is visited� a constraint propagation algorithm is performed to at�
tain a desired level of consistency by removing inconsistent values from the domains
of the as yet uninstantiated variables� If in the process of constraint propagation
at the node� the domain of any variable becomes empty� then the node is pruned�
The purpose of doing this is to detect a �dead end� as early as possible� This way�
potential thrashing can be reduced� and the size of the search tree is reduced�

This approach turns out to be very e�ective and quite a few important CSP
algorithms� such as forward checking 	FC
 and maintaining arc consistency 	MAC

are in fact of this type� FC with some other heuristics has been traditionally
considered to be the best algorithm for solving CSPs while recently there have
been a number of claims that MAC is more e�cient on large and hard CSPs� The
di�erence between them lies in the extent of constraint propagation each algorithm
performs� In FC� only partial arc consistency is achieved at each node during search
while in MAC� full arc consistency is guaranteed� Furthermore� in MAC� the arc
consistency algorithm is also performed as preprocessing before search�
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Pseudo code for the FC 	called FC� �
 and MAC 	called MAC� �
 algorithms is
given below� These two functions are used in both the FC� and MAC� algorithms�

�� function DWO	Vi


�� for each value vil � Di

�� if Domainil is not marked

�� return TRUE

�� return FALSE

�� function RESTORE	V ars� Level


� Restore Domain to previous state

�� for each variable Vi � V ars

�� for each value vil � Di

�� if Domainil is marked at Level

�� Domainil � unMarked

These functions are used in the FC� algorithm�

�� function CHECK FORWARD�	V ars� Level� Vi� vil


�� for each variable Vj � V ars

�� if Rij � R

�� for each value vjm � Dj such that

Domainjm is not marked

�� if 	vil � v
j
m
 �� Rij

�� Domainjm � Marked at Level

�� if DWO	Vj 


�� return FALSE

�� return TRUE

�To make them distinct from other improved FC and MAC algorithms which we will discuss

later� we call them FC� and MAC� respectively�
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�� function SEARCH FC�	V ars� Level


�� select a variable Vi � V ars

�� for each value vil � Di such that Domainil is not marked

�� Solution� Solution� 	Vi� vil


�� if Vi is the only variable in V ars

� Found a solution

�� return TRUE

�� else

� Try to achieve partial arc�consistency

�� if CHECK FORWARD�	V arsnfVig� Level� Vi� vil


and SEARCH FC�	V arsnfVig� Level� �


�� return TRUE

�� else

�� Solution� Solution	 	Vi� vil


�� RESTORE	V arsnfVig� Level


� No solution down this branch

�� return FALSE

�� function FC�

�� for each variable Vi � V

�� for each value vil � Di

�� Domainil � unMarked

�� Solution� 


�� return SEARCH FC�	V� �
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These functions are used in the MAC� algorithm 	assuming AC� is the algorithm
used to maintain arc consistency
�

�� function REV ISE	Vi� Vj � Level


�� Deleted� FALSE

�� for each vil � Di such that Domainil is not marked

�� Found� FALSE

�� for each vjm � Dj such that Domainjm is not marked

�� if 	vil � v
j
m
 � Rij

�� Found� TRUE

�� break

�� if not Found

�� Domainil � Marked at Level

�� Deleted� TRUE

�� return 	Deleted


�� function PROPAGATE AC�	V ars� Level


�� while Q �� 


�� select and remove 	Vi� Vj
 from Q

�� if REV ISE	Vi� Vj � Level


�� if DWO	Vi


�� return FALSE

�� else

�� for each variable Vk � V ars such that k �� j

�� if Rki � R

�� Q� Q � 	Vk� Vi


�� return TRUE
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�� function SEARCH MAC�	V ars� Level


�� select a variable Vi � V ars

�� for each value vil � Di such that Domainil is not marked

�� Solution� Solution� 	Vi� vil


�� if Vi is the only variable in V ars

� Found a solution

�� return TRUE

�� else

� Eliminate all the other values of Vi

�� for each value vil� � Dinfvilg such that Domainil�

is not marked

�� Domainil� � Marked at Level

�� for each variable Vj � V ars

�� if Rji � R

�� Q� Q � 	Vj� Vi


�� if PROPAGATE AC�	V arsnfVig� Level
 and

SEARCH MAC�	V arsnfVig� Level � �


�� return TURE

�� else

�� Solution� Solution	 	Vi� vil


�� RESTORE	V ars� Level


� No solution down this branch

�� return FALSE
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�� function MAC�

�� for each variable Vi � V

�� for each value vil � Di

�� Domainil � unMarked

�� Solution� 


�� Q� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� Q� Q � 	Vi� Vj


�� if PROPAGATE AC�	V� �


�� return SEARCH MAC�	V� �


�� else

� No solution due to arc inconsistency

�� return FALSE

Since we use BT as the algorithm for backtracking search and embed a constraint
propagation algorithm inside it� the frameworks of the FC and MAC algorithms
are similar to that of BT� All of the three algorithms are made up of three parts�
the main routine� the search routine and the constraint satisfaction routines� The
corresponding functions in the three algorithms are�

Algorithm Main Routine Search Routine Constraint Satisfaction
Routine

BT BT SEARCH BT CONSISTENT

FC FC� SEARCH FC� CHECK FORWARD�
MAC MAC� SEARCH MAC� PROPAGATE AC�

The main routine makes the necessary initializations and starts the search� The
search routine explores the search tree� It tries to instantiate one of the variables
and determines the success of the instantiation by employing the constraint satis�
faction routine� if the instantiation is successful� it calls itself recursively to search
further� otherwise� it backtracks� The constraint satisfaction routine maintains the
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constraints at each node of the search tree in a certain way according to di�erent
algorithms� In fact this is the part where the constraint propagation algorithms are
embedded for the FC and MAC algorithms respectively�

The constraint satisfaction parts of the FC and MAC algorithms are di�erent
from that of the BT algorithm� Instead of checking the constraints between current
variable and all past variables which CONSISTENT 	in BT
 does� in FC and
MAC� constraints are checked forward against future variables� In FC� partial arc
consistency is achieved in such a way that all values incompatible with the current
instantiation are removed from the domains of the future variables� In other words�
each future variable is made arc consistent with the current variable� In MAC� full
arc consistency is achieved among the newly instantiated variable and all future
variables�

When a variable is going to be instantiated� both the FC and MAC algorithms
guarantee that any value remaining in its domain is compatible with all the in�
stantiations made so far� no backward consistency check is required� However�
RESTORE has to be performed to regain the previous state when an instantia�
tion fails� An instantiation fails if the domain of a future variable becomes empty
	called domain wipe�out or DWO
 as a result of constraint propagation�

In order to restore those values pruned due to constraint propagation after a
certain instantiation once that instantiation fails� both the FC and MAC algorithms
use an extra data structure Domain which is a two dimensional array that keeps
track of the status of all the values in the original domains of the variables� Initially
all entries of Domain are unMarked which means all the values in the domains are
possible in some solutions� Later on� whenever a value is removed from its domain�
the relevant entry of Domain will be labeled as Marked� Moreover� we can mark
it using di�erent �ags 	e�g�� numbers
 according to the level at which it is pruned�
By this way� when we need to perform RESTORE� we can determine whether a
pruned value is removed due to the current instantiation and should be put back to
its domain� by the �ag of its relevant entry in Domain� A utility function DWO
is also given to check whether all the values in a domain are marked 
 in which
case a domain wipe�out occurs�

Since we use AC� as the algorithm to achieve arc consistency in MAC�� relevant
code is borrowed from AC� with some minor changes 	mainly to make it work with
Domain
� Line ���� in function MAC� corresponds to the �rst part of AC� in AC��
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which initializes Q� Function PROPAGATE AC� corresponds to the second part
of function AC� in AC�� It is used to restore full arc consistency� It is called
not only in function SEARCH MAC�� but also in the main function MAC� to
make sure that the problem is made arc consistent before search starts� Line �����
in function SEARCH MAC� initializes Q for arc consistency propagation when
the current variable is revised� since all the other values are removed except the
assigned one�
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Figure ����� Search tree of the ��queens problem using FC

We have seen the performance of applying BT on the ��queens problem and as
we have pointed out� since it is initially arc consistent� arc consistency algorithms
cannot solve it� Figure ���� and Figure ���� show solving the ��queens problem
using FC and MAC�
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Figure ����� Search tree of the ��queens problem using MAC

The following table is a summary of the performance of the three algorithms�

Algorithm Constraint Checks Nodes Visited Checks per Node

BT �� �� ����
FC �� � ����

MAC ��� � �����

From this table� we see that FC visits more nodes while MAC does more work
at each node� In fact� it is not hard to prove that these conditions hold in general�
In particular� if FC detects a future variable with an empty domain� or a DWO�
MAC will also detect a DWO� and may in fact detect a DWO at some parent of
the node�
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��� Summary

Three classes of algorithms have been discussed� In practice� there is consider�
able evidence that the third approach which combines backtracking search and
constraint propagation is the most e�ective solution technique for CSPs�

The question now is how much constraint propagation need to do at each node�
More constraint propagation at each node will result in the search tree containing
fewer nodes but the overall e�ort can be higher because the processing at each node
will be more expensive� There is a trade�o� between the number of nodes visited
and the work at each node� The rest of this thesis will concentrate on this question
and will address the speci�c question of comparing the FC and MAC algorithms�
In Chapter �� we will review some recently suggested improved implementations of
the MAC algorithm� In Chapter �� we will propose an improved implementation
of the FC algorithm� Empirical results of comparing FC and MAC are given in
Chapter �� The last chapter is on conclusions and future work�
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Previous Work on MAC

Recently� claims have appeared in the literature that MAC is the most e�cient
general CSP algorithm for solving large and hard problems ��� ���� To support
this claim� empirical evidence is supplied using improved implementations of MAC�
These improved versions of MAC rely on improved arc consistency algorithms� In
this chapter� we review several of these improved arc consistency algorithms and
discuss their implementations in MAC�

��� Improved arc consistency algorithms

����� AC�

AC� ���� is an arc consistency algorithm that improves on AC�� AC� is based on
the notion of support� Let a be a value in the domain of Vi� and Vj be a variable
constrained with Vi� Value a is supported by Vj if there is at least one value b in
the domain of Vj such that Vi � a and Vj � b are compatible� Clearly� if each value
in the domain of Vi is supported by Vj� then arc 	Vi� Vj
 is consistent� Values that
are not supported are redundant and can be removed�

AC� keeps track of support explicitly� by maintaining two additional data struc�
tures�

�� For each value of every variable there is a Counter for each arc starting from
that variable representing the number of values in the domain of the variable
at the other end of the arc that this value is compatible with�

��
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For example� Counter�	Vi� Vj
� a� represents the number of values in the do�
main of Vj supporting the assignment Vi � a�

Whenever a Counter for some assignment becomes zero� that domain value
can be removed�

�� For each value of every variable� there is a support set S� that contains all of
the variable�value pairs that it supports�

For example� for value a in the domain of Vi� a set

SVia � f	Vj � b
jVi � a supports Vj � bg

is constructed� This data structure will be used to update Counter e�ciently�

Again consider the example in Figure ���� The domain of V� has two values� g
and b� For V�� two support sets are constructed�

SV�g � f	V�� b
� 	V�� r
g

SV�b � f	V�� r
� 	V�� g
g

The support set SV�g records the fact that the value g in the domain of variable
V� supports the assignment V� � b and V� � r� This set helps to identify those
assignments that need to be re�examined should the value g be removed from the
domain of V�� In this case� only b of V� and r of V� need to be considered� No other
value will be a�ected by the removal of g from the domain of V��

Similarly� the support sets for V� and V� are�

SV�b � f	V�� r
� 	V�� g
� 	V�� g
g

SV�r � f	V�� b
� 	V�� g
� 	V�� b
g

SV�g � f	V�� b
� 	V�� b
g�

A Counter is maintained for each arc�value pair� For variable V�� there are two
arcs starting from it� arc 	V�� V�
 and arc 	V�� V�
� For value b in the domain of
variable V�� the arc 	V�� V�
 provides two supports from V� 
 namely V� � r and
V� � g� the arc 	V�� V�
 provides one supports from V� 
 V� � g� Therefore�
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Counter�	V�� V�
� b� � �

Counter�	V�� V�
� b� � ��

In general� Counter�	Vi� Vj
� a� records the number of values in the domain of
Vj supporting the assignment Vi � a�

According to this principle� other Counters will be initialized to be the following
values�

Counter�	V�� V�
� r� � �

Counter�	V�� V�
� r� � �

Counter�	V�� V�
� g� � �

Counter�	V�� V�
� g� � �

Counter�	V�� V�
� g� � �

Counter�	V�� V�
� g� � �

Counter�	V�� V�
� b� � �

Counter�	V�� V�
� b� � �

We can notice that one of the Counters is zero� As we mentioned earlier�
if Counter�	Vi� Vj
� a� is zero� value a can be removed from its domain because
there is no value in the domain of Vj that supports it� This is equivalent to our
de�nition of arc consistency� 	Vi� Vj
 is not arc consistent because of the presence of
a� Therefore� a has to be removed� The removal of a will also a�ect the consistency
of other arcs� In the context of AC�� it will cause some counters to be updated�
For example� since Counter�	V�� V�
� b� � �� we remove b from V�� But remember
that b in V� is one of the two components that make Counter�	V�� V�
� r� � �� now
Counter�	V�� V�
� r� has to be decremented by �� In fact� support set SV�b keeps
track of all the counters that need to be updated� In general� when a value b is
removed from the domain of variable Vj� Counter�	Vi� Vj
� a� must be decremented
for each 	Vi� a
 in SVjb� If more counters become zero� more values need to be
removed and more removals need to be processed� Just like other arc consistency
algorithms� this carries on until no more values are removed and the remaining
reduced problem is arc consistent�

The algorithm of AC� has two parts� In the �rst part� support sets are con�
structed and counters are initialized� redundant domain values are removed� In the
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second part� the value removals are processed to update the relevant counters� This
may generate an additional set of redundant values which then have to be removed�

The pseudo code for AC� is shown below�

�� function AC�

� First part� construction and initialization of

� support sets� S and Counter

�� for each variable Vi � V

�� for each value vil � Di

�� SViv
i
l
� 


�� DeletionStream� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� for each value vil � Di

�� total� �

�� for each value vjm � Dj

�� if 	vil � v
j
m
 � Rij

�� total� total � �

�� S
Vjv

j
m
� S

Vjv
j
m

� 	Vi� v
i
l


�� if total � �

�� Di � Di 	 vil

�� DeletionStream� DeletionStream� 	Vi� vil


�� if Di � 


�� return FALSE

�� else

�� Counter�	Vi� Vj
� vil� � total
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� Second part� propagation of removed values

�� while DeletionStream �� 


�� select and remove 	Vi� vil
 from DeletionStream

�� for each 	Vj � vjm
 � SViv
i
l

�� Counter�	Vj� Vi
� vjm� � Counter�	Vj� Vi
� vjm�	 �

�� if Counter�	Vj� Vi
� vjm� � � and vjm � Dj

�� Dj � Dj 	 vjm

�� DeletionStream� DeletionStream� 	Vj� vjm


�� if Dj � 


�� return FALSE

�� return TRUE

In the above algorithm� DeletionStream is a list to maintain all variable�value
pairs 	Vi� a
� where value a has been removed from domain Di� but the e�ect of the
removal has not yet been propagated� Initially� it contains the values removed in the
�rst part� If there are more counters zeroed during the propagation� more values
are added to DeletionStream� The process terminates when no more elements
remain in DeletionStream�
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Applying AC� on the example in Figure ���� we get�

�� After initialization�

Arc Value Counter Support Set

V� V� b � 	V�� r
� 	V�� g

V� � 	V�� g


V� V� r � 	V�� b

V� � 	V�� g


V� V� g � 	V�� b

V� �

V� V� g � 	V�� b

V� � 	V�� r


V� V� b �
V� � 	V�� r
� 	V�� g


DeletionStream� 	V�� b
�

�� Process the deletion of 	V�� b


Traverse its support set� f	V�� r
� 	V�� g
g� we need to check whether 	V�� r

and 	V�� g
 still have support in the domain of V��

Counter�	V�� V�
� r� � Counter�	V�� V�
� r�	 � � �

Counter�	V�� V�
� g� � Counter�	V�� V�
� g�	 � � �

Arc Value Counter Support Set

V� V� b � 	V�� r
� 	V�� g

V� � 	V�� g


V� V� r � 	V�� b

V� � 	V�� g


V� V� g � 	V�� b

V� �

V� V� g � 	V�� b

V� � 	V�� r


V� V� !b �
V� � 	V�� r
� 	V�� g


! removed value

DeletionStream� 	V�� g
�
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�� Process the deletion of 	V�� g


Traverse its support set� f	V�� b
g� we need to check whether 	V�� b
 still has
support in the domain of V��

Counter�	V�� V�
� b� � Counter�	V�� V�
� b�	 � � �

Arc Value Counter Support Set

V� V� b � 	V�� r
� 	V�� g

V� � 	V�� g


V� V� r � 	V�� b

V� � 	V�� g


V� V� !g � 	V�� b

V� �

V� V� g � 	V�� b

V� � 	V�� r


V� V� !b �
V� � 	V�� r
� 	V�� g


! removed value

DeletionStream� 
�

In AC�� when we process the deletion of a value� say� 	V�� b
� we have to re�
examine arcs 	V�� V�
 and 	V�� V�
� In more detail� function REV ISE is called twice
with parameters 	V�� V�
 and 	V�� V�
 respectively and each value in the domain of
V� and V� is checked to see whether we can still �nd some compatible value in the
domain of V� after b is deleted� In other words� we have to seek a support for all
the values in the domains of V� and V� again� However� in AC�� we only need to
check those variable�value pairs in 	V�� b
 s support set� in this case� only 	V�� r
 and
	V�� g
� We do not need to worry about 	V�� b
 since 	V�� b
 is not a support for it 	in
fact� they are not compatible
� Moreover� we only need to decrement the relevant
Counters by � and check whether any of them becomes zero instead of explicitly
traversing the values in the domain of V� one by one until we �nd a support�
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����� AC�

AC� can be further improved� In AC�� for each value a in variable Vi and each
arc 	Vi� Vj
� all the values in Vj are checked to compute Counter�	Vi� Vj
� a�� This
is more work than necessary to show that Vi � a is supported by Vj � Support is
guaranteed as long as Counter�	Vi� Vj
� a� � �� Hence� one support in Vj is enough�
Therefore� instead of maintaining Counter�	Vi� Vj
� a� and decrementing it whenever
a support in Vj is removed� we can �nd one support in Vj �rst and try to look for
another one only when necessary� i�e�� when the current support is removed from
the domain of Vj � Based on this idea� Bessiere proposed the algorithm AC� in ����

The pseudo code for AC� is shown below�

�� function SEEK SUPPORT 	Vi� Vj � vil� LastInd


�� for each value vjm � Dj

�� if m � LastInd

�� continue

�� else

�� if 	vil � v
j
m
 � Rij

�� S
Vjv

j
m
� S

Vjv
j
m

� 	Vi� vil


�� return TRUE

�� return FALSE
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�� function AC�

� First part� construction and initialization of

� support sets� S

�� for each variable Vi � V

�� for each value vil � Di

�� SViv
i
l
� 


�� DeletionStream� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� for each value vil � Di

�� if not SEEK SUPPORT 	Vi� Vj � vil� �


�� Di � Di 	 vil

�� DeletionStream� DeletionStream� 	Vi� vil


�� if Di � 


�� return FALSE

� Second part� propagation of removed values

�� while DeletionStream �� 


�� select and remove 	Vj � vjm
 from DeletionStream

�� for each 	Vi� vil
 � S
Vjv

j
m

�� if vil � Di

�� if not SEEK SUPPORT 	Vi� Vj � vil�m


�� Di � Di 	 vil

�� DeletionStream� DeletionStream� 	Vi� vil


�� if Di � 


�� return FALSE

�� return TRUE
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Applying AC� on the example in Figure ���� we get�

�� After initialization�

Arc Value Supported� Support Set

V� V� b TRUE 	V�� r
� 	V�� g

V� TRUE 	V�� g


V� V� r TRUE 	V�� b

V� TRUE 	V�� g


V� V� g TRUE
V� TRUE

V� V� g TRUE 	V�� b

V� TRUE 	V�� r


V� V� b FALSE
V� � 	V�� g


DeletionStream� 	V�� b
�

�� Process the deletion of 	V�� b


Traverse its support set� f	V�� g
g� we need to check whether 	V�� g
 still has
support in the domain of V��

SEEK SUPPORT 	V�� V�� g
� FALSE

Arc Value Supported� Support Set

V� V� b TRUE 	V�� r
� 	V�� g

V� TRUE 	V�� g


V� V� r TRUE 	V�� b

V� TRUE 	V�� g


V� V� g TRUE
V� FALSE

V� V� g TRUE 	V�� b

V� TRUE 	V�� r


V� V� !b FALSE
V� � 	V�� g


! removed value

DeletionStream� 	V�� g
�
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�� Process the deletion of 	V�� g


Traverse its support set� 
 
 nothing need to do

Arc Value Supported� Support Set

V� V� b TRUE 	V�� r
� 	V�� g

V� TRUE 	V�� g


V� V� r TRUE 	V�� b

V� TRUE 	V�� g


V� V� !g TRUE
V� FALSE

V� V� g TRUE 	V�� b

V� TRUE 	V�� r


V� V� !b FALSE
V� � 	V�� g


! removed value

DeletionStream� 
�

Compared with AC�� the gain of AC� is two�fold�

� We can hopefully �nd a solution 	or prove that there is no solution
 before
the full support sets 	which is used in AC�
 are setup� Some constraint checks
can be saved this way�

In the above example� we never check the compatibility of 	V�� r
 and 	V�� b
�
because we already know that 	V�� g
 is a support for 	V�� r
 on arc 	V�� V�

and this is enough to make 	V�� V�
 arc consistent with regard to 	V�� r
�

� Because for each value and each arc there is at most one support� the support
sets are minimal in size and fewer values need to be re�examined during the
propagation of a removed value�

In the above example� 	V�� r
 is not in 	V�� b
 s support set� though in fact
	V�� b
 supports it� When we process the removal of 	V�� b
� we do not need
to re�examine 	V�� r
�
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����� AC�

There is further property of support that can be utilized� Support is bidirectional�
Value a of variable Vi supports value b of variable Vj if and only if value b of
variable Vj supports value a of variable Vi� In AC� or AC�� when we establish that
support for value a of variable Vi is provided by value b of variable Vj � we have to
check the constraint between Vi � a and Vj � b� Later on� if we need to establish
support for value b of variable Vj by value a of variable Vi� we would check the
same constraint again� Clearly� this constraint check is redundant� AC� proposed
by Bessiere� Freuder and Regin in ��� is an algorithm based on AC� that makes use
of this property to further reduce constraint checks�

To implement this algorithm� we only need to make some small modi�cations
on AC�� More speci�cally� in function SEEK SUPPORT of AC�� whenever we
need to seek a support for a value 	Vi� a
 in the domain of Vj � instead of checking
every value of Vj � we �rst traverse the support set of 	Vi� a
 to see whether 	Vi� a

supports any value in the current domain of Vj � If there is� then we do not need to
make any further constraint checks against the values of Vj �
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��� MAC

To embed these improved AC algorithms in backtracking search is not straightfor�
ward� The main di�culty comes from the cost of backtracking� In backtracking
search� when we try to instantiate a variable� we have to temporary remove all
the other values of the variable except the instantiated one� Furthermore� during
the procedure to achieve full arc consistency� more values of di�erent variables are
	temporary
 removed� Once the instantiation fails� backtrack has to occur and we
have to restore all those removed values� As we pointed out in Chapter �� we solve
this problem using an extra data structure called Domain� But the problem arising
from it is� due to the removal and restoring of the values� the support sets and the
counters used in these AC algorithms are a�ected accordingly� We also have to �nd
a way to restore the relevant support sets and counters during backtracking� How
to handle this problem will be the main issue discussed in this section�

����� MAC� � embedding AC� in backtracking search

The e�ectiveness of MAC on large and hard problems was �rst pointed out by
Sabin and Freuder in ���� where they used AC� as the algorithm to achieve arc
consistency�

In AC�� Counters are used to keep track of the number of supports a variable�
value pair has from a certain arc� We need to update all the relevant Counters
after an instantiation� and of course need to restore them back to their previous
values once the instantiation fails�

In the algorithm proposed by Sabin and Freuder in ���� they save the previous
version of Counters elsewhere and restore it when needed� This is a good method
with reasonable time e�ciency� But a lot of space is required because we have to
store a di�erent version of Counters at each level of instantiation� If there are n
variables� c constraints de�ned on them and the domain size of each variable is k�
the space complexity is O	nck
� The space concern can be a problem which makes
it almost impractical�

The purpose of using Counters is to make it easier to know whether the a�ected
values are still supported or not after some values are removed� In fact� we can
always �nd this out by explicitly seeking support� Moreover� since we have full sup�
port sets for all values in AC�� by utilizing the bidirection property of support� we
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can seek a support for a value by traversing its own support set without constraint
checks� That is� if we want to seek a support for Vi � a in the domain of Vj� we
only need to check whether there is any un�removed value of Vj in the support set
of 	Vi� a
 instead of checking the compatibility of 	Vi� a
 and every value of Vj � This
is the method used in the following MAC� algorithm� Compared to the method in
���� it is trading o� time for space�

�� function SEEK SUPPORT�	Vi� Vj � vil


�� for each vjm � SViVjv
i
l

�� if Domainjm is not marked

�� return TRUE

�� return FALSE

�� function PROPAGATE AC�	V ars� Level


�� while DeletionStream �� 


�� select and remove 	Vj � vjm
 from DeletionStream

�� for each variable Vi � V ars

�� if Rji � R

�� for each vil � S
VjViv

j
m

such that

Domainil is not marked

�� if not SEEK SUPPORT�	Vi� Vj� v
i
l


�� Domainil � Marked at Level

�� DeletionStream� DeletionStream� 	Vi� v
i
l


�� if DWO	Vi


�� return FALSE

�� return TRUE
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�� function SEARCH MAC�	V ars� Level


�� select a variable Vi � V ars

�� for each value vil � Di such that Domainil is not marked

�� Solution� Solution� 	Vi� vil


�� if Vi is the only variable in V ars

� Found a solution

�� return TRUE

�� else

� Eliminate all the other values of Vi

�� for each value vil� � Dinfvilg such that Domainil�

is not marked

�� Domainil� � Marked at Level

N� DeletionStream� DeletionStream� 	Vi� vil�


�� if PROPAGATE AC�	V arsnfVig� Level
 and

SEARCH MAC�	V arsnfVig� Level � �


�� return TURE

�� else

�� Solution� Solution	 	Vi� vil


�� RESTORE	V ars� Level


� No solution down this branch

�� return FALSE
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�� function MAC�

�� for each variable Vi � V

�� for each value vil � Di

�� Domainil � unMarked

�� for each variable Vj � V

�� if Rij � R

�� SViVjv
i
l
� 


�� Solution� 


�� DeletionStream� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� for each value vil � Di such that

Domainil is not marked

�� total� �

�� for each value vjm � Dj such that

Domainjm is not marked

�� if 	vil � v
j
m
 � Rij

�� total� total � �

�� S
VjViv

j
m
� S

VjViv
j
m

� vil

�� if total � �

�� Domainil � Marked at �

�� DeletionStream� DeletionStream� 	Vi� vil


�� if DWO	Vi


�� return FALSE

�� if PROPAGATE AC�	V� �


�� return SEARCH MAC�	V� �


�� else

� No solution due to arc inconsistency

�� return FALSE
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MAC� uses a similar framework to the MAC� algorithm presented in Chapter ��
The main function MAC� initializes data structures including the support sets and
starts search� Some of the codes are borrowed from the �rst part of AC�� All
support sets only need to be set up once and will not change during the search�
though some of the values in some of the support sets may be removed 	and may be
put back again later
� We will not explicitly keep track of the status of a value in the
support sets� We can get that information from Domain� In order to make it more
e�cient to seek a support for a value� we also split support sets SVia into SViVja�
so that each value has a support set for each constraint� This way� in the function
SEEK SUPPORT�� when we need to seek a support for 	Vi� a
 in the domain of
Vj � we can go directly to the support set of 	Vi� a
 for the arc 	Vj� Vi
� Function
PROPAGATE AC� is borrowed from the second part of AC�� The di�erence is�
instead of updating Counters� it calls the function SEEK SUPPORT� to check
whether the a�ected values are still supported� The function SEARCH MAC� is
modi�ed from the function SEARCH MAC� in MAC such that instead of putting
a�ected arcs into Q� it puts deleted values into DeletionStream to start the arc
consistency propagation�
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����� MAC� and MAC� � embedding AC� and AC� in

backtracking search

Since AC� keeps minimal support sets� for each value there is only one support per
arc� After an instantiation� if a support for a value is removed� we have to �nd a
new support for that value� This makes supports sets di�erent from level to level�
How to update and restore these support sets�

In fact� there are several ways to do so� Suppose we have a CSP� Vi and Vj are
two of the variables� the domain of Vi is fa� b� cg� the domain of Vj is fd� eg� Vi and
Vj are constrained� and f	a� d
� 	a� e
� 	b� d
� 	c� e
g are the only compatible value
pairs de�ned by the constraint between Vi and Vj� Initially� full arc consistency
is achieved by AC� and a gets d as its support� Later on� as the result of an
instantiation� d is pruned� and a needs to �nd another support in the domain of Vj �
e is found and a is put in the support set of SVje� At this point� we have several
choices�

�� Remove a from the support set SVjd�

If this instantiation fails� during the restore stage� we will remove a from SVj�e

and put it back to SVj�d� 	Restore everything just as before the instantiation
�

�� Remove a from the support set SVjd�

But if this instantiation fails� we still keep e as the current support of a� a is
still in the support set SVje� but not in the support set SVjd� even though d is
available now�

�� Keep a in both the support sets SVjd and SVje�

If this instantiation fails and d is put back to the domain of Vj � a will have
two supports in the domain of Vj and a is in both support sets�

�� Use two kinds of support sets�

One is for the minimal support sets 	called MinS
 and the other 	still called
S
 for all the supporting information we obtain during search� Initially� a is
in both SVjd and MinSVjd� After d is removed and a �nds a new support e� a
is put in both SVje and MinSVje� But we remove a from MinSVjd only� It is
not removed from SVjd� If this instantiation fails� we do not put a back into
MinSVjd� nor do we remove it from MinSVje�
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Method � and � re�ect the idea of AC�� for each value there is only one support
per constraint and the support sets are kept minimal� Method � is not a good
idea due to the high cost of restoring previous state� In fact as long as there is a
support� we do not care what it is� Method � keeps an equivalent state though it is
not exactly the previous state� Using method �� we have the following algorithm�
called MAC��

�� function SEEK SUPPORT�	Vi� Vj � vil


�� for each value vjm � Dj such that

Domainjm is not marked

�� if 	vil � v
j
m
 � Rij

�� S
Vjv

j
m
� S

Vjv
j
m

� 	Vi� vil


�� return TRUE

�� return FALSE

�� function PROPAGATE AC�	V ars� Level


�� while DeletionStream �� 


�� select and remove 	Vj � vjm
 from DeletionStream

�� for each 	Vi� vil
 � S
Vjv

j
m

such that

Vi � V ars and Domainil is not marked

�� if SEEK SUPPORT�	Vi� Vj � vil


�� S
Vjv

j
m

� S
Vjv

j
m
	 	Vi� vil


�� else

�� Domainil � Marked at Level

�� DeletionStream� DeletionStream� 	Vi� vil


�� if DWO	Vi


�� return FALSE

�� return TRUE
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�� function MAC�

�� for each variable Vi � V

�� for each value vil � Di

�� Domainil � unMarked

�� SViv
i
l
� 


�� Solution� 


�� DeletionStream� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� for each value vil � Di such that

Domainil is not marked

�� if not SEEK SUPPORT�	Vi� Vj� vil


�� Domainil � Marked at �

�� DeletionStream� DeletionStream� 	Vi� vil


�� if DWO	Vi


�� return FALSE

�� if PROPAGATE AC�	V� �


�� return SEARCH MAC�	V� �


�� else

� No solution due to arc inconsistency

�� return FALSE
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All of the code is borrowed either from AC� or MAC�� with minor changes�
The function SEARCH MAC� is not listed because it is exactly the same as
SEARCH MAC� except that it calls PROPAGATE AC� instead of
PROPAGATE AC�� Line ����� of MAC� is similar to the �rst part of AC��
PROPAGATE AC� is similar to the second part of AC�� One di�erence to point
out is in the function SEEK SUPPORT�� Here we cannot guarantee the order
the values are checked� So we have to check from the beginning every time� For
example� suppose e is the current support for a� we cannot guarantee that the values
before e cannot be supports for a� One of them may have been previously used as
a support only to have been removed temporarily� d is such a value� If e is pruned
later but d is available at that time� we should be able to �nd d as a support for a�

As you can see� one problem of method � is that we used to know that d could
be a support for a� But that information is lost once we get a new support e for a�
If in the future e is pruned and we need to �nd another support� we need redundant
constraint checks to once again detect that d can be a support� Method � tries to
solve this problem by keeping the results of all constraint checks in the support sets�
However� the support sets get larger and larger and some values will have more than
one support for each arc which is contrary to the principle of AC�� One alternative
is to use more space to maintain two kinds of support sets� One is the minimal
support sets as in method � and the other is equivalent to those in method �� This
is what method � does� Following is the algorithm based on the idea of method ��
Since it also makes use of the bidirection property of support� we call it MAC��
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�� function SEEK SUPPORT�	Vi� Vj � vil


�� for each vjm � SViVjv
i
l

�� if Domainjm is not marked

�� MinS
Vjv

j
m
�MinS

Vjv
j
m

� 	Vi� vil


�� return TRUE

�� for each value vjm � UnCheckedViVjvil such that

Domainjm is not marked

�� UnCheckedViVjvil � UnCheckedViVjvil 	 vjm

�� if 	vil � v
j
m
 � Rij

�� S
VjViv

j
m
� S

VjViv
j
m

� vil

�� SViVjv
i
l
� SViVjv

i
l

� vjm

�� MinS
Vjv

j
m
�MinS

Vjv
j
m

� 	Vi� vil


�� return TRUE

�� return FALSE

�� function PROPAGATE AC�	V ars� Level


�� while DeletionStream �� 


�� select and remove 	Vj � vjm
 from DeletionStream

�� for each 	Vi� v
i
l
 �MinS

Vjv
j
m

such that

Vi � V ars and Domainil is not marked

�� if SEEK SUPPORT�	Vi� Vj � vil


�� MinS
Vjv

j
m

� MinS
Vjv

j
m
	 	Vi� v

i
l


�� else

�� Domainil � Marked at Level

�� DeletionStream� DeletionStream� 	Vi� vil


�� if DWO	Vi


�� return FALSE

�� return TRUE
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�� function MAC�

�� for each variable Vi � V

�� for each value vil � Di

�� Domainil � unMarked

�� MinSViv
i
l
� 


�� for each variable Vj � V

�� if Rij � R

�� SViVjv
i
l
� 


�� UnCheckedViVjvil � Dj

�� Solution� 


�� DeletionStream� 


�� for each variable Vi � V

�� for each variable Vj � V

�� if Rij � R

�� for each value vil � Di such that

Domainil is not marked

�� if not SEEK SUPPORT�	Vi� Vj� vil


�� Domainil � Marked at �

�� DeletionStream� DeletionStream� 	Vi� vil


�� if DWO	Vi


�� return FALSE

�� if PROPAGATE AC�	V� �


�� return SEARCH MAC�	V� �


�� else

� No solution due to arc inconsistency

�� return FALSE

MAC� is an improvement on MAC�� It has two kinds of support sets� S and
MinS� MinS is kept minimal while S contains all the supports that are obtained
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from constraint checks during search� Moreover� if we �nd a support a for a value
b� we will not only put b in the support set S of a� but also put a in the support
set S of b� because b also can be a support for a� As in MAC�� we also split S for
each arc and when we need to seek a support for a value� we check its support set
S �rst� But since S may not be complete� if we cannot get a support� we also need
to check those unchecked values� A data structure UnChecked is used to maintain
those unchecked values� Initially it contains all the values in the domains� Once a
value is checked� it is removed from UnChecked� MinS is used to get those values
a�ected by removals� If a new support is found for a value� the old support has
to be removed from MinS� Again SEARCH MAC� is not listed because it is
exactly the same as SEARCH MAC� except that it calls PROPAGATE AC��

����� Summary

All the algorithms of MAC we discussed so far will visit the same number of nodes
in a search tree given the same problem� The di�erence is the work done at each
node� i�e�� the work to maintain arc consistency after the instantiation at each
node� These arc consistency algorithms are triggered by value removals and arc
consistency is further achieved by propagating these removals� In MAC�� in the
processing of the removal of a value of a variable� all values in the domains of
all variables that have an arc going to that variable are processed to �nd another
support in that variable� In MAC�� MAC� and MAC�� only those values in that
variable�value pair s support set need to �nd a new support� In MAC�� all the
support sets are full support sets� In MAC� or MAC�� for each value� we only keep
one support per arc� The support sets are kept minimal� Therefore there are a
fewer number of values for which we need to seek a new support�
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��� Improving MAC� using heuristics

Heuristics can be incorporated in MAC to reduce search costs� Generally� a heuristic
can be viewed as a �rule of thumb� that improves the average�case performance on
a problem�solving task� but o�ers no guarantees for improving the worst case�

����� Variable ordering

In all the algorithms presented in Chapter � and the previous section� we assume
that the variables of a CSP are given in an order speci�ed by their indices and they
are instantiated chronologically during the search with no regard to the properties
of each variable� For example� if we have V � fV�� ���� Vi� ���� Vng� the instantiation
order will be V������Vi�����Vn�

However� it has been known for a long time that the order in which the variables
are instantiated strongly a�ects the size of the search space explored by backtracking
based algorithms ���� ���� and heuristics utilizing certain properties of the variables
can be incorporated to speed up search�

Variable ordering heuristics can be divided into two classes� static variable
ordering 	SVO
 and dynamic variable ordering 	DVO
� A SVO orders the variables
before search starts while a DVO orders the variables at each node� that is� the
order in which the variables are instantiated can vary from branch to branch in
the search tree� DVO is generally better than SVO because it uses more updated
information� despite the fact that it costs more to compute�

The minimum domain 	dom
 heuristic which selects as the next variable to
be instantiated a variable that has a minimal number of remaining values in its
domain� has been considered as the best variable ordering heuristic ���� It is a DVO

when incorporated in FC or MAC in that the sizes of domains vary from node to
node due to value removals�

Another widely used variable ordering heuristic is called the maximum degree
heuristic 	deg
� It orders the variables by decreasing number of neighbors in the
constraint graph in a sense that the most constrained variables are chosen �rst� It
can be used both as a SVO and as a DVO� If it is used as a SVO� the degrees are
calculated based on the initial constraint graph� If it is used as a DVO� the degrees
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are calculated at each node based on the current graph with all variables that are
already instantiated disconnected�

Variable ordering heuristics can be applied on both MAC and FC� To implement
these heuristics� we only need to replace line �� in all those SEARCH � functions
with�

�� function SEARCH � 	V ars� Level


�� Vi � SELECT 	V ars


���

where SELECT is a function to return a variable choosing from the current
available variables according to a certain heuristic 	or a combination of heuristics
�
For example� if we want to use the dom heuristic� we can get the current domain size
for each variable from the array Domain and select the variable with the smallest
domain size� If we want to use deg as a SVO� we can compute the degrees for each
variable before search starts 	possibly in the main part initialization stage
 and
select the variable with the largest degree each time SELECT is called� However�
more work needs to be done if we want to use deg as a DVO�

Removing refuted value with the dom heuristic

There is another possible improvement that can be made to MAC� whenever an
instantiation fails� we can remove the refuted value from the domain and restore
arc consistency �����

There are two expectations in doing so�

�� We might detect an unsolvable branch earlier�

If a DWO occurs during the arc consistency propagation after the refuted
value is removed� we can determine that there is no solution down the branch
of the previous upper level instantiation�
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5,6 are removed because no compatible values exist in V1

12 is removed because no compatible values exist in V3

Figure ���� Solving the ��queens problem using MAC with refutation



CHAPTER �� PREVIOUS WORK ON MAC ��

Part of the search tree for solving the ��queens problem using MAC with
removed refuted values is presented in Figure ���� We use the same problem
modeling method as for the ��queens problem in Chapter �� We start search
by putting the �rst queen in the second square of the second row� Then
arc consistency is achieved with no DWO� We continue search by putting
the second queen in the �fth square of the third row� Unfortunately� this
instantiation is unsuccessful because it causes a DWO� Moreover� during the
refutation of this value� DWO occurs again� That means� all the rest of the
squares at the third row are no good for a queen� We do not need to examine
them one by one� as we would do if we did not have a refutation� We can
conclude that the �rst queen is put in the wrong place at the second row and
no solution exists if a queen is in that square�

�� We might choose a new variable after a refutation if searching with dom�

We can apply the heuristic dom both after a successful instantiation and after
a refutation� In other words� instead of selecting a variable by dom and trying
to instantiate every available value of it one after another until success or we
exhaust its domain� we can also use dom to choose a new variable every time
after a refutation� Since we are going to achieve arc consistency during a
refutation� more values might be removed and some domain sizes might be
changed� At this point� the variable with the minimal domain size might be
di�erent from the variable instantiated and refuted just now� If we use dom

again� we can perhaps select a better variable according to the new situation�
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We can implement this method in MAC by changing the code for the SEARCH MAC�
functions�

�� function SEARCH MAC�	V ars� Level


R� while TRUE

�� Vi � SELECT 	V ars


�� select a value vil � Di such that Domainil is not marked

���

�� else

�� Solution� Solution	 	Vi� vil


�� RESTORE	V ars� Level


R� Domainil � Marked at Level	 �

R� DeletionStream� DeletionStream� 	Vi� vil


R� if not PROPAGATE AC�	V ars� Level	 �


R� break

� No solution down this branch

�� return FALSE

We change line �� from a loop to one statement� but insert a larger loop at
line R� to include line �� inside it� This way� we are able to select a new variable
after every refutation� Line R��R� are inserted to process refutations� Note that
we take the refuted value and any other values that are pruned during a refutation
as removed at the upper level 
 Level	�� This is to guarantee that these removed
values can be restored during the restore procedure of the instantiation at an upper
level� It makes sense because their removal is actually due to the instantiation at
the upper level�

We can make similar changes to SEARCH MAC�� except that instead of
putting the refuted value into DeletionStream� we have to put the a�ected arcs
into Q�
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����� Singleton variables

A singleton variable is a variable with domain size of �� MAC can be improved by
special treatment of singleton variables �����

Singleton variables are specially treated in several senses�

�� After restoring arc consistency for all arcs from other variables to a single�
ton� we can temporarily disconnect the singleton variable from the constraint
graph and thus avoid studying the constraints connecting other variables to
this singleton in further arc consistency propagation and deeper search� This
follows from the fact that� since all the values remaining in the domains of
other variables are compatible with the only value of the singleton variable�
for arcs from other variables to the singleton� each value of the other variables
can �nd the single value of the singleton as a support� for arcs from the sin�
gleton variable to other variables� the single value can always �nd a support
from all the other variables unless there is a DWO�

�� To utilize the above advantage� we need to achieve arc consistency on the arcs
related to the singleton �rst� that is� before processing other arcs� Moreover�
we can check directly the values of other variables that are compatible with
the singleton value for all these arcs�

�� We can defer the instantiation of singleton variables to the end of the search
to reduce the number of nodes visited�

Let s consider the example in Figure ���� One special case of singletons are
those instantiated variables� They are made singleton explicitly by being assigned
a value� which removes all other values in their domains� V� is such a singleton�
When V� is instantiated� according to �� we should check directly the values of V�
and V� that are compatible with V� � r instead of propagating the removal of g
and b� This way is likely to be more e�cient when the number of deleted values
that need to be processed is more than one�

Other singletons can be obtained during the arc consistency propagation� An
example of this case is V�� After full arc consistency is achieved� we are ready to
select another variable to instantiate� However� according to �� V� should not be
instantiated� In fact� after all other variables are instantiated� we can instantiate V�
and other singleton variables easily with no backtracking� If we instantiate V� now�
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Figure ���� An example of singleton variables
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backtrack may occur later due to previous instantiations and the instantiation of
V� has to be restored� Actually this is the case for the example� No solution exists
with V� � r and we can detect this without instantiating V��



Chapter �

FC reconsidered

The FC algorithm we introduced in Chapter �� in a sense� uses �partial� AC� as
the algorithm for arc consistency� Can any of the methods in Chapter � also be
applied to forward checking in order to improve FC� In this chapter� we discuss a
new FC algorithm�

��� Using non�support sets

Inspired by the AC� algorithm� when we try to achieve partial arc consistency in the
FC algorithm� instead of checking the constraints between the instantiated value of
the current variable and all values of all future variables that are constrained with
the current variable to prune away incompatible values of future variables� we can
also get these incompatible values by accessing already setup information�

In AC�� we have a support set for each value of each variable recording all the
values it supports in the domains of all variables that variable is constrained with�
However� in FC� support sets do not help a lot� When we instantiate a variable�
we need to look ahead to prune away all the values of future variables that are not
compatible with the current instantiated variable� Because all values of those future
variables 	that are constrained with the current variable
 are either compatible or
incompatible with the current instantiated value� i�e�� are either supported or not
supported by it� if we still use support sets� for those future variables that are
constrained with the current variable� we need to prune away all the values that
are not in the support set of the current instantiated value� In other words� we
need the complement of the support set of the current instantiated value 	for the

��
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constrained future variables
 that records all the values that are not supported
by the current instantiated value� but are in the domains of variables that are
constrained with the current variable� We call this a non�support set� For example�
in Figure ���� the non�support set of 	V �� r
 is f	V �� r
g�
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Figure ���� Using non�support sets

We need to set up a non�support set for each value of each variable� Like in
MAC�� we can set up all the non�support sets before search starts� During the
search� after a variable is instantiated� it traverses its non�support set to prune
away all the values in it that are not pruned yet� Since only part of the values in
a domain will be in the non�support sets� the number of values that need to be
examined will be reduced� For example� in Figure ���� when we instantiate V � and
assign r to it� from its non�support set� we only need to prune one value r in the
domain of V �� We don t need to check all three values of V ��
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��� Algorithm

The algorithm of the new FC is listed below� We call it FC��

�� function CHECK FORWARD�	V ars� Level� Vi� vil


�� for each 	Vj � vjm
 � 
SViv
i
l

such that

Vj � V ars and Domainjm is not marked

�� Domainjm � Marked at Level

�� if DWO	Vj 


�� return FALSE

�� return TRUE

�� function FC�

�� for each variable Vi � V

�� for each value vil � Di

�� Domainil � unMarked

N� 
SViv
i
l
� 


�� Solution� 


N� for each variable Vi � V

N� for each variable Vj � V such that j � i

N� if Rij � R

N� for each value vil � Di

N� for each value vjm � Dj

N� if 	vil� v
j
m
 �� Rij

N� 
S
Vjv

j
m
� 
S

Vjv
j
m

� 	Vi� vil


N� 
SViv
i
l
� 
SViv

i
l
� 	Vj� vjm


�� return SEARCH FC�	V� �
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Not surprisingly� the structure of FC� is similar to that of FC�� FC� re�
places FC� in that non�support sets are initialized and set up� The function
SEARCH FC� is not listed since it is exactly the same as SEARCH FC� in
Chapter � except that in line �� it calls CHECK FORWARD� and SEARCH FC�
instead of CHECK FORWARD� and SEARCH FC�� In the function
CHECK FORWARD�� non�support sets are used to remove incompatible values
of future variables without involving any constraint checks�

��� Analysis

Figure ��� is the search tree of applying FC� to a map�coloring problem� Assuming
non�support sets are set up already before search starts� The non�support sets that
will be used for each instantiation are listed below the relevant instantiations� FC�
will visit exactly the same number of nodes as FC� does� If we use FC�� we will get
the same search tree for the same problem� The saving of FC� is obtained at each
node� For example� assume we have successfully instantiated V � to g and now we
are going to instantiate V � to r� At this point� V � is the only future variable that
is constrained with V �� If we use FC�� we have to consider all the values r� g and b
in the domain of V � one by one to see whether any of them are incompatible with
V � � r and have to be pruned� As a result� we will remove r since g and b are both
compatible with V � � r� However� if we use FC�� we know right�away that only
	V �� r
 is not supported by the assignment V � � r� All need to do is to prune r
from V ��

Compared to FC�� extra work needs to be done to initialize and set up non�
support sets� But the complexity is polynomial in the size of the problem� 	The
complexity of search might be exponential in the size of the problem�
 If there are
c constraints and the domain size of each variable is k� then the total number of
constraint checks is ck�� When the problem is large and hard� the search tree is deep
and wide� the cost of setting up non�support sets will be negligible compared to the
cost of search� Moreover� we only need to set up this information once� We can use
it again and again during search when backtracks occur� 	If the problem is hard�
we should always expect many backtracks
� Consider the example in Figure ���
again� V � is instantiated to r twice� one is after g is assigned to V �� the other is
after b is assigned to V �� We also bene�t from the non�support set of 	V �� r
 twice�
For hard and large problems� there will be many more backtracks and the more
nodes visited� the more savings we can get with regard to the search cost using the
original FC��
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Figure ���� Non�support sets analysis

The performance of FC� depends on the sizes of the non�support sets� Since we
only need to process those values in the relevant non�support set at each node� the
smaller the size of the non�support set� the more savings we can achieve� Suppose
a non�support set 
SV�a is de�ned for 	V�� a
� and V� is the only variable that is
constrained with V�� In the worst case� the size of 
SV�a is equal to the domain
size of V�� This is case	�
 in Figure ���� In this case� since all values of V� are
incompatible with a� an instantiation of V� to a will cause the removal of all values
from V�� In the best case� the size of 
SV�a is zero� This is case	�
 in Figure ����
In this case� all values are compatible and nothing need be pruned� These are two
extreme cases� In most cases� however� the size of 
SV�a divided by the domain size
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of V� is a fraction between 	�� �
� as in case	�
 in Figure ���� This factor is related
to the tightness of the constraint between V� and V�� that is� the fraction of all
possible pairs of values from the domains of these two constrained variables� that
are not allowed by the constraint� Tightness will be used as a property of a CSP
and we will discuss it in more detail in the next chapter� Suppose the domain sizes
of two constrained variables are both k� the tightness of the constraint is t� then the
number of all possible pairs of values from the two domains that are not allowed
by the constraint is t� 	k � k
� In other words� for each value of one variable� the
expected number of values of the other variable that are incompatible with it is

t� 	k � k
� k � t� k �

Therefore� we expect FC� works well with CSPs with low tightness�



Chapter �

Empirical Results

Since �nding a solution to a CSP is an NP�hard problem as noted in Chapter ��
worst�case analysis does not necessarily re�ect actual performance� Furthermore�
theoretical estimation of performance� e�g�� expected case analysis is not always
possible� Therefore� empirical evaluation of the various algorithms is necessary� In
this chapter� we use empirical results to address the distribution of problem classes
on which FC or MAC works better�

	�� Experimental design

We use randomly generated binary CSPs to do our experiments and we only look
for the �rst solution to these problems�

����� Problem generation

A problem is generated using four parameters� N � K� C and T �

� N is the number of variables�

� K is the domain size of each variable� i�e�� the number of values for each
variable� Initially the domain size for all variables is equal�

� C is the number of binary constraints�

This number is related to N � Since a binary constraint is de�ned on two
variables� the maximum possible number of constraints on N variables is

��
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N�N���
�

� Therefore� the range of C is from � to N�N���
�

� If C is �� none of
the variables are constrained� and there are no links in the constraint graph�
If C is N�N���

�
� each variable is constrained with all other variables and the

constraint graph is a complete graph� The fraction of C over N�N���
�

is called
the constraint density of the CSP problem�

� T is the number of incompatible pairs of values for each constraint�

This number is related to K� For each constraint� the number of all possible
pairs of values from the domains of the two related variables is K�K� There�
fore� the range of T is from � to K�K� If T is �� any pair of values is allowed
and the constraint is actually a trivial constraint that is always satis�ed� If
T is K � K� the relevant constraint can never be satis�ed and no solution
exists� The fraction of T over K �K is called the constraint tightness of the
CSP problem�

When discussing problem size� we are referring to the parameters� N and K of
the problem� All the problems generated using the same set of parameters� N � K�
C and T are said to be of the same problem class�

����� The algorithms

The main purpose of our experiments is to compare the performance of FC and
MAC� We will use both FC� and FC� as the algorithms of FC and both MAC� and
MAC� as the algorithms of MAC� The pure FC and MAC algorithms do not perform
well as the problems become larger and harder� so we also use some heuristics and
optimizations discussed in Chapter � and Chapter �� For all of these algorithms
we use dynamic variable ordering with dom 	choose the variable with the smallest
remaining domain size
 used as the ordering heuristic and deg 	choose the variable
with largest out degree in the initial constraint graph
 used to break ties 	see
section ��� for details
� For the FC algorithm� we also use the look�back scheme
CBJ 	con�ict�directed backjumping� see section ���
� denoted as FC�CBJ� We will
not use CBJ for MAC� there is some empirical evidence that CBJ is not very
e�ective with MAC ���� We implemented various versions of the MAC algorithm�
However� we found that the implementation of MAC� discussed in ��� and made
available by its authors had superior performance� It utilizes the singleton variable
optimization discussed in Chapter �� Finally� we also run the FC� algorithm with
initial arc consistency preprocessing� denoted as FC��AC�
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����� The empirical studies

We generated and solved ��� problem instances for each problem class� For di�erent
algorithms� we guaranteed that they solved exactly the same problem instances of
a problem class by generating these problem instances from the same integer seed
value�

We always report the median performance of an algorithm on the ��� instances
solved for a problem class� We do not use the mean cost because of the existence of
exceptionally hard problems 	ehps
 ���� As a matter of fact� individual instances of
a problem class may be very hard to solve with a particular algorithm while most
other instances of the same problem class are easy to solve� In this case� the cost
of these ehps signi�cantly a�ects the value of the mean cost� making the median
a better indication of average di�culty� Individual ehps are highly dependent on
the algorithm being used ��� and their hardness doesn t re�ect the hardness of the
whole problem class� The incidence of ehps is not the interest of this thesis� We
focus on the performance of di�erent algorithms on a whole problem class�

Since the number of constraint checks is not an appropriate measure for FC� or
MAC� 	the only constraint checks are done to set up support or non�support sets
�
we use CPU time to measure their performances and make comparisons� We still
use the number of constraint checks when applicable�

It is claimed in both ��� and ��� that MAC outperforms FC in solving large
and hard problems� However� in ���� experiments were done on individual problem
classes with no apparent relationship among them� In ���� experiments were only
done on problems of a certain constraint density� In this thesis� we want to provide a
more systematic study� That is� we want to show the performances of FC and MAC
in relation to the size� constraint density and constraint tightness of the problems
solved�

The problems we use for our experiments must meet the following requirements�

� These problems are hard enough to show the di�erence among the perfor�
mances using di�erent algorithms�

� These problems are easy enough to be solved in reasonable time�
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It would not be di�cult to �nd individual problem classes having the above
properties� However� if we want to have a group of problem classes with relating
size� constraint density and constraint tightness� the answer is not trivial�

We start our experiments with CSPs with N � �� and K � ��� A wide range of
C and T  s are experimented to give an overall view of the distribution and hardness
of CSPs with varying C and T when the problem size is �xed� and the performances
of FC and MAC on them� Then N is increased to show how the problem size will
a�ect the relative performances of FC and MAC� in particular� with regard to C
and T �

Experiments are conducted by generating groups of problem classes with varying
C whilst holding N � K and T constant and using di�erent algorithms to solve them�
We can plot the median behavior of these algorithms with regard to C� However�
we will not use C as the x�axis� Instead� we will use the local constraint density� ��
which is de�ned as 	� � C
�N � In fact� � is the average degree of all nodes in the
constraint graph of a CSP which represents the average number of constraints each
variable has� It is indicated in ��� that the e�ect of increasing N is independent if
we maintain the problem topology by holding � constant� In other words� we can
expect that if we increase N whilst holding K� � and T constant� the di�erence of
the performances of the same algorithm is only caused by N � We will verify this
conclusion later in our experiments� Like C� the range of � is also dependent on the
value of N � It is from � to N 	 �� When � is N 	 �� every variable is constrained
with all other variables in the problem�

	�� Results

We only use the FC� and MAC� algorithms for our �rst set of experiments� Since
they both use AC� as the algorithm to achieve arc consistency� we are able to
use the number of constraint checks as the measurement for their performances�
Figure ���"��� show their median behaviors in terms of number of constraint checks
on the N � �� and K � �� problem classes�
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From these graphs� we can see that�

� The qualitative behavior of FC and MAC is similar� In particular� the peaks
of both algorithms almost always appear at the same value of C for a certain
T � This suggests that in general� a hard problem class for FC is also a hard
problem class for MAC� and vice versa�

� When the constraint tightness is low� for both algorithms� the hardest prob�
lem class appears where the constraint density is high� When the constraint
tightness is high� the hardest problem class appears where the constraint
density is low�

This is not di�cult to understand� If both constraint density and tightness
are low� a variable is unlikely to be constrained with many other variables
and even if it is� most of their values will be compatible� The problems of this
class are likely to have many solutions and it is easy to �nd one� On the other
hand� if both constraint density and tightness are high� it usually only takes a
few variable assignments to generate a contradiction� Thus these algorithms
fail near the top of the backtracking tree� and they do so quite quickly� In
other words� the problems of this class are likely to have no solution and their
insolubility is relatively easy to prove�

Only when the constraint density and tightness maintain a certain kind of
balance such that some of the problems are soluble and some are insoluble�
is the cost of search high� In this case� for the soluble problems� solutions
are not easy to �nd and for the insoluble problems� it is di�cult to detect a
dead end� In fact� it has generally been observed ��� that the hardest problem
classes are those containing about ��� soluble problems and ��� insoluble
problems�

� For both algorithms� of all the peaks 	the hardest problem classes
 with re�
gard to di�erent T � the highest one 	Figure ���
 appears when the constraint
tightness is relatively low 	T � �� out of ���
 and the constraint density is
relatively high 	C � ��� out of ��� or � � ����� out of ��
� In fact� the peak
values are getting larger and larger with decreasing T until T is very small
	� ��
�

� FC� almost always outperforms MAC� 	because these problems are not large
and hard enough
� The only exceptions occur when T is very high 	T � ��� ��

and most of the problems are initially arc inconsistent provided that C is
reasonably large� In this case� MAC can detect the insolubility of a problem
without any variable assignments�
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Since MAC is supposed to work better on large problems� we expect that MAC
will outperform FC if we increase N � i�e�� increase the size of the problems� More�
over� since MAC is supposed to work better on hard problems� we expect that with
increasing N � MAC will start to outperform FC �rst on the problem class of the
value C that makes it the hardest given N � K and T � The following experiments
are performed to examine how MAC starts to outperform FC� Figure ����"���� give
the results�
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We enlarge the graphs for T � ��� ��� ��� ��� �� to make them more clear to be
read� The x�axis for these graphs is ������� Though there is a general trend that as
N increases there is a point where MAC starts to outperform FC on hard problem
classes� however� we were only able to obtain this result for some values of T � as
for other values of T � the value of N at which MAC might outperform FC becomes
too large and the problems become too hard for us to complete the experiments�
For example� it takes thousands of seconds of CPU time to solve one hard problem
as N � ���K � �� and T � ���

For T � ��� ��� we did get the result that MAC outperforms FC as N increases�
For T � ��� FC always outperforms MAC as N � ��� When we increase N to ���
their performances on hard problem classes are close� When we increase N to ���
MAC is more than an order of magnitude better than FC on hard problem classes�
For T � ��� we have the same result� though the growth rate of the superiority of
MAC over FC on hard problem classes is less than that for T � ��� These two
results clearly show that for a certain value of T � MAC performs better on large
and hard problems�

In both of the two graphs� the fact that all those peaks for di�erent values of
N appear at almost the same value of � also suggests that for these two values
of T � the e�ect of increasing N is independent if we hold �� instead of holding C�
constant� In fact� this is general for all the values of T from �� to �� for which we
have graphs with increasing N � This is the reason why we use � as the x�axis for
these graphs�

For T � ��� ��� though we did not obtain the result that MAC outperforms FC�
we can see such a trend� When N � ��� in both the graph of T � �� and the graph
of T � ��� the performances of MAC and FC get so close that it can be expected
to occur with further increase of N �

The fact that as we increase N to a certain value� say� N � ��� for some values of
T � say� T � ��� ��� MAC outperforms FC on hard problems� while for other values
of T � say� T � ��� ��� MAC does not outperform FC� suggests that the point of the
value of N at which MAC might start to outperform FC is di�erent on di�erent
problem classes with di�erent values of T �
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For T � ��� we were only able to test one problem class for both N � �� and
N � ��� Though we do not know whether this problem class is the hardest since
we have no other problem classes to compare with it� it is of the same value of �
which is used to generate the hardest problem class as N � ��� Therefore� this
problem class is at least a hard problem class� Following is the data we obtained�

N �� �� ��

� ���� ���� ����
C ��� ��� ���

Constraint Checks 	MAC�
 ������ ������� ���������
Constraint Checks 	FC�
 ����� ������� ���������

Ratio of Constraint Checks ������ ������ ������

We can see that from N � �� to N � �� there is a big increase of the perfor�
mance of MAC compared with FC� But from N � �� to N � ��� their relative
performances are almost the same�

For T � ��� we were only able to test several problem classes as N � ��� We
cannot see many changes in the relative performances of FC and MAC�

For T � ��� we tested up to N � ���� but still could not get our expected result�
In general� as we mentioned earlier� given a problem size� the problem classes of
high constraint tightness are relatively easy� Therefore� the problem classes with
T � �� will not be very hard with increasing N until N is very large�

It is near T � �� that MAC is most likely to outperform FC� In general� MAC
tends to perform better on hard problems of relatively high constraint tightness�
This phenomenon can be explained as follows�

� If tightness is high� more values are likely to be pruned due to arc inconsis�
tency� Thus arc consistency processing is more useful in reducing the size of
the search tree�

� The hard problem classes with high constraint tightness must have low con�
straint density� Thus� fewer arcs need to be checked during the propagation
of a removed value�
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As we mentioned earlier� for a certain value of T � e�g�� T � ��� compared to
FC� MAC really works better on large and hard problems� But how about if we
compare the performance of MAC and FC on problems with di�erent values of T �
Following are the results we got on three problem classes with di�erent values of T �

�� N � ���K � ��� T � ��� C � ���� see Figure ����

Algorithm Constraint checks

FC� ������
MAC� �����

�� N � ���K � ��� T � ��� C � ���� see Figure ����

Algorithm Constraint checks

FC� ���������
MAC� ���������

�� N � ����K � ��� T � ��� C � ��� see Figure ����

Algorithm Constraint checks

FC� ���
MAC� ����

If we compare between problem class� and problem class�� they are of the
same problem size and� clearly� problem class� is much harder than problem class��
However� MAC outperforms FC on problem class�� which is easier� but does not
on problem class�� which is harder� This is an example that MAC does not always
outperform FC on hard problems�

If we compare between problem class� and problem class�� problem class� is
larger than problem class�� However� MAC outperforms FC on problem class��
which is smaller� but does not on problem class�� which is larger� This is an
example that MAC does not always outperform FC on large problems�

Therefore we cannot say that MAC always works better than FC on large and
hard problems� The performance of these algorithms is also related to the constraint
density and tightness of the problems�
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Here is a summary�

� For hard problems of a certain tightness� MAC tends to work better compared
to FC as the problem size increases�

� For hard problems of di�erent tightness� the point at which MAC starts to
outperform FC with increasing problem size is di�erent�

� The superiority of MAC over FC is most likely to be revealed on hard problems
with relatively high tightness 	around T � �� out of ���
�

The purpose of all the above experiments is to give a general trend of the
performance of both the FC and MAC algorithms with regard to the changes of
N � C and T � However� since these experiments are done using the FC� and MAC�
algorithms� which are not supposed to be the best algorithms of FC and MAC
respectively� now we repeat these experiments using the improved versions of FC
and MAC� For the FC algorithm� we use FC��CBJ� FC��CBJ and FC��CBJ�AC�
For the MAC algorithm� we use MAC�� Since these algorithms are supposed to be
faster� we can hopefully have more results that MAC outperforms FC�
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Figure ����"���� are the results of N � �� and K � �� problem classes� We
have to use CPU time as the measure of performance here�

The qualitative behavior of these improved algorithms are similar to those unim�
proved algorithms for which we can use constraint checks as the measure of perfor�
mance� This suggests that CPU time is a reasonably good measure� which is the
prerequisite to make comparisons�

In some of the graphs� the plotting of MAC� is not smoothly continuous and
some of the data are even zero 	in the graphs of T � ��� ��� ��� almost all the
results of MAC� are zero
� This is due to the precision of the results of MAC��
That is why almost all of these cases occur when the problems are not hard 	median
performance is around or below ���s
� However� its performance on hard problems
which we are interested in will not be a�ected�

The MAC� algorithm used here is very time e�cient and it beats almost all the
other FC algorithms at all the peaks except for some values of T that are of low
constraint tightness� This coincides with our conclusion that MAC is usually not
cost e�ective on problems with low constraint tightness�

For T � �� 	Figure ����
� like FC� outperforms MAC�� FC��CBJ outperforms
MAC�� The performances of FC��CBJ and FC��CBJ�AC are not good here be�
cause these problems are too easy and the overhead for initializing non�support sets
becomes the main part of the total cost� For FC��CBJ�AC� more extra overhead is
required to achieve arc consistency before search starts though most of the problems
are initially arc consistent when T is of such a small value�

For T � �� 	Figure ����
� the corresponding peak values of the four algorithms
are given below�

Algorithm CPU time 	sec


FC��CBJ �������
FC��CBJ ������
FC��CBJ�AC ������
MAC� ������
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The superiority of our new FC algorithm 
 FC�� is shown here� Both of the
two FC� algorithms 	with or without AC
 perform better than MAC� at the peak�
especially FC��AC� All these three algorithms beat the original FC� algorithm�

For T � �� 	Figure ����
� the corresponding peak values of the four algorithms
are given below�

Algorithm CPU time 	sec


FC��CBJ ������
FC��CBJ ������
FC��CBJ�AC ������
MAC� ������

MAC� is the best algorithm for hard problem classes of T � ��� Our improved
algorithms of FC 
 FC� 	with or without AC
 both beat the original FC� algo�
rithm�

In fact� for T � �� to �� 	Figure ���������
� MAC� outperforms all the FC al�
gorithms at the peaks� As the performance of the FC� algorithms 	with or without
AC
� when T � ��� they still have some advantage on hard problem classes com�
pared to FC�� But as T gets larger� their performance is getting worse compared
to FC�� This coincides with our expectation that FC� works well on problems with
low constraint tightness� On the other hand� as T gets larger for the problems of
�xed size 	N � �� and K � ��
� the problems are getting easier and the overhead
part of the cost of FC� becomes dominant� Furthermore� this overhead is getting
larger as T increases� The e�ect of arc consistency preprocessing is not apparent
expect in the two graphs of T � ��� �� where FC��AC performs better on arc
inconsistent problems compared with FC��

We also did some experiments to show what happens as N increases� For
T � ��� ��� ��� we increased N to ��� For T � ��� ��� ��� we increased N to ���
Figure ��������� are the results�
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We look at the graphs for T � ��� ��� �� �rst� We can see that the superiority
of MAC� on hard problems is enlarged as N is increased to ��� Since the problems
become larger and thus harder� the FC� algorithms have a better performance
compared to that when N � ��� This suggests that the overhead of initialization
do make a large part of the cost when we use FC� to solve easy problems� But as
the problems get harder� FC� will show its superiority�

For the graph of T � �� 	Figure ����
� the corresponding peak values of the
four algorithms are given below�

Algorithm CPU time 	sec


FC��CBJ ��������
FC��CBJ �������
FC��CBJ�AC �������
MAC� �������

The performance of MAC� catches up with the performance of FC� on hard
problem classes as N is increased to ��� which shows a trend that MAC� will
eventually outperforms all the FC algorithms on hard problems of T � ���

For the graph of T � �� 	Figure ����
� there is no much di�erence compared to
the graph of T � �� as N � �� except that the problems are harder�

The most interesting graph is for T � �� 	Figure ����
� The corresponding peak
values of the four algorithms are given below�

Algorithm CPU time 	sec


FC��CBJ �������
FC��CBJ �������
FC��CBJ�AC �������
MAC� �������

We are unable to obtain the result that MAC� outperforms FC�� In fact�
the performance of MAC� here is as bad as the performance of the original FC�
algorithm� However� the performances of FC�� both with AC and without AC
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are much better than MAC� and FC�� This means that our new algorithm FC�
performs well on problems with low constraint tightness�

From this graph� we can also see that the hardest problem class appears as the
value of C or � is the largest� where the constraint graphs of these problems are
complete graphs� In other words� when T is of such a small value as less than or
around ��� the e�ect of increasing N is dependent on C or �� We can also notice
that the problems are getting hard so quickly as C grows to a certain point�

To explore further on the performance of these algorithms on problems with low
constraint tightness� we did another set of experiments with T � �� The results are
given in Figure ����������

We have similar results as T � ��� except that we need to increase N to larger
number to reach the point that MAC� catches up with FC�� But we still were not
able to obtain the result that MAC� outperforms FC�� N is increased as large as
��� and the corresponding peak values of the four algorithms are given below�

Algorithm CPU time 	sec


FC��CBJ ��������
FC��CBJ ��������
FC��CBJ�AC ��������
MAC� ��������

From this table� we can see that the superiority of FC� is more clear compared
to the results of T � ���
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Conclusions and future work

In this thesis� we provide a systematic comparison of the performances of the MAC
and FC algorithms on large and hard CSPs� In particular� we compare their per�
formance with regard to the size� constraint density and constraint tightness of the
problems�

From the empirical results� we have following conclusions�

� Given a problem size� hard problem classes tend to be those with either low
constraint tightness and high constraint density or high constraint tightness
and low constraint density� The hardest problem class for both FC and MAC
is the one with relatively low constraint tightness and high constraint density�

� Though there is a trend that MAC eventually outperforms FC as we increase
the problem size� for hard problem classes of a certain size� MAC performs
better on those with high constraint tightness and low constraint density� In
other words� the superiority of MAC over FC will not be revealed on the hard
problem classes with low constraint tightness and high constraint density
	which are harder than the problem classes with high constraint tightness
given the same problem size
 until the size of these problems is quite large�
It could well be that for real problems FC remains the superior algorithm�

� The performance of MAC also depends greatly on its implementation� Im�
proved algorithms of MAC work much better than the naive implementation
of MAC that uses AC� as the algorithm for arc consistency�

���
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� Another contribution of this thesis is that we have devised a new FC algo�
rithm 
 FC�� It shows good performance on the hard problem classes with
low constraint tightness and high constraint density 	which are the problem
classes that MAC performs relatively poorly
� if these problem classes are
hard enough to overcome the extra overhead of FC�� It works especially well
on problems with low constraint tightness less than or close to ���� for which
we were unable to increase the problem size to the point that MAC� can beat
it�

Future work

It will be interesting to explore further the performance of MAC� and our new
algorithm FC� on the problems with low constraint tightness and high constraint
density with increasing problem size�

All the experiments in this thesis were done on randomly generated problems
with the same domain size for all variables and the same constraint tightness for all
constraints� Real problems are unlikely to be exactly like this� With the conclusions
we have obtained here� we can make some conjectures and try to verify these
conjectures on some real problems�

We also only changed N � the number of variables� when we needed to change
problem size� The e�ect of increasing domain size also needs to be studied�
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