
Unrestricted Nogood Recording in CSP search

George Katsirelos and Fahiem Bacchus

Department of Computer Science, University Of Toronto,�

Toronto, Ontario, Canada
[gkatsi,fbacchus]@cs.toronto.edu

Abstract. Recently spectacular improvements in the performance of SAT solvers
have been achieved through nogood recording (clause learning). In the CSP lit-
erature, on the other hand, nogood recording remains a fairly minor technique
for improving backtracking algorithms. In this paper we demonstrate how recent
nogood recording techniques from SAT can be generalized to CSPs. The result
is a significant enhancement over current nogood recording techniques used in
CSPs. We also report on some preliminary empirical results which indicate that
generalized nogood recording can have a signficant performance benefit.

1 Introduction

A number of works have investigated nogood recording as a technique for improving
backtracking search, e.g., [FD94] (a longer version of this paper, [KB03], contains many
more details, as well as a more detailed list of citations). Abstractly, a nogood is an
easily checkable condition that can be used to test the nodes of a backtracking search
tree. If the condition is true, then there can be no solution to the CSP below that node,
otherwise the node remains plausible. Nogoods are discovered as we explore nodes in
the backtracking tree. These nogoods capture the reason various nodes of the tree failed
to yield a solution. By recording these reasons we can test nodes subsequently visited
by the search, backtracking immediately if the node satisfies any previously recorded
nogood.

Although it is well known that nogood recording can offer benefits in CSPs, it
remains an under utilized algorithmic technique in the field. For example, the main
commercial solvers offer no support for nogood recording. Furthermore, the nogood
recording techniques in the CSP literature are significantly less general than the more
modern techniques utilized in SAT solvers. First, the CSP literature (even recent work
like [JDB00]) has only explored the recording of restricted types of nogoods that con-
tain only literals with the same sign. This means that no extra reasoning, e.g., unit
propagation, is possible over the nogood database. Second, due to this restriction, alter-
nate ways of learning nogoods from conflicts, e.g., the 1-UIP technique used in Zchaff
[MMZ+01], cannot be supported. Instead, the recorded nogoods are always subsets of
the decisions made on the way to the conflict. Third, heuristics based on the most re-
cently learned nogoods have not been examined. And fourth, the CSP literature has
concentrated on techniques that restrict the number and or size of the nogoods that can
be recorded, e.g., using relevance or length bounded nogood recording [BM96].

All of these nogood recording techniques are prominent components of modern SAT
solvers, and they have yielded spectacular improvements in SAT solver performance. In

� This research was supported by the Canadian Government through their NSERC program.



2 George Katsirelos and Fahiem Bacchus

this paper we demonstrate how all of these improved techniques can be generalized to
CSPs, and report on some preliminary empirical results based on an implementation of
these techniques. Our empirical results indicate that these more sophisticated techniques
for utilizing nogood recording can sometimes have a significant benefit—e.g., allowing
us to solve some previously unsolved problems. However, the results also indicate that
further tuning of these techniques might be needed for them to attain their full potential
with CSPs.

2 Nogoods in Backtracking Search

Definitions: A CSP consists of a set of variables {V1, . . . , Vk}, a domain of values for
each variable, and a set of constraints. Each constraint being a boolean valued function
over a subset of the variables that maps each assignment of values to these variables
to TRUE/FALSE. If its value is TRUE, we say that this particular assignment of values
satisfies the constraint. A solution to the CSP is an assignment of a value to each variable
such that every constraint is satisfied by this set of assignments.

The standard notion of nogood, as explored in the CSP literature, is a set of assign-
ments that cannot be extended to a solution of the problem. Each node in the backtrack-
ing tree is defined by the set of assignments made so far, with all descendant nodes
extending this set of assignments. Hence, if a node covers a nogood, i.e., includes all
of the assignments in the nogood, all nodes in the subtree below it must also cover the
nogood, and none of them can be a solution.

Nogoods are the CSP equivalent of clauses learned by SAT solvers. To see this con-
sider the simplest SAT encoding of a CSP [Wal00] in which each possible assignment
of a variable, V ← a becomes a proposition asserting that V has been assigned that
value. The constraints of the CSP are then encoded as clauses over this set of propo-
sitional symbols. In addition, the constraint that each variable must be assigned one
and only value, implicit in the CSP encoding, is also encoded as a set of clauses. Un-
der this direct encoding, a nogood V1 ← a1, . . . , Vi ← ai is equivalent to the clause
(V1 �← a1, . . . Vi �← ai). That is, at least one of the assignments (literals) in the nogood
must be false. Viewing the nogood as a conjunction (rather than a disjunctive clause),
when one of its assignments becomes false the nogood is falsified the nogood becomes
inactive. Similarly, when one of its assignments becomes true, we can reduce the no-
good (implicitly) removing that assignment. Finally, when the nogood has been reduced
to a single assignment (become unit), we can force this last one assignment to be false
(an assignment V ← a is forced to be false by pruning a from the domain of V ).

Using Nogood: Nogood recording can be accomplished in any algorithm that maintains
the reasons for each pruned value [Bac00]. These reasons can be stored in a global array:
if the reason for pruning V ← a is NG, then NoGood [V, a] = NG. Whenever all the
values of a variable V are eliminated through search or propagation, a new nogood is
discover and recorded: NG =

⋃{NoGood [V, d]− (V, d) : d ∈ Domain[V ]}.
To use the recorded nogoods, the nogood store is checked for unit nogoods after

making an assignment, before constraint propagation. Standard nogoods can only be
reduced by assignments, so checking at this stage is sufficient. For every nogood NG



Unrestricted Nogood Recording 3

that has been made unit by the assignment, we force its remaining untrue assignment to
false, by pruning the corresponding value and setting NG as the reason for that pruning.
Prunings due to a set of assignments violating a constraint use the assignments to the
constraint’s scope as the reason for the pruning. 1

3 Utilizing SAT Techniques for Nogoods

SAT solvers gain much mileage from the fact that their store of recorded clauses can
generate long chains of unit propagations, quickly simplifying the problem. Standard
nogoods as described above do not support such chains of unit propagation—all the
literals in standard nogoods have the same sign so no chaining is possible.

The solution is to record nogoods containing literals of both sign: assignments and
non-assignments. With this we obtain propagation in the nogood store. For example, let
NG1 = {V1 �← a, V2 �← c, V3 ← d}, and NG2 = {V1 �← b, V3 �← d, V4 ← c}; say
the search makes the assignment V1 ← c; and the value c is pruned from the domain of
V2. V1 ← c implies that V1 �← a and V1 �← b both become true. The pruning of c means
that V2 �← c becomes true. Thus NG1 is reduced to the unit nogood {V3 ← d}, which
prunes d from the domain of V3. This then causes NG2 to become the unit {V4 ← c},
resulting in c being pruned from the domain of V 4.

Recording Generalized Nogoods: To understand how general nogoods can be recorded
during search, it is useful to consider why it is that the unioning of nogoods is a valid
way of producing a new nogood. Implicit in the CSP representation is a “must have a
value” nogood, M = {V �← x1, . . ., V �← xd}. When we have a nogood NGi = {V ←
xi, Ri} for each of V ’s values, we can resolve each NGi against M . The final result
will be {R1, . . . , Rd}.

To discover generalized nogoods, we replace the above procedure with one that
incrementally unwinds the “must have a value” nogood, always replacing the chrono-
logically most recent assignment by the reason (nogood) associated with it. Eventually,
we have a nogood whose most recent assignment is the choice assignment in its level.
We can then backtrack to that level, and store the nogood. The key is that during this
incremental unwinding process some of the non-assignments in the “must have a value”
nogood persist.

Unique Implication Point (UIP): An alternative to completely unwinding the “must-
have-a-value” nogood is to stop when exactly one assignment remains at the current
level. That assignment is called a unique implication point [ZMMM01]. Nogoods com-
puted via UIPs can be quite different from those computed via the standard technique.
We have experimented with both techniques for nogood recording.

1 In the case of prunings due to GAC propagation the reason (nogood) for the pruning can be
composed from the nogoods of the values pruned from the other variables in the constraint’s
scope.



4 George Katsirelos and Fahiem Bacchus

Non-Binary Domain Processing The SAT encoding of a CSP contains clauses to en-
force the constraint that each variable must one and only one value. These clauses (no-
goods) could be added to the nogood store prior to search, but it is more efficient (and
effective) to account for the implicit presence of these clauses by special processing
of the nogoods. There are three cases that can be processed in this way. First, when-
ever a variable V is assigned a value a all assignments V ← x for x �= a become
false. Second, if a nogood contains an assignment to a variable we can remove all non-
assignment to the same variable prior to storing the nogood (the assignment subsumes
the non-assignments). Third, if a nogood is reduced to a collection of non-assignments
to the same variable, we can immediately prune all other values from the variable’s
domain. It can be noted that the last two cases cannot be captured by simply unit prop-
agating the implicit “must have a value” and “only-one-value” nogoods.

Heuristics based on recently recorded nogoods: The recorded nogoods can be used
to rank the unassigned variables by the frequency with which they appear in recently
recorded nogoods. The Variable Decay heuristic utilized in SAT solvers uses this tech-
nique to encourage the tree search to produce short clauses. We have experimented
with such a heuristic, but to date have not found an effective version of it in the context
of CSPs. Nevertheless, there is increasing evidence that heuristic guidance can be the
most effective of the nogood recording techniques utilized in SAT solvers. Hence, we
are continuing our investigations in this area.

Recording large numbers of nogoods: SAT solvers utilize lazy data structures (watch
literals) to optimize the management and propagation of large numbers of large no-
goods. With these techniques previous restrictions on nogood recording utilized in CSP
algorithms can be removed, and instead large databases of nogoods can be efficiently
managed.

4 Empirical Results

We have implemented unrestricted nogood recording, with standard nogoods as well
as generalized nogoods. We have also implemented UIP processing which can be used
with generalized nogoods. All experiments were performed on a Pentium-4 2.2 GHz
machine, with 4GB of RAM, and times are reported in CPU seconds.

We report on one set experiments containing 100 instances of hard crossword puz-
zles, presented in [BCSvB01], Beacham et al.. Beacham et al. identified EAC (exten-
tional arc consistency) as the best algorithm. In our experiments we compared their
implementation of EAC against various nogood recording algorithms based on FCCBJ:
FCCBJ+RB (3rd order relevance bounded recording of standard nogoods), FCCBJ+S
(unrestricted recording of standard nogoods), FCCBJ+G (unrestricted recording of gen-
eralized nogoods) and FCUIP (unrestricted recording of generalized nogoods that result
from UIP reasoning). In Table 1 we report on the instances that were unsolvable by at
least one of the algorithms. The rest were easily solvable by all, with no major time
differences.

We see that relevance bounded nogood recording is not very effective, always being
slower than the rest of the algorithms, and solving fewer problems. FCCBJ+S (and



Unrestricted Nogood Recording 5

EAC FCCBJ+RB FCCBJ+S FCCBJ+G FCCBJ+UIP
Problem Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

UK-21.04 20.36 447 817.36 5924008 1491.22 1170356 - - 5312.95 824067
UK-23.06 84.72 1306 - - 5203.07 2994762 - - 1028.48 835313
UK-23.10 210.54 1834 177.06 1236956 134.59 415718 2199.28 710566 - -

words-15.01 - - - - 5395.93 2423058 - - 1122.5 655479
words-15.10 2.29 265 - - 5752.77 3702947 - - - -
words-19.03 502.12 21096 - - 156.56 526797 - - 490.26 482251
words-19.04 10.58 580 - - 15.46 118325 43.47 124524 30.53 97721
words-21.01 - - - - 3921.84 5056685 - - 1266.06 1207743
words-21.06 4.35 484 - - 45.11 168548 350.27 287223 31.94 75443
words-23.03 - - - - 144.57 672178 5006 1902648 1959.23 1400760
words-23.04 207.16 3783 - - 14715.87 6194196 - - - -
words-23.08 - - - - - - - - 4529.65 1817350
words-23.09 269.79 9933 - - - - - - - -

Table 1. Crossword puzzles with FC-based algorithms

GACCBJ+S) present either a clear improvement. Recording generalized nogoods with
UIP reasoning in some cases can payoff, but more tuning is need to obtain maximal
benefit from this technique.

5 Conclusion

We have developed methods for importing current clause learning techniques from SAT
into CSPs. These techniques do allow us to solve some previously unsolved problems,
but more work remains to obtain to maximal potential from these techniques in the CSP
context.

References

[Bac00] Fahiem Bacchus. Extending forward checking. In International Conference on
Principles and Practice of Constraint Programming, number 1894 in Lecture Notes
in Computer Science, pages 35–51. Springer-Verlag, New York, 2000.

[BCSvB01] Adam Beacham, Xinguang Chen, Jonathan Sillito, and Peter van Beek. Constraint
programming lessons learned from crossword puzzles. In Proceedings of the 14th
Canadian Conference on Artificial Intelligence, pages 78–87, 2001.

[BM96] R. J. Bayardo Jr and D. P. Miranker. A complexity analysis of space-bounded
learning algorithms for the constraint satisfaction problem. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pages 298–304, Portland,
Oregon, 1996.

[FD94] Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings of the
AAAI National Conference, pages 294–300, 1994.

[JDB00] Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In International Conference on Princi-
ples and Practice of Constraint Programming, number 1894 in Lecture Notes in
Computer Science, pages 249–261. Springer-Verlag, New York, 2000.

[KB03] George Katsirelos and Fahiem Bacchus. Unrestricted nogood recording in csp
search. availble at www.cs.toronto.edu/˜gkatsi/publications.html, 2003.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In Proc. of the Design Automation Conference (DAC), 2001.

[Wal00] Toby Walsh. Sat v csp. In International Conference on Principles and Practice
of Constraint Programming, number 1894 in Lecture Notes in Computer Science,
pages 441–456. Springer-Verlag, New York, 2000.



6 George Katsirelos and Fahiem Bacchus

[ZMMM01] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learn-
ing in a boolean satisfiability solver. In Proceedings of IEEE/ACM International
Conference on Computer Design (ICCAD), pages 279–285, 2001.


