
Extending Forward Checking

Fahiem Bacchus�

Department. of Computer Science, 6 Kings College Road, University Of Toronto,
Toronto, Ontario, Canada, M5S 1A4, fbacchus@cs.toronto.edu �

Abstract. Among backtracking based algorithms for constraint satisfaction prob-
lems (CSPs), algorithms employing constraint propagation, like forward check-
ing (FC) and MAC, have had the most practical impact. These algorithms use
constraint propagation during search to prune inconsistent values from the do-
mains of the uninstantiated variables. In this paper we present a general approach
to extending constraint propagating algorithms, especially forward checking. In
particular, we provide a simple yet flexible mechanism for pruning domain val-
ues, and show that with this in place it becomes easy to utilize new mechanisms
for detecting inconsistent values during search. This leads to a powerful and uni-
form technique for designing new CSP algorithms: one simply need design new
methods for detecting inconsistent values and then interface them with the do-
main pruning mechanism. Furthermore, we also show that algorithms following
this design can proved to be correct in a simple and uniform way. To demonstrate
the utility of these ideas five “new” CSP algorithms are presented.

1 Introduction
Many of the most useful backtracking based (systematic) CSP algorithms utilize con-
straint propagation to detect inconsistent values during search. These inconsistent val-
ues can then be temporarily pruned from the domains of those variables, and restored
when the search backtracks and nullifies the reason the values became inconsistent. In
terms of simplicity and historical precedence the most basic algorithm in this class is
Haralick and Elliott’s forward checking algorithm (FC) [1].

Although conceptually simple, pruning values during search has rather profound
computational effects. Different amounts of computation can be devoted to detect in-
consistent values. But, once a value is known to be inconsistent it is easy to prune it
(e.g., it can be delinked from a linked list containing the variable’s current values), and
this can yield exponential savings in the search of the subtree below— if we had not
pruned it we might have had to, e.g., process this value an exponential number of times
in subtree below. Perhaps an even more important benefit is that domain pruning causes
the domain sizes of the uninstantiated variables to vary dynamically, and this provides
invaluable input to dynamic variable order (DVO) heuristics [2].

However, popular algorithms like FC and MAC employ domain pruning in a fairly
restricted way. In both of these algorithms pruning is done in lock step with search. That
is, every time a new assignment � is made these algorithms perform constraint prop-
agation, detect some set of inconsistent values, and prune those values to the current
level. Hence, when we undo�, all of these values are restored. As a result the domains

� This research was supported by the Canadian Government through their NSERC program.



2 Fahiem Bacchus

of the uninstantiated variables are in the same state when we backtrack from the current
level as when we first entered it.

In this paper we show that there are other opportunities for detecting and pruning
inconsistent values, and we use these new opportunities to develop an interesting range
of extensions to the standard algorithms. It is very simple to implement a more general
domain pruning and restoring mechanism that allows one to prune a value to an arbitrary
level of the search tree. With this extra flexibility in place, one can set to the task of
developing ways in which to use it. And as we will demonstrate in this paper there are a
number of ways to do so. That is, there are ways of detecting that a value is inconsistent
with levels higher than the current level, and thus pruning it above the current level.

In the sequel we present a generic template for extending constraint propagation al-
gorithms. This template has an abstract interface to a domain pruning mechanism (that
mechanism must do at least as much pruning as would FC). By designing and imple-
menting new pruning mechanisms we can combine them with this template to obtain
new CSP algorithms that extend FC. We then present a theorem which shows that as
long as the new pruning mechanism satisfies a simple soundness criteria, the algorithm
that arises from combining it with the template is both sound and complete. This means
we can easily verify the correctness of our new algorithms (or any future algorithms
that employ the same design technique). We then present five “new” CSP algorithms,
all of which extend forward checking by taking advantage of various insights into when
we can detect that values have become inconsistent. We are still working on evaluating
these new algorithms empirically, but we present some preliminary results indicating
potential in terms of improved search efficiency.

Given the intensity of research into new CSP algorithms, it should not be too sur-
prising that some of these new algorithms end up being similar to previous proposals.
However, an important contribution of our approach is that it provides a unification
and simplification of a number of these previous proposals. This in itself has impor-
tant practical significance: methods for cleanly designing and implementing CSP algo-
rithms have as much of a role to play in practice as improved algorithmic efficiency.
Furthermore, despite the relationship with previous proposals, some of the algorithms
we present are novel and they all have novel features. Our approach also opens the door
for the discovery of further improvements: any sound new method for discovering value
inconsistencies can easily be plugged into our template to yield a new CSP algorithm.

2 Notation and Background
A CSP consists of a set of variables ���� � � � � ��� and a set of constraints ���� � � � � ���.
Each variable � has a domain of values Dom�� �, and can be assigned any value � �
Dom�� �, indicated by � � �.

Let � be any set of assignments. A variable can only be assigned a single value,
hence the cardinality of� is at most �, ��� � �. When ��� � � we call it a complete
set of assignments. Associated with � is a set VarsOf ���, the set of variables assigned
values in �.

Each constraint� is over some set of variables VarsOf ���, and its arity is �VarsOf ����.
A constraint is a set of sets of assignments: if the arity of � is �, then each element of
� is a set of � assignments, one for each of the variables in VarsOf ���. We say that
a set of assignments � satisfies a constraint � if VarsOf ��� � VarsOf ��� and there



Extending Forward Checking 3

FC+Prune(level)
1. Var := picknextVar();
2. if(Var == NIL)
3. processSolution();
4. if(FINDALL)
5. Prune::FoundSoln(level);
6. unassignlevels(level-1,level-1);
7. return(level-1);
8. else
9. return(0);

10. foreach val � CurDom[Var]
11. assign(Var,val,level);
12. Prune::Asgn(Var,val,level);
13. jbl := FC+Prune(level+1);
14. if(jbl != level)
15. return(jbl);
16. jbl := maxprlevel(Var);
17. Prune::Backup(jbl,Var,level);
18. unassignlevels(level,jbl);
19. return(jbl);

picknextVar()
1. if(FutureVars == ��)
2. Var := NIL;
3. elseif � ��� � FutureVars � CurDom�� � �� ��
4. Var := pick � � FutureVars such that

CurDom[V]=��
5. else
6. Var := pick some � � FutureVars;
7. return(Var);

assign(Var,val,level)
1. FutureVars := FutureVars - �Var�;
2. asgnVal[Var] := val;
3. VarAtLevel[level] := Var;

unassignlevels(l1,l2)
1. for i := l1 to l2
2. Var := VarAtLevel[i];
3. VarAtLevel[i] := NIL;
4. asgnVal[Var] := NIL;
5. FutureVars := FutureVars � �Var�;
6. foreach v � PrunedVals[i]
7. CurDom[v.Var] := CurDom[v.Var] � �v�;
8. v.prlevel = NIL;
9. v.CF = �0�;

10. PrunedVals[i] := ��;

maxprlevel(Var)
1. m := 0
2. foreach v � Dom[Var]
3. m := max(m,v.prlevel);

prune(v,level)
1. CurDom[v.Var] := CurDom[v.Var] - �v�;
2. PrunedVals[level] := PrunedVals[level] � �v�;
3. v.prlevel := level;

Fig. 1. A Template for Extending Forward Checking



4 Fahiem Bacchus

exists an element of � that is a subset of�. Furthermore, we say that� is consistent if
it satisfies all constraints � such that VarsOf ��� � VarsOf ���. That is, it satisfies all
constraints it fully instantiates. A solution to a CSP is a complete and consistent set of
assignments.

An assignment � � � is consistent with a set of assignments � if � 	 �� � ��
is consistent. A value � (of some variable � ) is consistent with � when � � � is
consistent with �, otherwise it is inconsistent. Finally, if we have a constraint � with
��� � �� � VarsOf ��� then two values � � Dom�� � and � � � Dom�� �� are said to
be compatible (given some set of assignments � to the other variables of �) if �� �
�� � � � ��� 	 � � �, in this case we also say that � supports � � (given �) and vice
versa.

3 A Template for Extending Forward Checking
FC+Prune is template for constraint propagating algorithms that find solutions by
searching in a tree of variable assignments. It utilizes the following data structures.
FutureVars, the set of uninstantiated variables. asgnVal, a map from a variable to its
currently assigned value. VarAtLevel, a map from a level of the search tree to the vari-
able assigned at that level. CurDom, a map from a variable to a set containing all of the
values still available for it at this point of the search (i.e., the set of unpruned values of
the variable). Dom, a map from a variable to its original domain of values. PrunedVals,
a map from a level of the search tree to a set of values that have been pruned to this
level.

In order to more flexibly prune and restore values at different levels of the tree we
represent each value, �, by a structure that includes the fields ����� , the actual numeric
or symbol value associated the value, ����� , the variable the value is for, ��������� , the
level to which � has been pruned back to, and ���	 the conflict associated with �. How
these data structures are used during search is explained below.

Search is initiated by the call FC+Prune(1). At every level the next variable to
assign is selected (heuristically) by picknextVar. picknextVar returns NIL if there
are no more future variables. Given the conditions specified below, this will mean that
the current set of assignments, CurAsgns, is a solution, the last assignment of which was
made at the previous level. The solution will be enumerated by processSolution

(line 3). If we want to enumerate all solutions FINDALL is set to be true which will
cause a return to the previous level to search for more solutions. Otherwise 0 will be
returned (line 9) causing the recursion to unwind and terminate.

If we haven’t found a solution, we proceed to examine every value in the current
domain of the selected variable (line 10). For each value val we augment CurAsgns by
making the assignment Var � val using assign. (assign updates the FutureVars,
asgnVal, and VarAtLevel data structures). We then recursively examine the search tree
under this assignment. The recursion will return a jump back level, and if that level is
above the current level, we return to a previous invocation of FC+Prune higher up the
search tree. Otherwise we continue with the foreach loop to test Var’s next value.

Once we have exhausted all possible values, we compute the deepest level to which
we can backtrack so as to restore at least one value of Var’s domain (line 16), 1 undo

1 The code maintains the invariant that if a value is a member of PrunedVals��� its .prlevel field
has been set to � (all values are pruned by calling the function prune). Thus if we jump back



Extending Forward Checking 5

all of assignments in between these levels (unassignlevels updates the same data
structures as assign), and then jump back. One important feature of our version of tree
search is that this method of computing the level to backtrack to is uniformly applied
even when sophisticated forms of backjumping are used. 2

Flexible domain pruning is implemented by the simple device of maintaining the
sets PrunedVals and CurDom. Given that we have detected that a value has become
inconsistent with the assignments made at some prior level �, we can prune that value
by removing it from the CurDom of its variable, and placing it in the set PrunedVals���.
When search backtracks to level � (thus nullifying the reason the value became incon-
sistent) it restores all of the values in PrunedVals��� by moving these values back into
the CurDom set of their associated variable. This processing is done by the functions
prune and unassignlevels. It can also be noted that in some cases we might detect
that a value has become inconsistent back to level 0 (the level above the first assign-
ment). In this case we put the value in PrunedVals��� and it will never be restored.

One simplification used in FC+Prune is that it does not immediately check the
result of pruning the future domains. If some future variables has its domain entirely
deleted by Prune::Asgn (line 12), i.e., if a DWO has occurred, FC+Prune will detect
this in its next recursive invocation: picknextVar always returns a variable with an
empty domain if one exists. By doing this we simplify the code and the interface to the
domain pruning mechanism.

FC+Prune allows for an interaction with an arbitrary domain pruning mechanism
in three different locations: when we have found a solution Prune::FoundSoln (line
5), when we assign a value Prune::Asgn (line 12) and when we backtrack after having
exhausted the domain of a variable Prune::Backup (line 17). At these three locations
new inconsistent values can be discovered and pruned. All of the algorithms we present
can be implemented by combining the FC+Prune template with an instantiation of
these three subroutines.

3.1 Soundness and Completeness

Subject to two simple conditions we can show that any CSP algorithm generated by
combining FC+Prune with an instantiation of the domain pruning subroutines is both
sound and complete.

1. Prune::Asgn must remove all values of the future variables that are inconsistent
with CurAsgns. This means we can consistently extend CurAsgns by assigning any
future variable any value from its current domain. 3

2. The domain pruning process must be sound. That is, at every stage of the search if
a value � from the domain of variable � is in PrunedVals��� for some �, then there
can be no unenumerated solution in the subtree below level � containing � � �.

to the maximum of these values (computed by maxprlevel), we will restore at least one
value.

2 Sophisticated backwards moves are handled by sophisticated ways of doing domain pruning.
3 For binary CSPs this means that the domain pruning mechanism must do at least as much

pruning as FC. For �-ary CSPs, it must do at least as much pruning as the version of FC
defined by van Hentenryck [3].



6 Fahiem Bacchus

That is, pruning can only eliminate a value from a subtree when it is certain that the
value cannot participate in any further solutions in that subtree. 4

Theorem 1. Subject to these conditions on the pruning subroutines FC+Prune is sound,
i.e., all solutions it reports are in fact solutions, and complete, i.e., it will enumerate all
solutions if FINDALL is true and it will enumerate one solution if FINDALL is false and
there exists a solution. It will not enumerate any solutions if and only if none exist.
All of the algorithms we present here satisfy the first condition (they all extend forward
checking), and thus all we have to do to show them to be sound and complete is to
demonstrate the second condition.

4 Some new CSP Algorithms
All of our new algorithms are developed by insights into new sound ways of detecting
inconsistent values and detecting the level at which they became inconsistent (which
might be above the current level). Inconsistent values can then be pruned back to their
level of inconsistency. These algorithms can all be implemented by simply specifying
the three pruning routines. In this section we present five new CSP algorithms designed
in this way. All of these algorithms can be formalized to deal with �-ary CSPs. How-
ever, we will restrict our presentation to binary versions of the algorithms. The binary
versions are easier to understand and more concise to present.

4.1 Extending FC
The first two algorithms we present are simple extensions of FC. After a new assign-
ment � � � �� is made at level �, FC prunes all values of the future variables that are
inconsistent with this assignment. In FC these inconsistent values are pruned to level �
(i.e., placed in PrunedVals���). Thus these values will be restored as soon as we back-
track to level �. One way of extending FC is illustrated by the following example.
Example 1. Say that we have two variables 	 and 
, each with the domain of values
��� �� 	� and the constraint	 
 
. Further, say that along the current path of the search
tree we instantiate 	 at level 5, that the value 3 of 	 has already been pruned by a prior
assignment at level 1, and that no other values of 	 have been pruned. Hence at level 5
CurDom�	� � ��� ��, 	 � PrunedVals���, and 	�������� � �.

Say that we next make the assignment 	 � �, and then forward check the unas-
signed variables. When we forward check 
 we find that its values � and 	 are both
inconsistent with 	 � �. Forward checking would prune both of these values to level
5. However, closer examination shows that 
 � 	 became inconsistent at level 1, four
levels above the current level. We cannot make the assignment 
 � 	 until we can
make the assignment 	 � 	, which we cannot do until we restore that value by back-
tracking to level 1: all of the supports 
 � 	 has on the domain of 	 were pruned away
at level 1.

The following routine computes the value at which it is safe to prune a future value
v given that we have just instantiated Var. In this routine compat(val,v) is true if and
only the two values val and v are compatible, i.e., they satisfy the constraint between
val.Var and v.Var or there is no constraint between their variables.

4 Note that we define soundness with respect to the set of unenumerated solutions. By doing this
we obtain a uniform way of treating the case where the algorithm is searching for all solutions.



Extending Forward Checking 7

findDS(v,Var)
1. ds := 0;
2. foreach val � Dom[Var] � compat(val,v)
3. ds := max(ds,val.prlevel);
4. return(ds);

In the above example, when we call findDS with v equal to 3 of 
 and Var equal
to 	, it will correctly return the level 1: only 3 of 	 is compatible with 3 of 
, and this
value was pruned at level 1 (	�������� � �).

What about 
 � �? This value is also inconsistent with the assignment 	� �, but
unlike 
 � 	 it is consistent with the as yet unpruned value 2 of 	. Hence, when we
undo	� � we must also restore 2 of
 so that it is available when we try	� �. That
is, it is only sound to prune 2 of 
 to level 5, the current level. We can get findDS to
compute a sound pruning level in this case also by simply pruning all of the other values
in CurDom�	� to the current level whenever we make an assignment to 	. Clearly we
cannot use these other values until we undo the current assignment to 	, so it is sound
to prune them to the current level. With this modification, findDS will find that 	’s
compatible values for 
 � �, 2 and 3, have been pruned at levels 5 and 1 respectively,
and thus that it is sound to prune 2 of 
 to level 5.

EFC—Extended Forward Checking Our first algorithm EFC is based on using findDS
when doing pruning after an assignment. In particular, it uses the following instantia-
tion:
Prune::Asgn(Var,val,level)
1. foreach v � CurDom[Var] � v != val
2. prune(v,level);
3. foreach V � FutureVars � constrained(Var,V)
4. foreach v � CurDom[V];
5. if(�compat(val,v));
6. prune(v,findDS(v,Var));

This routine is called whenever we assign variable Var the value val at the current level
level. It operates just like FC except (1) it prunes all other values in CurDom[Var]
to level and (2) instead of pruning inconsistent future values to level it prunes them
to the perhaps higher level returned by findDS. Hence, when we backtrack back to
level we can save work by not having to reconsider some of these future values until
we backtrack to an even higher level.

We can apply the same insight when we backtrack. Extending our previous exam-
ple, say that at level 5 in addition to CurDom�	� � ��� �� and 	�������� � � we
also have that 1 of 
 has been pruned by a previous assignment at level 2. Hence,
CurDom�
� � ��� 	� and value 1 of 
 has ������� � �. Now we make the as-
signment 	 � � at level 5 as before. The remaining values of 
 are inconsistent
with the new assignment, and thus 	 � � will cause a wipeout of 
. 
 will then be
the next variable selected at level 6 (variables with empty domains must be selected
first by picknextVar), and at that level the values of 
 will have ��������� � �,
��������� � 
, and 	�������� � � (with 3 having been pruned back to level 1 by
Prune::Asgn). This will cause a backtrack to level 5 to try a different assignment to
	. Say that search continues, eventually backtracking to level 4 and then descending
again. On the new descent we might again explore the assignment 	 � �. However, it
is obvious that this assignment cannot succeed, in fact it cannot succeed until we ascend
to level 2 and there restore the value 1 of 
: 	� � lost its last support on 
 at level 2.



8 Fahiem Bacchus

Hence, at the moment we backtrack from level 6, we can detect that the assignment
	� � made at the level we are backtracking to (level 5) is in fact inconsistent back to
level 2 and prune this value to that level. This yields the following version of
Prune::Backup(jbl,Var,level)
1. jbval := asgnVal[VarAtLevel[jbl]]
2. prlevel := min(findDS(jbval,Var),jbl-1);
3. prune(jbval,prlevel);

In this routine, Var is the variable causing the backtrack—the variable whose do-
main has been exhausted, level is the current level, and jbl is the level we are about
to jumpback to. The routine prunes the value assigned at jbl, i.e., jbval: we find the
deepest support jbval, has on the exhausted variable Var, and prune it back to that
level. In our example, this routine will be called with jbl equal to 5, Var equal to 
,
level equal to 6, thus 1 of 	 (jbval), will be pruned back to level 2.

Note however, that we have just completed the search of the subtree below jbval,
so we also know that we do not need to try jbval again until we undo at least the
previous assignment made at level jbl-1. Hence, it is always sound to prune jbval

to the previous level jbl-1. Hence, we can prune it to the minimum of jbl-1 and its
deepest support.

Finally, FC+Prune delays checking whether on not it has found a solution until
it recurses to the next level. Thus when a solution is enumerated its last assignment
was made at the previous level level-1. Prune::FoundSoln simply prunes the last
value assigned asgnVal[VarAtLevel[level-1]] back to the previous level, level-2.
This pruning is sound: no unenumerated solution can contain this value until at least one
other assignment in the current solution is undone (i.e., the assignment at level-2):
Prune::FoundSoln(level)
1. val := asgnVal[VarAtLevel[level-1]];
2. prune(val,level-2);

It is not difficult to turn the discussion above into a proof that the domain pruning
used by EFC is sound, and thus to show by Theorem 1 that EFC is sound and complete.

EFC- It is often not worth the extra computation to backprune forward checked values
(line 6 of Prune::Asgn).5 So we could restrict ourselves to the extra pruning done by
Prune::Backup. Thus we can define a new algorithm EFC-, by substituting on line 8 of
Prune::Asgn the call prune(v,level), which simply prunes forward checked values
to the current level exactly like FC does.

Observations and Some Empirical Results Both algorithms have the ability to prune
values back beyond the current level, whereas FC only prunes values to the current
level. This means that there will be cases where at level � we find that all of the values
of the current variable have been pruned above level �� �. This will cause a backjump
as we always backtrack to a level were we can restore at least one value of the exhausted
variable. Furthermore, by pruning back the assignment we backtrack to, it is possible
that we might backtrack to a variable and there discover that all of its values have been
pruned back even further. This will generate another backjump. That is, multiple back-
jumps are possible. Both algorithms also have the ability to discover arc-inconsistent

5 In particular, there are often a large number of values removed by forward checking, and
computing the deepest support for all of them can be more costly than is worthwhile.



Extending Forward Checking 9

values and prune those values back to the level they became arc-inconsistent (including
pruning values that were initially arc-inconsistent back to level 0 where they will never
be restored).6

For binary CSPs it can be shown that if EFC is able to prune a value � back to level
�, then MAC would have pruned � at level � (or less). This means that on binary CSPs,
except for heuristic reasons, EFC/EFC- cannot offer a savings in the number of nodes
explored over MAC. Hence the potential for savings in these algorithms over MAC on
binary CSPs is limited. In our experiments with random binary CSP problems generated
by the CT model we have found EFC/EFC- to be mostly inferior to MAC. EFC/EFC-
may still have some potential on �-ary CSPs.7

Nevertheless, in the binary case both EFC and EFC- can be, like conflict directed
backjumping (CBJ) [6], of considerable assistance to standard FC. Table 1 shows a typ-
ical example using 50 random binary CSPs. Each CSP is generated using the standard
random CT model, and has 200 variables each having 10 possible values, and 200 con-
straints with 76 incompatible pairs.8 In the experiment (and the experiment reported in
the next section) we are searching for the first solution using a 500MHz Pentium III
machine. We utilize dynamic variable ordering with the fail-first heuristic (minimum
remaining values), and using the variable’s current degree as a tie-breaker. 9

MAC on this problem suite outperforms EFC/EFC-. It also performs better on many
other parameter settings the CT model. But interestingly we have not found a case
where there are orders of magnitude difference in performance, as can occur when we
compare MAC with FC (or even FCCBJ). MAC’s superiority on these problems is not
surprising. Achlioptas et al. have shown that the random CT model generates problems
that are highly biased in favor of MAC [8], especially as the number of constraints grows
(irrespective of tightness as long as the number of incompatible pairs is greater than the
domain size). With 200 constraints and a high tightness of 76% the problems being
generated are either initially arc-inconsistent or become arc-inconsistent after only a
few variables have been assigned (MAC visits only a average of 29.6 nodes on these
problems). Furthermore these problems have a large number of arc-inconsistent values,
so the fail-first heuristic works particularly well for MAC. Nevertheless, the results (and
many other similar parameter settings of the CT model) do serve to demonstrate that
there exist classes of problems for which EFC is a significant assist to FC.

One final point is that EFC- is identical to the algorithm FC-BM described by
Prosser in [9]. In particular, Prosser identified that when backing up from a DWO the
gains of Prune::Backup could be achieved. However, the algorithm he described uti-

6 Prosser’s FC-D2C algorithm [4] uses a special test to recognize the case when a value can be
pruned back to level 0. This special case is achieved automatically in EFC/EFC-.

7 It is not hard to define EFC for �-ary CSPs, and it should be feasible to extend all of the new
�-ary versions of FC defined in [5] using these ideas. Further empirical evaluation is needed
to determine how useful such extensions would be.

8 The particular, in the random CT model the 200 constraints are chosen at random from the
(200*199/2) possible binary constraints, and the 76 incompatible pairs are chosen at random
from the 100 possible pairs.

9 We also tried the current domain size divided by degree as a heuristic [7]. FC showed somewhat
better performance with this heuristic but it still failed on many problems, otherwise the results
were very similar with both EFC and EFC- still performing better than FCCBJ.



10 Fahiem Bacchus

Time in CPU sec. Nodes Visited
Ave. Max. Ave. Max.

MAC 0.012 0.030 29.64 275
EFC 0.033 0.190 1507 12584
EFC- 0.274 5.910 31306 66121
FCCBJ 5.105 194.680 404308 15819402
FC FC is able to solve only some of these problems

within a 250 sec. time bound

Table 1. Performance on 50 �200,10,200,76� random binary CSPs.

lized backmarking style data structures as well as domain pruning data structures. The
result was very complex as it was difficult to keep these two data structures synchro-
nized. The relative simplicity of EFC- helps to demonstrate the advantages of our de-
sign.10

4.2 Conflict Directed Pruning
Our other new CSP algorithms are based on using conflicts or no-goods to detect incon-
sistent values. Conflicts have appeared many times before in CSP algorithms, e.g., in
Conflict Directed Backjumping (CBJ) [6] and in no-good learning [11]. One difference
here is that we maintain conflicts for values rather than variables.

A conflict � for the value � is a set of assignments ��� � ��� � � � � �� � ���
such that no unenumerated solution contains both ����� � � and �. 11 All of the
conflicts manipulated by our algorithms will be subsets of CurAsgns, and thus they
can be represented as a set of levels: the set of assignments made at those levels is the
conflict proper. For a conflict �	 , ����	 � will denote its maximum level.

The three algorithms we present are all based on a pruning mechanism that prunes
the value � back to ����	 � once we detect that �	 is a conflict for �. It is clear that
such a pruning mechanism is sound: � � � cannot participate in any solution until
the assignment at ����	 � is undone. Hence, all that we have to do to prove these
algorithms sound and complete is to ensure that the sets they identify as being conflicts
are in fact conflicts.

Say we have a value � � Dom�� �, we can compute a conflict for � given conflicts
for the values of another variable � �. Let ���

�
� � � � � ��

�
� be the values of � � that are

compatible with �, then it can be shown that the union of the conflicts for the � �

�
is a

conflict for �. The following algorithm computes a conflict for a value v given that we
have conflicts for the values of the variable Var. 12

computeCF(v,Var)
1. cf := �0�;
2. foreach val �Dom[Var] � compat(val,v)
3. cf := cf � val.CF;
4. return(cf);

10 That backmarking (BM) type savings can be a achieved with a domain pruning mechanism is
not so surprising given the close relationship between BM and FC demonstrated in [10].

11 We are using the set of unenumerated solutions to define conflicts. This again allows us to
provide a uniform treatment of the case when our algorithms are searching for all solutions.

12 The initial 0 in the conflict facilitates pruning values back to level 0 by allowing ������� to
take on the value 0. For example, if v has no compatible values on Var, the conflict �	� will
be computed. In this case we can permanent prune v by pruning it back to level 0.



Extending Forward Checking 11

CFFC—Conflict Based Forward Checking The algorithm CFFC uses the same struc-
ture as EFC. When we make a new assignment 	 � �, we prune all other values in
CurDom�	�, setting their conflict set to be the current level. Then we do forward check-
ing. When we find an inconsistent future value, we compute a conflict for it by unioning
all the conflicts of its compatible values on 	, and prune that future value back to the
maximum of its new conflict set. This yields Prune::Asgn

Prune::Asgn(Var,val,level)
1. foreach v � CurDom[Var] � v != val
2. v.CF := �level�;
3. prune(v,���(v.CF));
4. foreach V � FutureVars � constrained(Var,V)
5. foreach v � CurDom[V];
6. if(�compat(val,v));
7. v.CF := computeCF(v,Var);
8. prune(v,���(v.CF));

Similarly, when we backtrack to level jbl because we have exhausted all the val-
ues of Var at level level, we can compute a conflict for jbval, the value assigned
at the jumpback level. This conflict is the union of the conflicts of the values of the
exhausted variable Var that are compatible with jbvar, except that in this case we can
remove jbl from these conflicts. We can then prune jbval back to the maximum of
its conflict.13

Prune::Backup(jbl,Var,level)
1. jbval := asgnVal[VarAtLevel[jbl]]
2. jbval.CF := computeCF(jbval,Var) - �jbl�;
3. prune(jbval,���(jbval.CF));

Finally, when we find a solution and we wish to enumerate more, we have discov-
ered that all of the previous levels are a conflict for the last assigned value (assigned at
level level-1).

Prune::FoundSoln(level)
1. val := asgnVal[VarAtLevel[level-1]];
2. val.CF := �1,...,level-2�;
3. prune(val,���(val.CF));

The basic algorithm CFFC has some similar features to conflict directed backjump-
ing (CBJ) [6], dead-end driven learning [12], and the no-goods used in dynamic back-
tracking [13]. The conflicts used here are, however, more fine grained: they are value
specific conflicts.

In addition to CFFC we can define CFFC-. In analogy with EFC-, CFFC- is identical
to CFFC except that instead of computing a conflict for each value that is pruned by
forward checking in Prune::Asgn, we simply set its conflict to be the single level of
the current assignment (much like FC). Specifically, we replace line 7 of the routine
with line v.CF := �level�. CFFC- is generally faster that CFFC as computing the
conflict sets for all values pruned by forward checking can take more time than it saves.
We have also found that on some problems the extra pruning performed by CFFC can
seriously degrade backjumping [4].
13 Since 0 might be the maximum of a conflict set, this process automatically achieves the special

case permanent pruning of Prosser’s CBJ-DkC algorithm [4].



12 Fahiem Bacchus

Finally we can define our fifth algorithm CFMAC. In this routine instead of doing
forward checking we enforce arc-consistency. As in the forward checking case, when-
ever we discover that a value � can be pruned because it has lost all of its support on
some variable � � we set �’s conflict to the union of the conflicts of its supports on � �

(again using the routine computeCF) and prune it to the max of this conflict set. In
standard MAC, � would only be pruned to the current level. (In CFMAC we prune on
backup just as with CFFC).

Observations and Some Empirical Results CFFC is a very powerful CSP algorithm.
In particular, its backjumping ability is more powerful than CBJ. CBJ maintains one
conflict per variable. This conflict is simply the union of the conflicts maintained by
CFFC over all the values of the variable.14 The higher level of detail maintained by
CFFC allows for larger backjumps.

For simplicity, assume that we are using CFFC- (i.e., no backpruning of forward
checked values occurs). Say that we have two variables 	 and 
 both with domain
��� �� �� and the constraint 	 � 
. And that at level 7 we have that CurDom�
� � ���,
with conflicts for its other two values ���	 � ���, and ���	 � ���. Furthermore,
say that CurDom�	� � ���, with the conflicts for its other two values ���	 � ���
and ���	 � ���. If at level 7 we next attempt to assign 	 we have only value to try:
	� �. This causes a DWO of 
.

Search will descend to level 8 where it will examine 
. At this point we have for
the values of 
, ���	 � ���, ���	 � ���, and ���	 � ��� (the last having been
computed by forward checking from 	� �). These conflicts cause a backtrack to level
7 to try a different value for 	. Standard CBJ will at this point union ��� �� into 	’s
conflict set: i.e., all of the conflicts of 
 except level 7. Since there are no more values
for 	, the search will then backstep to level 6. CFFC, on the other hand, will set a value
specific conflict for the value � of 	: � of 	 will only inherit the conflict set associated
with � of 
 due to the constraint between 	 and 
. Thus, on backtrack to level 7, the
individual value conflicts associated with 	 will be ���	 � ���, ���	 � ��� and
���	 � ���, and the search will backjump all the way to level 2. This kind of behavior
multiplies. On backtrack we can pass back a shorter conflict, and this in turn can pass
back shorter conflicts and generate better backtracks at the higher levels.

Another feature of CFFC is its ability to detect and prune values that have become
�-inverse inconsistent [14] for arbitrary �. Thus, CFFC has the potential to achieve ex-
ponential savings over an algorithm that continually enforces �-inverse consistency on
the values of the future variables for any fixed �. However an algorithm that enforces �-
inverse consistency does the work required to discover all �-inverse inconsistent values
prior to continuing its search, whereas CFFC might not discover some of these inconsis-
tencies until after it has performed a search exponential in � for some � � �. Thus, the
potential for exponential savings exists the other way around as well. On the other hand,
CFFC is “getting” on with the search while it discovering these �-inverse inconsistent

14 Of course CFFC requires more storage, in the worst case �� � � space to store all of the
conflicts (where � is the number of variables and � is the maximum size of their domains).
However, in practice, we can store conflicts as lists of elements, and we can reuse these ele-
ments when we backtrack and empty these sets (line 9 of unassignlevels). In our imple-
mentation we have never found space to be a critical issue.



Extending Forward Checking 13

Size Ave CPU time sec. Ave. Nodes Size Ave CPU time sec. Ave. Nodes

MAC 85 160.523 2241218 MAC 90 328.825 4824044
MACCBJ 85 44.130 263010 MACCBJ 90 66.305 352838
CFFC- 85 0.078 3318 CFFC- 90 0.067 2719
CFFC 85 4.702 137418 CFFC 90 4.343 120536
CFMAC 85 4.242 24546 CFMAC 90 5.818 28966

Table 2. Performance on 100 3-SAT instances with an embedded unsatifiable subproblem.

values.15 CFMAC, takes the approach that it is useful to discover all 2-inconsistencies
prior to continuing search by always enforcing arc-consistency. Conflict based prun-
ing can then be used to take advantage of any higher order inconsistencies discovered
during search.

CFFC and its variants do not perform very well on problems drawn from the random
CT class. It is almost always outperformed by either MAC or on smaller problems by
FC. Again this is to be expected from the results of Achlioptas et al. [8]. The problems
generated by the random CT model are likely to contain many arc-inconsistent values
(thus MAC has an advantage on these problems), and more telling, these problems are
unlikely to contain any values that are �-inverse inconsistent for large � while being
� � �-inverse consistent.16 Thus the expense of using conflicts to detect �-inconsistent
values for larger � is hardly ever beneficial: simple arc-consistency will immediately
detect almost all inconsistent values. Furthermore, this also means that conflicts are
unlikely to generate powerful backtracks. Thus, CBJ hardly helps (over MAC) on these
problems either [17].

Nevertheless, there are problems on which CFFC is superior. One example, are
problems that have a small group of variables participating in an unsolvable subprob-
lem. On these kinds of problems the CFFC algorithms perform exponentially better
than MAC and MACCBJ. This behavior arises from the fact that the CFFC algorithms
are able to prune away the values of these inconsistent variables so that it does not need
to keep on trying them, and is also able to generate more powerful backjumps than CBJ.
Although a perfect heuristic could instantiate these “bad” variables at the top of the tree
any heuristics can be foiled by the structure of the problem.

Table 2 shows one type of embedded problem. These problems originated in the
work of Bayardo and Schrag and were used to illustrate their CBJ based satisfiability
solver RelSat [18]. They took relatively easy random 3-sat problems and embedded in
them a small unsatisfiable sat problem. We took the random SAT problems produced
by their generator and converted them to binary CSPs so that we could test them with
our (currently binary) algorithms. The results are shown in Table 2. 17 One surprising

15 In an interesting recent paper, it has been shown that search is a generic way of implementing
	-inverse consistency checking [15]. CFFC can be viewed as an algorithm that does both at
the same time.

16 This follows from Mitchell’s recent results showing that these problems have short refutation
resolutions [16].

17 In more detail, the RelSat generator took easy random 3-SAT problems with � variables (85
and 90 in our experiment) and 
��� clauses and added an unsatisfiable subproblem with 10
variables and 40 clauses. We took each 3-clause and converted it to a variable with domain



14 Fahiem Bacchus

result is the performance of CFFC-, which explores significantly fewer nodes than the
CFFC and CFMAC both of which do more pruning than CFFC-. In these problems the
extra pruning is significantly degrading backtracking [4]. In the experiment we used
the same hardware as before, and DVO with the fail-first heuristic and the variable’s
current degree as a tie-breaker. The MAC algorithm we used was based on AC3, and
in our benchmarking it ran at about 65% of the speed of the more sophisticated AC7
based implementation of J.C. Regin [20]18

We have also experimented with a preliminary implementation of �-ary versions
of CFFC, CFFC-, and CFMAC algorithms. The implementation was built on top of
van Beek’s CPLAN system [21]. In these experiments we found that on harder logis-
tics, blocks, and grid world planning problem CFMAC out performs the base GAC-
CBJ (generalized arc consistency with conflict directed backtracking) implemented in
CPLAN (CFMAC can run 2 to 5 times faster on some of the harder problems). Plain
GAC is completely outclassed by these two algorithms—it can take more than two
hours of CPU time on some problems that are solved in less than 10 seconds by CF-
MAC and GAC-CBJ. In comparision with CFFC- and CFFC, plain GAC is sometimes
inferior sometimes superior. We also tried an�-ary version of the Golomb ruler problem
(using quaternary constraints). In contrast with the planning problems on the Golomb
ruler CFFC- is the fastest algorithm, being about 10 times faster than CFMAC and
GAC-CBJ on the 10 marks ruler problem (length 55). We plan to report in more detail
on these experiments in the near future.

In conclusion, the work presented here makes the following contributions: (1) it
unifies a number of ideas that have appeared previous work, (2) it provides a clean de-
sign for a range of extensions to constraint propagating algorithms, and (3) it provides
a clean way to implement and prove correct these new extensions. We have also pre-
sented some sample extensions that demonstrate the approach, and some evidence that
these extensions might have potential for practical use. More work needs to be done to
get a true picture of the empirical properties of these extensions.

References
1. R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence, 14:263–313, 1980.
2. Fahiem Bacchus and Paul van Run. Dynamic variable reordering in CSPs. In Principles

and Practice of Constraint Programming (CP95), number 976 in LNCS, pages 258–275.
Springer-Verlag, New York, 1995.

size 7. Each value for this clause/variable corresponds to a truth assignment to the 3 variables
in the clause (there are 7 satisfying truth assignments for a 3-clause), and two clauses sharing
variables became variables constrained so that they have compatible truth assignments. This
is the dual construction [19]. Although this is not a particularly effective way of solving SAT
problems, it does have the nice feature that it preserves the small unsatisfiable subproblem:
the subproblem generates a set of variables in the CSP for which there is no consistent set of
values.

18 Thus using the AC7 version of MAC would not have altered our results. We did not use Regin’s
implementation because it only ran on SUN SPARCs, and our main computational resource
was an Intel based PC. We also tried the current domain size divided by degree heuristic. In
this case all of the algorithms performed slightly worse, but the relative performance was the
same.



Extending Forward Checking 15

3. Pascal van Hentenryck. Constraint Satisfaction for Logic Programming. MIT Press, 1989.
4. Patrick Prosser. Domain filtering can degrade intelligent backtracking search. In Procceed-

ings of the International Joint Conference on Artifical Intelligence (IJCAI), pages 262–267,
1993.

5. Christian Bessière, Pedro Meseguer, Eugene C. Freuder, and Javier Larrosa. On forward
checking for non-binary constraint satisfaction. In Principles and Practice of Constraint
Programming (CP99), number 1713 in LNCS, pages 88–102. Springer-Verlag, New York,
1999.

6. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelli-
gence, 9(3), 1993.

7. C. Bessiere and J.-C. Regin. MAC and combined heuristics: Two reasons to forsake FC (and
CBJ?) on hard problems. In Principles and Practice of Constraint Programming (CP96),
number 1118 in LNCS, pages 61–75. Springer-Verlag, New York, 1996.

8. L. M. Achlioptas, L. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, and Y. Stamatiou. Ran-
dom constraint satisfaction: A more accurate picture. In Principles and Practice of Con-
straint Programming (CP97), number 1330 in LNCS, pages 107–120. Springer-Verlag, New
York, 1997.

9. P. Prosser. Forward checking with backmarking. In M. Meyer, editor, Constraint Processing,
LNCS 923, pages 185–204. Springer-Verlag, New York, 1995.

10. Fahiem Bacchus and Adam Grove. On the Forward Checking algorithm. In Principles
and Practice of Constraint Programming (CP95), number 976 in LNCS, pages 292–309.
Springer-Verlag, New York, 1995.

11. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and
cutset decomposition. Artificial Intelligence, 41:273–312, 1990.

12. Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings of the AAAI
National Conference, pages 294–300, 1994.

13. Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993.

14. E. Freuder and C. D. Elfe. Neighborhood inverse consistency preprocessing. In Proceedings
of the AAAI National Conference, pages 202–208, 1996.

15. Gérard Verfaillie, David Martinez, and Christian Bessière. A generic customizable frame-
work for inverse local consistency. In Proceedings of the AAAI National Conference, pages
169–174, 1999.

16. David Mitchell. Some random csps are hard for resolution.
http://http://www.cs.toronto.edu/m̃itchell/papers/some.ps, 2000.

17. S. A. Grant and B. M. Smith. The phase transition behaviour of maintaining arc consistency.
Technical report, University of Leeds, School of Computer Studies, 1995. Technical Report
95:25, available at http://www.scs.leeds.ac.uk/bms/papers.html.

18. R. J. Jr. Bayardo and R. C. Schrag. Using csp look-back techniques to solve exceptionally
hard sat instances. In Principles and Practice of Constraint Programming (CP-96), pages
46–60, 1996.

19. Fahiem Bacchus and Peter van Beek. On the conversion between non-binary and binary
constraint satisfaction problems. In Proceedings of the AAAI National Conference, pages
311–318, 1998.

20. J.-C. Regin. Developpement d’outils alogorithmiques pour l’Intelligence Artificielle. Appli-
cation a la chimie. PhD thesis, Universite Montpellier II, France, 1995.

21. Peter van Beek and Xinguang Chen. A constraint programming approach to planning. In
Proceedings of the AAAI National Conference, pages 585–590, 1999.


