
Inner and Outer Boundaries of Literals
A Mechanism for Computing Domain Specific

Information

Fahiem Bacchus
Dept. Of Computer Science

University of Toronto
Toronto, Ontario

Canada, M5S 3G4
fbacchus@cs.toronto.edu

Cameron Bruce Fraser
Dept. of Computer Science

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

cbfraser@logos.uwaterloo.ca

March 10, 2000

1 Introduction

A number of works have shown that planning can be speeded up, often very significantly, by
utilizing extra domain knowledge [KM81, BK00, BK96, KS98, SK98, DK99, Rei99, NCLMA99,
vBC99]. The question that immediately arises is “where does this extra information come from?”

We have gained considerable experience with utilizing extra domain information in a planner
through implementing numerous planning domains in the TLPLAN system [BK00]. The TLPLAN

system is a planning system specifically constructed to utilize extra domain knowledge. In fact, the
underlying planning algorithm is very simple—a simple forward chaining engine. Hence almost
all of TLPLAN’s performance is due to the extra domain knowledge it utilizes.

We have noticed that a number of systematic principles can be applied to uncover extra domain
knowledge, and that once one has developed an intuitive feel for these principles it becomes quite
easy to identify and write down useful extra domain knowledge.

Some of these principles seem to involve proofs by induction, at which people can be quite
accomplished but which seem to be difficult to automate. Nevertheless, other principles seem to
involve much simpler reasoning.

In this paper we present an idea that we are working on that appears to have considerable
potential for generating non-inductive domain knowledge. We formalize the idea and show how it
can be used in various ways to compute extra domain knowledge.

1

2 Inner and Outer Boundaries of Literals

We start with a specification of the actions available in a domain, and the assumption that these
actions are the only mechanisms for changing a state. We want to compute extra information from
the specification of the actions (and the fact that the action specification is complete) that can be
used to speedup planning.

This problem has been examined before. There have been typically two different kinds of
approaches. Approaches based on learning, e.g., [Min88, Kha97], and approaches based on rea-
soning, e.g., [Etz93, PS93, GS96, FL98, GS98]. The latter approaches have typically employed the
solution to the frame problem that is implicit in the STRIPS representation of actions: fluents only
change when they appear on the add or delete list of an action. Using this property these works
have typically used graph constructions to compute state invariants, operator reachability, etc. Our
approach is based on similar ideas, and has been strongly influenced by this previous work.

We introduce the notion of inner and outer boundaries of literals. This notion is implicit in
many of the graph based constructions of previous works. A key contribution is to make this notion
explicit. In this way we can formally characterize the notion, develop algorithms that soundly
compute boundary formulas,1 and gain deeper insights into how boundary information can be
used.

We start with a literal � (assume for now that the literal is ground, i.e., it contains no variables).
� characterizes a set of states �: �� � � �� ��, those states in which � holds.

Now consider those states �� that do not satisfy �, but at which there is an action � that can
transform �� to a state � in which � does hold: the states �� are one action “away from �”. This
process can be continued, and it is clear that there may be states that are two, three, or more
actions, away from a state satisfying �.

We do not want to deal with just ground literals however, as in general ground literals are only
available on a problem by problem basis as we specify the initial and goal states. We want to do our
reasoning once and for all using just the domain actions, in this way we can simply instantiate our
computed knowledge at plan time to deal with the initial and goal states of the particular problem.
To this end we make the following definitions:

Definition 2.1 Given a literal � containing some free variables and an (any) instantiation � for
these variables, we define the outer boundaries of � to the formulas characterized by the following
sets:

� �� ����� � � � �� � ��� �� �� ��

� �� ����� � � � �� � ��� �� �� ������ � 	��� �
��Poss���� �� � �� � ����� � ���� �� �� �����

...

� �� ����� � � � �� � ��� �� ��
����

���

������ �
�� � 	��� �

��Poss���� �� � �� � ����� � ���� �� �� �������

1For example, in previous work some of the computations done on the graph’s constructed produced only approx-
imations to what we define formally here.

2

Here, Poss��� �� means that the preconditions of action � hold in state �, and ���� is the state that
is the result of applying � to �.

In other words, the �-th outer boundary of �, ����� is a formula that is satisfied by a set of states
that are precisely �-actions away from a state satisfying �. The formula ����� is parameterized by
the free variables in �, for every instantiation of these variables, it will characterize a particular set
of states.

Every literal � also has an inner boundary. This is the set of situations satisfying � that also
have the property that they can be reached by a single action from a situation that falsifies �. They
can be characterized by the set

�� � � �� � � 	�� ���Poss��� ��� � �� �� �� � � � �������

Note that once we have achieved � it might be possible to execute other actions that do not
affect � and thus reach states that remain in ����� but leave �’s inner boundary. (That is, these
actions might move us to states that have no incoming action from a state not already satisfying �.)

We can characterize inner boundaries in terms of outer boundaries. In particular, the above
inner boundary is also characterized by the set:

�� � � �� ����� � Poss��� ��� � �� �� ����� � � � �������

Here we have simply used the observation that since �� is one action away from a state satisfying
�, and yet does not satisfy it itself, it must be in �����.

Like the outer boundaries we can generalize this to define �-th inner boundaries

Definition 2.2 Given a literal � containing some free variables and an (any) instantiation � for
these variables, we define the inner boundaries of � as the formulas characterized by the following
sets:

� ��
���� � � � �� � ��� �� �� ����� � 	�� �
��Poss��� ��� � � � ����� � �� �� ������

...

� ��
 ���� � � � �� � ��� �� �� ����� � 	�� �
��Poss��� ��� � � � ����� � �� �� ��������

The inner boundaries of � specify conditions that are implied by the fact that we have just made
a transition into an outer boundary.

2.1 Complexity

It is immediately apparent that computing these boundary formulas is in general intractable. One
need only add a new literal 	, a new dummy action that creates 	 and has as preconditions all of
the goal atoms, and then the �-th outer boundary will characterize all initial states from which an
optimal plan has length �. Nevertheless, we have found that for many literals in many domains it
is in fact practical to compute these boundary sets.

3

3 Domain Knowledge from Boundary Formulas

Say that we are faced with a planning problem with initial state
 , and a goal containing the literal
�. Furthermore, say that
 �� ����� (since the boundary formulas are mutually exclusive
 there is
only one value of � for which this is true).2 Now we know that any plan must eventually visit states
characterized by the formulas �����, � �
 � �, and
����, � �
 � �. A similar observation can be
made for every other literal in the goal state.

Note that a plan need not make non-decreasing progress towards any literal, as two literals
might interfere. In such cases it might be necessary to move further away from one literal in
order to achieve another literal. Nevertheless, eventually a correct plan must pass through every
boundary on its way to achieving each literal. It is this fact that can be exploited to generate useful
extra domain knowledge.

To demonstrate how this can be accomplished we utilize a very simple example: a modified
version of the briefcase domain. The actions in this domain are:

(def-operator (move-briefcase ?l1 ?l2) (def-operator (put-in ?x)
(pre (and (at briefcase ?l1) (pre (and (at briefcase ?loc)

(location ?l2) (at ?x ?loc)
(not (= ?l1 ?l2)))) (not (= briefcase ?x))

(add (at briefcase ?l2)) (not (in-briefcase ?x))))
(del (at briefcase ?l1))) (add (in-briefcase ?x))

(del (at ?x ?loc)))

(def-operator (take-out ?x ?loc)
(pre (and (in-briefcase ?x)

(at briefcase ?loc))
(add (at ?x ?loc))
(del (in-briefcase ?x))))

This domain is like the logistics world with a single truck (the briefcase) and no airplanes.
Notice that unlike the original briefcase world at and in for objects have been made mutually
exclusive. (This allows us to eliminate the quantified conditional effect required to move all objects
in the briefcase).3

The outer boundaries for each of the positive literals are:

� ���(location ?l)� FALSE.

� (at ?x ?l) (?x �� briefcase)

1. �� (in-briefcase ?x) � (at briefcase ?l)

2. �� (location ?l)
� 	?li� ?li �� ?l � (at briefcase ?li) � (in-briefcase ?x)

2In standard planning problems � is complete, i.e., it contains an explicit list of all of the atomic formulas it
satisfies. This means that it is easy to test for any formula � whether or not � �� �, and we can determine the � such
that � �� �����.

3Although the conceptual notions are the same, our current computational techniques only work with STRIPS style
actions.

4

3. �� (location ?l)
� 	?li� ?li �� ?l � (at briefcase ?li)

� (at ?x ?li) � �(in-briefcase ?x)

4. �� (location ?l)
� 	?li�?lj� (location ?li) � ?li �� ?l � ?lj �� ?li

� (at briefcase ?lj) � (at ?x ?li) � �(in-briefcase ?x)

5. �� FALSE

� (at briefcase ?l)

1. �� (location ?l) � 	?li� ?li �� ?l � (at briefcase ?li)

2. �� FALSE

� (in-briefcase ?x)

1. �� 	?li� (at briefcase ?li) � (at ?x ?li) � ?x �� briefcase
� �(in-briefcase ?x)

2. �� 	?li�?lj� (location ?li) � ?li �� ?lj � (at briefcase ?lj)
� (at ?x ?li) � ?x �� briefcase � �(in-briefcase ?x)

3. �� FALSE

It should be noted that these boundary formulas have been computed automatically by our imple-
mentation.

Below we give some examples of items of domain knowledge that can be computed from these
boundary formulas. Some of these items can already be handled by previous techniques. However,
what is interesting here is that all of these distinct pieces of information can be generated from the
same notion: simple reasoning about boundary crossings.

1. (location ?l) is a static predicate. It cannot be achieved by any action: there are no
states in its outer boundary.

2. The briefcase can only be moved to locations. In particular, any instantiation of (at briefcase ?l)
that does not hold in the initial state can only be achieved if we also have (location ?l)
in the initial state. This follows from the fact that (location ?l) is in the first outer
boundary of (at briefcase ?l).

3. For any ?x other than the briefcase, (at ?x ?l) can only be achieved if (a) the
instance is true in the initial state, (b) ?x is in the briefcase and the briefcase is initially
at ?l, or (c) ?l is a location. This follows from the first and second outer boundaries of
(at ?x ?l).

5

4. In this domain every action has an inverse (given that every object starts off at a location).
Let � be any state in ����� for some ground literal �. Then for any action � executed in � to
produce �� we must have one of (1) �� �� �����, (2) �� �� �������, or (3) �� �� �������. That,
is every action can only affect the boundary by at most one. That we can only move forward
to �� � is immediate from our definition that states in � ���� require a minimum of � actions
to achieve �. That we can only move backwards to ������� follows from the fact that � has
an inverse that must reachieve �����, thus the state it moves to must be in � ������.

It is not difficult to categorize for every set ����� all actions into cases (1), (2) and (3) above
(our implementation already does this). In fact, a static (i.e., pre-plan time) table can be
build containing this information. This suggests the following search heuristic (related to
the approach taken by Bonet et at. [BLG97]).

(a) For every goal literal �, compute the � such that the initial state satisfies � ����. Store
these numbers in a distance array indexed by the goal literals.

(b) When an action is taken use the pre-computed table to determine for each goal literal
whether or not we have moved forward, backwards, or stayed the same. Update the
distance array by -1, 1, 0 accordingly.

(c) Use the sum of the distances as a heuristic.

Of course, this strategy will only work in invertible domains that also have the property that
the boundary sets are easily computable. Nevertheless, like the recent regressive approach
utilized by Bonet and Geffner, it has the advantage of not requiring a continual recomputation
of the heuristic.

5. In some domains certain actions will make it impossible to subsequently cross particular
boundaries. For example, an action might destroy a condition that can never be created
again. If this condition appears in a boundary of a literal, we will not be able to subsequently
cross that boundary.

In the schedule domain, e.g., some actions make an object hot and there is no action for
subsequently making it cool again. That the object is cool appears in the first boundary of
achieving a particular colour for an object (via a paint action). That is, the object must be
cool for it to be painted.

It is possible to detect these kinds of situations by examining the boundary formulas, and
thus one can construct a control rule that prohibits the planner from rendering a boundary
uncrossable until it has in fact crossed it, or from moving back across a boundary if that
boundary is now uncrossable.

For example, such an analysis would force the planner to paint an object before allowing it
to become hot, and would prohibit the planner from destroying the object’s colour if it the
object was hot.

6

4 Current Status

The previous section outlined some of the information that one arrives at by thinking about bound-
aries. We currently are working on an implementation that is able to compute inner and outer
boundary sets given a specification of the domain’s operators. The briefcase example given in the
previous section was generated by our current implementation. The implementation is also able
to compute the boundaries for the rocket domain, and the first set of boundaries for the logistics
domain.

Once we have a reasonable mechanism for computing boundaries, we intend to investigate the
automation of some of reasoning contained in the examples given above. We are also interested in
extending our implementation to work with richer operator descriptions, as it is currently limited
to STRIPS operators.

References

[BK96] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control search in
a forward chaining planner. In M. Ghallab and A. Milani, editors, New Directions
in AI Planning, pages 141–153. ISO Press, Amsterdam, 1996.

[BK00] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search
control knowledge for planning. Artificial Intelligence, 116, 2000.

[BLG97] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism
for planning. In Proceedings of the AAAI National Conference, pages 714–719,
1997.

[DK99] P. Doherty and J. Kvarnstrom. Talplanner: An empirical investigation of a temporal
logic-based forward chaining planner. In Proceedings of the 6th Int’l Workshop on
the Temporal Representation and Reasoning (TIME’99), 1999.

[Etz93] Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial
Intelligence, 62(2):255–302, 1993.

[FL98] M. Fox and D. Long. The automatic inference of state invariants in tim. JAIR,
9:367–421, 1998.

[GS96] A. Gerevini and L. Schubert. Accelerating partial-order planners: Some techniques
for effective search control and pruning. Journal of Artificial Intelligence Research,
5:95–137, 1996.

[GS98] A. Gervini and L. K. Schubert. Inferring state constraints for domain-independent
planning. In Proceedings of the AAAI National Conference, pages 905–912, 1998.

7

[Kha97] Roni Khardon. Learning action strategies for planning domains.
Technical Report TR-10-97, Harvard University, 1997. Available at
http://www.dcs.ed.ac.uk/home/roni/pubabs.html.

[KM81] D. Kibler and P. Morris. Don’t be stupid. In Procceedings of the International Joint
Conference on Artifical Intelligence (IJCAI), pages 345–347, 1981.

[KS98] Henry Kautz and Bart Selman. The role of domain-specific knowledge in the plan-
ning as satisfiability framework. In Proceedings of the International Conference on
Artificial Intelligence Planning, pages 181–189, 1998.

[Min88] Steve Minton. Learning Search Control Knowledge. Kluwer Academic Publishers,
1988.

[NCLMA99] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Simple hier-
archical ordered planner. In Procceedings of the International Joint Conference on
Artifical Intelligence (IJCAI), pages 968–973, 1999.

[PS93] M. Poet and D.E. Smith. Threat-removal strategies for partial-order planning. In
Proceedings of the AAAI National Conference, pages 492–499, 1993.

[Rei99] Ray Reiter. Knowledge In Action: Logical Foundations for Describing and
Implementing Dynamical Systems. 1999. Unpublished draft, available at
http://www.cs.utoronto.ca/˜cogrobo/.

[SK98] B. Srivastava and S. Kambhampati. Synthesizing customized planners from specifi-
cations. Journal of Artificial Intelligence Research, 8:93–128, 1998.

[vBC99] Peter van Beek and Xinguang Chen. Cplan: A constraint programming approach to
planning. In Proceedings of the AAAI National Conference, pages 585–590, 1999.

8

