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Abstract

There are two common and distinct uses of probabilities: probabilities used as degrees of
belief and probabilities used as statistical measures. Probabilities used as statistical measures
can represent various assertions about the objective statistical state of the world, while proba-
bilities used as degrees of belief can represent various assertions about the subjective state of
an agent’s beliefs. In this paper we examine how an agent who knows certain statistical facts
about the world might infer certain probabilistic degrees of beliefs in other assertions based on
these statistics. For example, an agent who knows that most birds fly (a statistical fact) may
have a degree of belief greater than 0.5 in the assertion that Tweety flies given that Tweety
is a bird. This inference of degrees of belief from statistical facts is know as direct inference.
We develop a formal logical mechanism for performing direct inference, and demonstrate how
this mechanism can be applied to the problem of making default inferences as studied in AI.

1 Direct Inference

There are at least two distinct uses of probabilities: probabilities used to represent statistical asser-
tions which we will refer to as statistical probabilities, and probabilities used to represent degrees
of belief which we will refer to as propositional probabilities.1 The key difference between these

�This work was supported by NSERC grant #OGP0041848
1Probabilities used to model degrees of belief have often been called called subjective probabilities. However, we

avoid this terminology because traditionally proponents of subjective probabilities have denied the kind of direct con-
nection between statistical and subjective probabilities that we wish to propose. The name propositional probabilities
is used as these are probabilities assigned to particular propositions.
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two types of probabilities is that statements of statistical probability represent assertions about
the objective statistical state of the world, while statements of propositional probability represent
assertions about the subjective state of an agent’s beliefs.

For example, the statement More than 75% of all birds fly is a statistical asser-
tion about the proportion of fliers among the set of birds; its truth is determined by the objec-
tive state of the world. On the other hand the statement The probability that Tweety
flies is greater than 0.75 is an assertion about a degree of belief; its truth is deter-
mined by the subjective state of the agent who made the statement. In the world Tweety either
flies or doesn’t fly; there is no probability involved.

The interesting question becomes: What is the relationship between the agent’s subjective
degrees of belief and objective statistical features of the world? The answer that we will develop
in this paper is that the agent’s subjective degrees of belief are determined by objective statistical
knowledge though a mechanism of direct inference.2 The mechanism of direct inference has been
studied for a long time in philosophy, e.g., [1, 2, 3, 4, 5], but has received scant attention in AI (a
notable is exception is Loui [6]).

Direct inference is the inference of propositional probabilities describing the agent’s subjective
state from statistical probabilities describing the world’s objective state. Simply stated direct in-
ference is based on the claim (posited by various philosophers) that the propositional probability
of a particular individual c possessing a property, should be equal to the proportion (i.e., statistical
probability) of individuals that have that property from among some class of individuals that c
is known to belong to. For example, if Tweety is a bird and more than 75% of birds fly, then
direct inference would sanction the conclusion that the agent’s degree of belief in the proposition
Tweety flies should be greater than 0.75.

Direct inference is not only of philosophical interest, but is in fact used in many real situations.
For example, most of actuarial science is based on the principles of direct inference. When an
insurance companies quotes life insurance rates to particular individuals they compute those rates
by equating the probability of a particular individual’s death with the proportion of deaths among
some set of similar individuals (e.g., similar in sex, age, job hazard, etc.). Another example comes
from weather forecasts where the probability of rain on a particular day is obtained by examining
the proportion of rainy days among a set of days with similar meteorological features.

In this paper we will outline a formal mechanism for performing direct inference. This mech-
anism is logically based, and we use a logic which can represent and reason with statistical and
propositional probabilities. By reasoning inside of this logic we can reason about the consequences
of our mechanism of direct inference. We will then demonstrate how our mechanism of direct in-
ference can be applied to perform default reasoning, and will discuss the advantages of doing

2In the formalism we will develop, the agent’s degrees of belief will be determined by his statistical knowledge, and
of course the agent’s knowledge is simply another part of the agent’s subjective state. We will not, however, explore
the issue of how the objective state of the world influences the agent’s knowledge: this is part of the problem of
knowledge acquisition and perception. Instead, we will assume (like other work in knowledge representation) that we
are given a specification of the agent’s knowledge base, and will explore the question of what can be further inferred
about the agent’s subjective state from this knowledge.
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default reasoning in this manner.

2 The Probability Logic

Prior to the construction of a mechanism of direct inference we will need a formalism capable of
representing and reasoning with both propositional and statistical probabilities. Halpern [7] has
recently developed a logic which combines a statistical logic developed by Bacchus [8] and his
own propositional probability logic. This combined probability logic suits our needs: it is capable
of representing and reasoning with both types of probabilities. Below we present a brief outline
of this logic (termed a type III probability logic by Halpern). The interested reader is encouraged
to see Halpern [7] for some more details, or for a more extensive exposition with many examples,
Bacchus [9]. The reader is also referred to the latter reference for a more detailed exposition, with
all of the proofs, of the system of direct inference we present here.

The combined logic is most similar semantically to a two-sorted quantified modal logic, and
syntactically to a two-sorted first-order logic. There is a sort of objects and a sort of numbers.
The sort of objects consists of function and predicate symbols suitable for describing the domain
of interest, while the numeric sort is used to make numeric assertions. In particular, the numeric
sort includes the constants �, ��, and �; the functions � and �; and the predicates � and �.
Additional inequality predicates and numeric constants can easily be added by definition, and we
will use them freely. The formulas of the language are generated by applying the standard first-
order formula formation rules, and in addition we have two rules that generate new numeric terms
(specifically probability terms) from already generated formulas.

1. If � is a formula and �� is a vector of � distinct object variables, then ����� is a numeric term.
In particular, it is a statistical probability term

2. If � is a formula, then prob��� is a numeric term. In particular, it is a propositional proba-
bility term.

Since these constructs are terms, they can in turn be used in the generation of additional new
formulas.

We extend the language by definition to include conditional probability terms (of both types):
������� ��� �� � ����������, and prob����� � prob�� � ���prob���.3

Semantically the language is interpreted using structures of the form

� � ��	 
	 �	 ��	 ���4

Where:
3For ease of exposition we will ignore the technicalities of dealing with division by zero. See Bacchus [9] for

details.
4These structures are Halpern’s type III probability structures.
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1. � is the domain of objects (i.e., the domain of discourse). 
 is a set of states or possible
worlds. � is a world dependent interpretation of the symbols. The numeric symbols are
interpreted as relations and function of the reals 
�. The distinguished numeric functions
and predicates, �, �, �, ��, �, � and �, are given their normal interpretation in every state.
Hence, these symbols are rigid; i.e., their interpretation is the same in every world � � 
.

2. �� is a discrete probability measure over�. That is, for every� 	 �, ����� �
�

��� �����
and

�
��� ����� � �.

3. �� is a discrete probability measure over 
, such that for 
 � 	 
, ���
 �� �
�

���� ����� and�
��� ����� � �.

The formulas of the language are interpreted with respect to this semantic structure in a manner
standard for modal languages. In particular, the interpretation of a formula will depend on a struc-
ture, � , a current world � � 
, and a variable assignment function �. The probability terms have
the following interpretation:

1. �������
�	
�
�� � ���
�� 	 ��	 �	 ��������� �� ��, where �������� is the variable assignment func-

tion identical to � expect that ���
� � �
, and ��� is the �-fold product measure formed from
��.

2. �prob�����	
�
�� � ��
�� 	 ��	 ��	 �� �� ��.

So we see that ����� denotes the measure of the set of satisfying instantiations of �� in � (the
rational for using the product measure is given in [9]). And prob��� denotes the measure of the set
of worlds that satisfy �. Another way of interpreting the statistical probability terms is to consider
them as representing the probability that a randomly selected5 vector of individuals �� will satisfy
�. Hence, we can call the variables, ��, bound by the statistical terms random designators.

A few of examples will help the reader understand the language and its semantics.

1. ����������������� � 	�
�. A particular triple ��	 �	 �� satisfies this formula if the probabil-
ity that a randomly selected bird flies is greater than 0.75. That is, if more that 
�� of the
birds in the world ‘�’ fly.

2. prob������
������ � prob��
����
������. This formula is satisfied if the measure of the
set of worlds in which Tweety flies is greater than the measure of the set of worlds in which
she swims.

3. prob
�
���������������������� � �
�

�
� 	��. This formula is satisfied if the measure of the

set of worlds in which a randomly selected elephant has a greater that 
�� probability of
5That is, the probability of selecting any particular vector of individuals �� � � � is ��

�
����.
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being grey, is greater than 0.9.6

A powerful proof theory for this language can be constructed which is complete for various
special cases [7, 9]. We simply note that all of the examples of reasoning we give here can be
performed within this proof theory.

We will need one more feature in our language: the ability to take the expected values of
numeric terms. For this purpose we add a “expectation” operator to the language.

1. If � is a rigid term or a statistical probability term, then expet��� is a new numeric term.

2. Semantically this operator is interpreted according to the following definition:

�expet�����	
�
�� �
�

����

����
��� ��	
��
���

That is, the expected value of a term is the weighted (by ��) average of the term’s denotation
over the set of possible worlds.

2.1 Some Important Properties

The following lemmas describe some important properties of the statistical and expectation terms.
Here we use the standard notation �� � to indicate that � is valid, i.e, true for every triple ��	 �	 ��.
We also use the notation cert��� as an abbreviation for prob��� � �.

Lemma 1 (Properties of the Statistical Terms)

1. If no �
 � �� which appears in � � � is free in �7 then �� cert
�
�� � ���� �� �
 ���� � ���� �

�������
�
.

2. �� cert
�
������ 
 ��
 ���� � ���� � �������

�
.

3. �� cert
��
�
���������� � ���	 ��� � �

�
���
���

� ���	 ���
�
, where � � ���	 ��� is an abbreviation for

�� � � � ��.

6Halpern’s paper [7] contains the erroneous claim that such sentences could not be represented in type III structures.
However, it is easy to see that the statistical probability terms are not rigid. Consider the term ������ �. The set of
satisfying instantiations of x in P(x) in any world corresponds to the denotation of the predicate symbol P in that
world. Since this denotation varies across worlds, this term is denoting the measure of a different set of individuals in
different worlds: its value changes from world to world. Therefore, an assertion like �������������	
������ � � �
�

can be true in some worlds and false in others; i.e., we can find a model in which the probability � � of the worlds in
which it is true is greater than ���.

7Freedom and bondage is extended in our language to include the clause that the random designators are bound.
Also it is not difficult to see that we can rename the random designators without changing the values of the statistical
terms.
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The last item needs some explanation. Say that our domain consists of a set of boys and girls
and that some of those boys have the property that they are popular. That is, they have the statistical
property that more that 50% of the girls like them. If we randomly select a girl and a popular boy
we would expect that there is a greater than ��� probability that the randomly selected girl will
like the randomly selected popular boy, since every popular boy is liked by more than ��� of the
girls. This last item is a generalization of this reasoning. It says that if we have two randomly
selected vectors of individuals �� and �� that stand in the relation �, and furthermore the �� has the
property that a randomly selected �� standing in � with it has probability between �� and �� of also
standing in � with it, then the probability that the �� and �� selected stand in the relation � will also
be in the bounds ���	 ���.

These equalities between the statistical terms are certain; i.e., they are true in every world, and
thus they have propositional probability 1.

Because both the statistical terms and rigid terms are bounded above and below in all worlds
(the statistical terms are bounded by 0 and 1, the rigid terms are constant), the limit of the infinite
sum giving the denotation of the expectation terms exists. Hence, the following properties of the
expectation terms can easily be demonstrated by appeal to the properties of limits of real number
sums.

Lemma 2 (Properties of the Expectation Terms)

1. If � is rigid, then expet��� � �.

2. cert�� � ���
 expet��� � expet����.

3. cert�� � ��� 
 expet��� � expet����. An identical implication holds for all the inequality
relations: �, �, and �.

4. If � is a statistical term, then expet��� � � � cert�� � ��.

5. If � is a statistical term then expet��� � � � cert�� � ��.

6. If � is rigid, then expet�� � �� � � � expet���.

3 The Epistemological Framework

Our combined probability language can be viewed as a generalized logic of belief. To be precise, it
is not difficult to show that formulas with propositional probability one satisfy the axioms of KD45
[10] (a.k.a. weak S5 � consistency). For example, cert��� � � 
 cert�cert���� (the axiom of
positive introspection) is valid. This means that the formulas that the agent is certain of (i.e., have
degree of belief one) behave in the same manner as formulas that are fully believed under ordinary
Hintikka style models of belief.

The generalization over Hintikka style models of belief comes along two dimensions. First,
through the use of non-unit propositional probabilities the probability logic can represent graded
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assertions of belief, and by using numeric predicates it can represent various qualitative assertions
about the strength of beliefs. The second generalization comes from the fact that the logic can
represent statistical assertions. Hence, the set of assertions to which the agent can ascribe a degree
of belief is richer: the logic can represent an agent’s degrees of belief in statistical assertions as
well as ordinary first-order assertions.

Let us call the formulas of the probability logic which do not contain any prob or expet oper-
ators objective formulas. We will assume that there is some finite set of objective formulas that the
agent has accepted, i.e., has assigned degree of belief one to. This base of accepted beliefs acts as
the agent’s knowledge base.8 The formalism is explicit about the chance of error in the knowledge
base. That is, the agent is certain of these assertions, but some of them may in fact be false. We
will develop a model whereby we can reason in the combined probability logic about the degrees
of belief the agent should assign to other objective assertions given this base of accepted beliefs.

4 The Reference Class

As we have mentioned, direct inference is performed by assuming that the probability that a par-
ticular vector of individuals �� have a particular property � is equal to the proportion of individuals
that have that property from among some class of individuals that �� is known to belong to. The
essential problem in direct inference is choosing the correct class of individuals from which to de-
rive the probability. The class of individuals chosen is called the reference class, and the problem
of choosing the correct reference class is known as the reference class problem [11]. The approach
that we take here is to use the most specific reference class that we know �� to belong to. This
amounts to taking into consideration the entire belief base of the agent (i.e., all of the objective
assertions the agent has accepted). There is no philosophical difficulty with this choice; we should,
if we can, take into account all of �� ’s known properties. The problem that occurs is that the agent
may not know any useful statistical information about this possibly very narrow reference class.
This problem lead Reichenbach [1] to proclaim that one should choose the smallest class for which
one had “reliable statistics.”

Since the agent’s statistical knowledge is limited it would seem that our choice of the most
specific reference class would often be useless. The insight that allows us to avoid this difficulty is
that Reichenbach’s maxim, and indeed other systems of direct inference like Kyburg’s [2], choose
the reference class based on what statistics are known. Equivalently this could be viewed as being
inferences based on what statistics are not known, a kind of inference that has been much stud-
ied in AI. This is the manner in which we solve the reference class problem: if we do not have
knowledge that a property of �� has any influence on the probability of �, then we will assume
non-monotonically that it does not.9

8It would be more accurate to refer to these formulas as being a belief base. However, most knowledge bases in AI
are in fact belief bases; i.e., there is always some chance of error.

9In this work we distinguish between default reasoning, the inference of a plausible conclusion from less than sure
knowledge, and non-monotonic reasoning from lack of knowledge (cf. Moore [12]).
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5 The Formalism

Let KB be the conjunction of the complete finite set of objective formulas accepted by the agent. KB
will usually include information about particular individuals, e.g., bird(Tweety), general log-
ical relationships between properties, e.g., ���������� 
 ���������, and statistical information,
e.g., ����������������� � �
�.

Definition 1 (Randomization) Let � be an objective formula. If ���	 � � � 	 ��� are all the � distinct
object constants that appear in � � KB and ���	 � � � 	 ��� are � distinct object variables that do not
occur in � � KB, then let KB� denote the new formula which results from textually substituting � 

by �
 in KB, for all �. Similarly for ��.

Definition 2 (Direct Inference Principle) If � is an objective formula, the agent’s degree of belief
in � should be determined by the equality

prob��� � expet
�
����KB����

�
�10

In addition, the agent must fully believe that �KB���� � �, i.e., cert��KB���� � ��.11

We note a couple of important properties of this principle.

Theorem 1 The degrees of belief given by the direct inference principle are in fact probabilities.

Theorem 2 prob��� � � is a logical consequence of the direct inference principle if and only if
�� KB
 �.

Definition 3 (The Base Theory) Let �� be the set of formulas consisting of cert��KB���� � ��
union all instances of the direct inference principle. Let �� denote the closure of �� under logical
consequence.

Theorem 3 If KB � �KB���� � � is satisfiable, then so is ��.

This last theorem implies that if the agent starts off with a consistent knowledge base, then his base
theory �� generated by direct inference will also be consistent.

As an example, say that

KB � ������
����� � ����������������� � �	

10The reason that we use the expected value of the statistical term is explained in [9]. One reason we can cite here
is that the expected value is rigid while the ordinary statistical term is not, but there are other good reasons for this
choice.

11There is a reasonable justification for this assumption [9], but here it is sufficient to note that it allows us to avoid
division by zero.
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where � is a rigid numeric constant with any value greater than ���. Then we have that prob������
������ � � ���.
That is, by reasoning from the direct inference principle the agent will draw the intuitive conclu-
sion. We have that

prob������
������ � expet
�
��������������� � ������������������ � ����

�

is an instance of the direct inference principle, and hence it is in ��. Lemma 1.1 allows us to remove
the conjunct ����������������� � � from the conditioning formula;12 Theorem 2 demonstrates
that cert������������������ � �� � ��;13 the fact that �� is closed under logical consequence and
properties of the expectation terms demonstrates that prob������
������ � � � ��.

6 Non-monotonic Reasoning about Statistics

Often the base theory �� will not contain any useful information about the agent’s degree of belief.
For example, say that we added the assertion �����
��
����� to the above KB. Now �� will
contain

prob������
������ � expet
�
�������������
��� � ���������

�
	

where we have already used Lemma 1.1 to remove irrelevant conjuncts. Although �� contains
useful information about the proportion of birds that fly, it contains no information about the pro-
portion of yellows birds that fly: the former statistic does not constrain the latter.14

As we noted above we address this issue by allowing the agent to make non-monotonic as-
sumptions to extend his base theory.

Definition 4 (Non-Monotonic Assumptions) If cert������� 
 ��� � ��, then
expet

�
��������

�
� expet

�
��������

�
is a legitimate non- monotonic assumption, where �, �� and ��

are all objective formulas.

This definition allows the agent to inherit (expected) statistics from less specific reference classes
for which he may possess better statistical knowledge.

For example, the agent can make the non-monotonic assumption

expet
�
�������������
��� � ���������

�
� expet

�
�����������������

�

With this assumption added to �� he can now infer prob������
������ � �.
12In general, Lemma 1.1 and the properties of the expectation terms allows us to remove those parts of KB that are

not related to the constants appearing in � from the conditioning formula. Furthermore, this excision is determined by
the semantic properties of the statistical terms, not by a syntactic criterion.

13It is easy to see that the random designators can be renamed without affecting the value of the statistical terms.
14This is a property shared by other default reasoning formalism (e.g., �-probabilities [13] and conditional logics

[14]).
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We do not have space to present the full details of the non-monotonic reasoning component of
our system, but we note here that its main intent is not to determine uniquely the agent’s final the-
ory. Rather its intent is to allow the agent to extend his base theory to generate useful conclusions.
We agree with the argument that the agent’s final decision as to which theory to use (i.e., which
set of non-monotonic assumptions to make) will depend on meta-logical pragmatic considerations
(Konolige and Myers [15]). The best a system can do is to eliminate certain counter-intuitive
theories, and as our examples will demonstrate, this is what is accomplished.

7 Examples

In the proofs below we use the following abbreviations (1) “expt. prop.” to indicate properties of
the expectation operator (Lemma 2), (2) “dir. inf.” indicating our initial application of the direct
inference principle (usually with irrelevant conjuncts removed), and (3) “stat. prop.” to indicate
properties of the statistical probability terms (Lemma 1).

Example 1 (Opus does not fly.) Let

KB � ���������� � �������������
� ����������������� � � � ������������� 
 �������
� �������������������� � �� ��

prob����������� � expet
�
��������������� � ������������

�
dir. inf.

cert
�
��������������� � ������������ � ��������������������

�
Lem. 1.2

cert
�
�������������������� � �� �

�
Thm. 2

expet
�
��������������� � ������������

�
� �� � expt. prop.

prob������������ � �� �

The proof hinges on the fact that because penguins are known to be a subset of birds (i.e.,
cert�������������� 
 �������� � �� by Theorem 2) we have by Lemma 1.2 that

cert
�
��������������� � ������������ � ��������������������

�
�

This example shows that the agent’s base theory �� has a natural subset preference as a con-
sequence of the properties of the statistical terms. That is, there is no need for a meta-logical
criterion.

Example 2 (Clyde likes Tony but not Fred.) If

KB � ��������������� � ���������������
� ���������� ����
� ��������	 �������������� � ���������������
�� � �
� ��������	  ������������������ � �� �
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It is not difficult to see that prob������������	 ������ � � � ��. The more interesting case is
that prob������������	  ����� � �� � � ��.

prob������������	  ����� �

expet
� �

�������	 ��
��� ����������� � ������������
� ��������	 ������������������� �

�
��
��

�
dir. inf.

cert
� �

�������	 ��
��� ����������� � ������������
� ��������	 ������������������� �

�
��
��

� �� !
�

stat. prop.

prob������������	  ����� � �� �

This proof hinges on the fact that
�
�������	 ��

�������������� � ������������ � ��������	 ������������������� �
�
��
��

� �� ��

This equality follows from Lemma 1.3. What happens here is that the statistical language is pow-
erful enough to express not only first-order properties of individuals, but also their statistical prop-
erties. In this case Fred is differentiated from Tony by the fact that he generally unpopular with
the elephants. This is a special statistical property that Fred possesses. When we condition on all
that is known we also condition on this statistical property, and it influences the inferred degree of
belief.

In default logic this would correspond to knowing a special default particular to the individual
Fred and a more general default applicable to the class of zoo-keepers. Intuition would mandate
a preference for the more specific default. This preference is another built in feature of our system
of direct inference: again it follows directly from the properties of the statistical terms.

Example 3 (University Students) Let

KB � �����������-������������ � � � ����������������������� � �
� ��������������-������������ � �� � � �-��������"���� � ������"����

We have that

prob����������"����� � expet
�
��������������-���������� � ����������

�

is in ��. Clearly we need to make some non-monotonic assumptions to generate any useful conclu-
sions. We could form the theory �� by assuming that the expected proportion of employed among
the adult university students is the same as among the university students, or we could form the
theory �� by assuming that this proportion is the same as among the adults. In �� we will have that
John is probably unemployed, while in �� he is probably employed. �� is an unintuitive theory,
and we can show that under some reasonable constraints on � �� is in fact contradicted by the
base theory ��. That is, �� contains the assertion that the expected proportion of employed among
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adult university students is not the same as the expected proportion of employed among adults,
contradicting the assumption that lead to ��.

All that we need is for � to be greater than �
�
� � ���
 � ���
, a slightly stronger condition

than � � ���. We have by statistical reasoning from KB that

��������������-���������� � ���������� �
������������ � ����������-������������

�����������-������������

�
��������������-������������
�����������-������������

�
�� �

�
� �

The last inequality holds when � is greater than the positive root of the equation �� � ���� � �.
This root has value �

�
�� ���
. Since this inequality is a logical consequence of KB it is certain in

��. It then follows from the properties of the expectation terms that the non-monotonic assumption

expet
�
��������������-���������� � ����������

�
� expet

�
�����������������������

�

is contradicted by ��, as in �� the expectation term on the left is less than � while the term on the
right is greater than �. This example shows how reasoning with the statistical information can be
used to eliminate unreasonable theories.

8 Discussion

We have provided a formal mechanism for performing direct inference, and as our examples
demonstrate this mechanism also has applications to default reasoning. Since this mechanism
depends on both direct inference and non-monotonic reasoning from lack of knowledge, the reader
may question its validity: why not just use non-monotonic reasoning from lack of knowledge, as
is done in most other default reasoning formalisms? There are a number of advantages that accrue
from being explicit about the statistical knowledge involved in default inferences.

It is clear that there must be an empirical basis for much of default reasoning. For example, the
view of defaults as conventions does not explain how an agent is to reason non-monotonically when
he interacts with the world: we cannot expect the world to follow our conventions. Our approach
encodes much of its information as qualitative statistical assertions. The empirical content of these
assertions is intuitive and transparent, and they represent information that can be learned by an
agent through his experience. This can be contrasted with the approach of �-probabilities [13],
where the empirical content of probabilities infinitesimally removed from one is less than clear. Of
course the interpretation of the empirical component of defaults as being statistical is controversial:
the best evidence for it lies in the intuitive correctness of the answers it produces.

By adopting a statistical interpretation for assertions that have have been traditionally been
encoded as “defaults,” we have gained the ability to perform an extensive amount of reasoning
with this information. For example, under this interpretation we can infer the default “Canaries
are typically not green” from “Canaries are typically yellow” and “Yellow objects are not green.”
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Of all the alternative formalisms for default reasoning the formalism that comes closest to our
approach in its ability to reason with the defaults is conditional logic [14]. However, by reasoning
with the statistical semantics we can eliminate unintuitive theories and capture the natural subset
and specificity preferences. These types of inferences are not possible with conditional logics.

Another important advantage of our dual approach to default reasoning is that it generates
graded default conclusions. Hence, we have a distinction in the formalism between defeasible
conclusions and deductive conclusions. This can be important when critical decisions must be
made (see Langlotz and Shortliffe [16]). Furthermore, the mechanism is quite capable of rea-
soning with quantitative statistical information. Hence, the formalism does not promote a schism
between commonsense reasoning and “scientific” reasoning. Dependent on the quality of his infor-
mation the agent can progress from qualitative commonsense reasoning to more exact quantitative
evidential reasoning: the same “logic” is used, it is just the amount and quality of information that
changes.

The fact that the conclusions are graded also means that the formalism avoids the lottery para-
dox [17, 18]. For example, we may know that birds typically have properties �� through ��, but
also that no bird possesses all of these properties. Other mechanisms of default reasoning are par-
alyzed by this situation, as if they infer each of the �
 they will also infer the conjunction of the
�
. In our mechanism, however, the agent’s degree of belief in each of the �
 will be high, but
his degree of belief in conjunctions of the �
 will be lower. This seems perfectly reasonable, as
each default conclusion is a source of possible error: the agent should become less certain as he is
required to commit to more default conclusions.
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