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Abstract

The cost of an optimal delete relaxed plan, known as h+, is
a powerful admissible heuristic but is in general intractable
to compute. In this paper we examine the problem of com-
puting h+by encoding it as a MAXSAT problem. We develop
a new encoding that utilizes constraint generation to support
the computation of a sequence of increasing lower bounds on
h+. We show a close connection between the computations
performed by a recent approach for solving MAXSAT and a
hitting set approach recently proposed for computing h+. Us-
ing this connection we observe that our MAXSAT computa-
tion can be initialized with a set of landmarks computed by
LM-cut. By judicious use of MAXSAT solving along with a
technique of lazy heuristic evaluation we obtain speedups for
finding optimal plans over LM-cut on a number of domains.
Our approach enables the exploitation of continued progress
in MAXSAT solving, and also makes it possible to consider
computing or approximating heuristics that are even more
informed that h+ by, for example, adding some information
about deletes back into the encoding.

Introduction
Many search heuristics for classical planning are based on
the delete relaxation of the planning problem which is con-
structed by removing the delete effects of all actions. Among
such heuristics the optimal delete relaxation heuristic, h+,
plays an fundamental role. Given a state s, h+(s) is the
cost of an optimal (lowest-cost) delete relaxed plan that can
transform s into a state satisfying the goal, where the cost of
a plan is the sum of the costs of its actions. h+(s) is a lower
bound on the true cost of achieving the goal from state s,
and thus it is an admissible heuristic which if used within
an A∗ search allows us to compute cost optimal plans.

It has been shown that h+ is a very informative heuris-
tic (Betz and Helmert 2009). Unfortunately, in general h+ is
NP-hard to compute (Bylander 1994). In this paper we in-
vestigate computing h+ by encoding it as a MAXSAT prob-
lem, thus allowing us to exploit ongoing advances in the
area of MAXSAT solving, e.g., (Davies and Bacchus 2011;
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Ansótegui, Bonet, and Levy 2010; Heras, Morgado, and
Marques-Silva 2011).

Our interest in h+ is to use it as an admissible heuristic
for A∗. Therefore, spending too much time on its computa-
tion can be counter productive. That is, the overallA∗search
might be faster with a less-informed but cheaper to com-
pute heuristic exploring a larger search space. Hence, our
focus in this paper is to exploit techniques from MAXSAT
solving to efficiently approximate h+, thus avoiding spend-
ing too much time computing it exactly. In particular, we
develop MAXSAT based techniques for computing h+ in an
anytime manner: our methods produce a sequence of suc-
cessively better lower bounds to h+ and ultimately, if given
enough time, compute h+exactly. Since h+ is admissible all
of these lower bounds are also admissible, and we can use
the best bound computed within the time available as an ad-
missible A∗heuristic for computing optimal plans.

MAXSAT is the optimization version of SAT and since
SAT has exhibited success as a technique for computing sat-
isfying plans (Kautz and Selman 1996) it is natural to use
MAXSAT directly to compute optimal plans. One approach
to doing this has been described in (Robinson et al. 2010).
However, this direct use of MAXSAT has not, as yet, been
as effective as heuristic search (e.g., see the results of the
2008 International Planning Competition http://ipc.
icaps-conference.org). The main difficulty with the
direct approach is that the MAXSAT encoding of the origi-
nal (unrelaxed) planning problem can become very large (a
problem shared by the SAT approach to satisfying planning).
In contrast in this work we utilize the fact that computing h+
only requires computing optimal delete relaxed plans. Re-
laxed plans have a much simpler structure than real plans,
and can be solved with a much simpler and more compact
MAXSAT encoding.

This paper contain three main contributions. First, we de-
velop a new MAXSAT encoding for computing optimal re-
laxed plans (from which h+ can be computed by summing
the optimal plan’s action costs). The innovation in this en-
coding lies in its use of the technique of constraint genera-
tion: solutions to the initial encoding need not be legal re-
laxed plans as the initial encoding does not represent all of
the constraints required by relaxed plans. As a result the ini-
tial encoding is particularly simple and quite compact. Once
we obtain a solution to the initial encoding we can check if



the solution represents a legal relaxed plan. If it does we can
compute h+ from it exactly. If it does not we can compute a
new constraint that when added to the encoding will block
this and similar illegal plans. We can then solve the prob-
lem again with this new constraint added, iterating this pro-
cess until we have computed an optimal legal relaxed plan
from which h+can be calculated. Importantly, this encoding
yields a sequence of lower bounds to h+: the solution to the
current set of constraints produced at each iteration is always
a lower bound on h+ and the process converges to an exact
computation of h+.

Second, we explain a close connection between a recent
approach to MAXSAT solving (Davies and Bacchus 2011)
and a recently developed connection between action land-
marks and h+ (Bonet and Helmert 2010). This connection
allows us to show how landmarks computed by the LM-Cut
heuristic (Helmert and Domshlak 2009) can be used to seed
our MAXSAT computation, ensuring that the MAXSAT com-
puted heuristic can only improve on LM-Cut. The connec-
tion also illustrates that MAXSAT techniques can be used
to generalize the methods of (Bonet and Castillo 2011;
Bonet and Helmert 2010) so that landmarks for non-delete
relaxed planning problems can be computed and perhaps
used to compute admissible heuristics that are more pow-
erful than h+.

Third, we describe a technique of lazy heuristic evalua-
tion that can be used to more efficiently exploit a better but
more expensive to compute heuristic in A∗. Lazy heuristic
evaluation is a technique where by we do not have to incur
the cost of computing the more expensive heuristic at every
node generated by A∗ and at the same time expand no more
nodes than if we had computed the heuristic at every node.

Finally, we present empirical results illustrating that rea-
sonable performance when solving cost optimal planning
problems can be obtained from our approach.

Background
Planning and Delete Relaxations. A planning problem
Π = 〈P, I,G,A, aCost〉 consists of a set of facts P , an
initial state I ⊆ P , a goal state G ⊆ P , and a set of
actions A. Each action a ∈ A is specified by the sets
〈pre(a), add(a), del(a)〉, where pre(a) are the precondi-
tions of a, add(a) are the add (positive) effects of a, and
del(a) are the delete (negative) effects of a. Each of these
sets is a subset of P . aCost is a cost function that assigns
each action in A a positive real valued cost bounded away
from zero. The delete relaxation Π+ of Π is the same prob-
lem but for every a ∈ A we set del(a) = ∅. States are sub-
sets of P .

An action a is applicable in state s if pre(a)⊆s. The result
of applying action a to state s is result(s, a)=(s∪add(a))\
del(a). The result of applying an action sequence to
state s is defined recursively as: result(s, 〈a1, · · · , an〉) =
result(result(s, 〈a1. · · · , an−1〉), an). The sequence is said
to be executable if each ai is applicable, i.e., pre(ai) ⊆
result(s, 〈a1, . . . , ai−1〉). A valid plan π for a state s ⊆
P is an executable sequence of actions such that G ⊂
result(s, π). The cost of π, aCost(π), is the sum of the cost
of its actions. The cost of a minimum cost of plan for the

initial state I in the relaxed planning problem Π+ is denoted
by h+(Π+).

MAXSAT. A propositional formula in CNF is a conjunc-
tion of clauses, each of which is a disjunction of literals,
each of which is a propositional variable or the negation of
a propositional variable. Given a CNF formula a truth as-
signment ρ is an assignment of true or false to all of the
propositional variables in the formula.

A MAXSAT problem is specified by a CNF formula F
along with a positive real valued weight wt(c) for every
clause c ∈ F . Some clauses might be hard clauses, indi-
cated by them having infinite weight. Clauses with finite
weight are called soft clauses. We use hard(F) to indicate
the hard clauses of F and soft(F) the soft clauses. Note that
F = hard(F) ∪ soft(F).

We define the function mCost as follows: (a) if H is a set
of clauses then mCost(H) is the sum of the clause weights
in H; and (b) if ρ is a truth assignment to the variables in
F then mCost(ρ) is the sum of the weights of the clauses
falsified by ρ. A MAXSAT solution toF is a truth assignment
ρ to the variables of F with minimum cost. We denote this
cost by mincost(F). A core κ for a MAXSAT formula F is
a subset of soft(F) such that κ ∪ hard(F) is unsatisfiable.
Given a set of cores K a hitting set, hs , of K is a set of soft
clauses such that for all κ ∈ K we have that hs ∩ κ 6= ∅.

MAXSAT Encoding
SAT encodings of unrelaxed planning problems must be
concerned not only with identifying the actions that form
the plan but also with how these actions must be sequenced.
Hence these encodings typically use time stamped copies of
the fact and action propositions. For example, propositional
variables of the form pf@t and a@t are used to indicate that
fact p ∈ P or action a ∈ A is true at step t of the plan.

Since we are computing h+ and all actions in Π+ are
delete free, we can take advantage of the fact that delete
relaxed plans need never repeat the same action. Thus the
encoding need only have a single copy of each action vari-
able. However, for a set of relaxed actions to form an legal
(i.e., executable) plan we must ensure that there are no cyclic
dependencies. For example, we cannot have that action a1
depends on a2 to add a precondition while at the same time
a2 depends on a1 to add a different precondition.

Cyclic dependencies can be eliminated in various ways.
For example, (Robinson et al. 2010) utilize a additional col-
lection of causal propositions K(pi, pj) indicating that fact
pi is cause of pj . These propositions are true if some action
used fact pi as a precondition and produced pj as an add
effect. O(n2) additional clauses are then needed to ensure
that causation is transitive closed. Although the final encod-
ing is only satisfied by legal relaxed plans, it becomes quite
large and is not particularly conducive to the production of
incremental bounds.

Another useful feature of relaxed plans is that given a set
of delete relaxed actions it is easy to compute how they must
be sequenced to form a legal plan. Utilizing this fact we es-
chew the complexity of ensuring that the encoding is sat-
isfied only by legal plans. Instead we use a much simpler



encoding that can admit illegal plans, and use the approach
of constraint generation to eventually converge on a legal re-
laxed plan. We start with an simple initial encoding that uses
only action variables.

Action Based Encoding First, we define a support func-
tion sup for each fact, sup(p), to be the set of actions that
could add p: sup(p) = {a|p ∈ add(a)}. Furthermore, given
a state s we define poss acts(s) to be the set of acts that are
applicable in s: poss acts(s) = {a|pre(a) ⊆ s}

The variables in our encoding are a single action variable
a for each relaxed action a ∈ A. The encoding consists of
the following clauses.

1. For each goal fact g ∈ G such that g 6∈ I (we do not
need to achieve a goal that is already achieved in the initial
state), some action supporting g must be in the plan. For
each goal fact g this yields a hard clause of the form∨

a∈sup(g)

a

2. For each action a and for each of its preconditions that are
not already true in the initial state, i.e., p ∈ pre(a) \ I , if
a is included in the plan then one of p’s supporters must
be included as well. Each such pair (a, p) yields a hard
clause of the form

¬a ∨
∨

{a′|a′∈sup(p)}

a′

3. Finally, we have soft clauses that invoke a cost of
aCost(a) for each action a included in the plan. Each ac-
tion a yields a soft unit clause c of the form

(¬a)

with mCost(c) = aCost(a).

To further reduce the encoding size, we can restrict the
actions in the planning problems to be both reachable from
initial state I and relevant to goalG. This is easy to compute.

Given a relaxed planning problem Π+, a MAXSAT solu-
tion to its ABE encoding abe(Π+) is a truth assignment ρ
that assigns true to a minimum cost set of actions sufficient
to satisfy the hard clauses (items 1 and 2). (Each action that
is included in the solution invokes an added cost for ρ). The
set of actions assigned true by ρ (i.e., the set of actions in the
plan) might not form a legal relaxed plan. Nevertheless, we
do have the following:

Proposition 1. mincost(abe(Π+)) ≤ h+(Π+).

This holds because all relaxed plans are models of
hard(abe(Π+)): in any relaxed plans all goals and precon-
ditions of included actions are supported either by the ini-
tial state or by other actions. Therefore, the minimum cost
relaxed plan is an upper bound on the mincost truth assign-
ment toabe(Π+).

Proposition 2. If abe(Π+)’s solution ρ is a executable
relaxed plan, then ρ is an optimal relaxed plan, i.e.,
mCost(ρ) = h+(Π+).

Figure 1: a planning task with cyclic dependencies. a1,a2
have cost 3, a3 cost 2, all other actions cost 1.

a2

a1

g1

g2

I p1 p2
a3 a4

a5 a6

a7 a8

Since the returned solution ρ is a legal (executable) re-
laxed plan and h+ is the minimum cost of any relaxed plans,
we have mCost(ρ) ≥ h+(Π+). By Proposition 1, we have
that mCost(ρ) = h+(Π+).

The returned MAXSAT solution ρ is a truth assignment
that makes some of the action variables a true. This set of
true action variable specifies the set of actions A in the re-
laxed plan. By successively finding an action in A that can
be executed in I , updating I to account for its add effects,
and repeating, we can in time linear in A determine whether
A is a valid relaxed plan for Π+: A is executable if and only
if all we can execute all of its actions via this process.

As mentioned above there are models ofabe(Π+) that are
not legal relaxed plans. These models correspond to action
sequences that supply preconditions to each other in a cyclic
manner. If the returned solution to abe(Π+), ρ, is one of
these models we still have that mCost(ρ) ≤ h+(Π+), but we
will not know if mCost(ρ) = h+(Π+). For example, Fig. 1
shows a planning task where arrows labeled by actions indi-
cate that the action maps a precondition to an effect, and g1
and g2 are the goal conditions. The solution returned by the
MAXSAT solver is {a5, a6, a7, a8} with cost 4. The optimal
relaxed plan is {a3, a4, a5, a6} with cost 5. We call these
kinds of solutions inconsistent.
Definition 1. A solution ρ toabe(Π+) is inconsistent if the
actions made true in ρ do not form an executable plan.

We resolve inconsistent solutions using the technique of
constraint generation. In particular, if the returned solution
is not a legal relaxed plan, we add a new clause to the encod-
ing to block that solution (and others like it) and solve the
augmented MAXSAT problem again to find another solution.

The clause we use to block inconsistent solutions is con-
structed as follows. Let the actions of the inconsistent solu-
tion ρ be A. First we compute the set E(ρ, I) of all actions
from A that can be sequentially executed from the initial
state I . Note that since there are no deletes the order we ex-
ecute these actions does not affect the set we compute. Let
s be the state that arises from executing all of the actions in
E(ρ, I): s = result(I, E(ρ, I)). We then add a single hard
inconsistent solution blocking clause specifying that if the
plan contains all of the actions E(ρ, I), then it must contain
at least one more action applicable in s:∨

a∈E(ρ,I)

¬a ∨
∨

a′∈poss acts(s)

a′



Simply stated, the actions of E(ρ, I) are not sufficient to
form a valid plan and so any valid plan containing E(ρ, I)
must have at least one more applicable action. It is not dif-
ficult to see that this clause must be satisfied by all legal
relaxed plans.

For example, in Fig. 1, the executable set E(ρ, I) of so-
lution ρ = {a5, a6, a7, a8} is ∅, so that s = I , and
poss acts(s) = {a1, a2, a3}. The blocking clause is hence
(a1 ∨ a2 ∨ a3). After adding this clause, all solutions to the
MAXSAT encoding are valid (and of course optimal) relaxed
plans.

Alg. 1 shows the loop required to compute optimal re-
laxed plans using our MAXSAT encoding.

Algorithm 1 Optimal Relaxed Plan Computation
F =abe(Π+)
while true do
ρ = maxsat solve(F )
compute E(ρ, I)
s = result(E(ρ, I), I)
if G ⊆ s then

return E(ρ, I)
end if
c =

∨
a∈E(ρ,I) ¬a ∨

∨
a′∈poss acts(s) a

′

F = F ∪ {c}
end while

Theorem 1. The relaxed plan π returned by Algorithm 1 is
optimal, i.e., aCost(π) = h+(Π+).

Any π returned is a valid relaxed plan (all of its actions
are executable starting at I). Furthermore, all relaxed plans
satisfy the initial hard clauses of F = abe(Π+) along with
each clause c added to F . If a relaxed plan of smaller cost
than π exists it would satisfy all hard clauses of F and would
falsify a lower cost set of soft clauses of F . In this case, π
would not correspond to a MAXSAT solution of F .

Encoding with State. Althoughabe does not have any fact
variables we can include them. The hard clauses ofabe can
then be rewritten using fact variables. The yields a new en-
coding abe+state that contains more clauses than the abe
encoding, but these clauses are shorter. This can sometimes
improve the performance of the MAXSAT solver. The soft
clauses of the abe+state encoding are identical to the abe
encoding (unit clauses incurring a cost for every true action).

MAXSAT Solving, Landmarks, and h+

An action landmark for a planning problem is a set of ac-
tions at least one of which must be included in any plan.
Recently a new analysis has shown that computing h+ can
be formulated as a hitting set problem (Bonet and Helmert
2010), where the sets to be hit are action landmarks.

In fact, (Bonet and Helmert 2010), formulated the com-
putation of h+as an implicit hitting set problem (IHS) (Karp
2010; Chandrasekaran et al. 2011). IHS problems differ
from ordinary hitting set problems in that the collection of
sets to hit is not provided as input. Rather there is an oracle
which when given a candidate hitting set hs either declares

that hs hits all implicitly defined sets or returns an new set
not hit by hs from the implicit collection of sets. (Bonet and
Castillo 2011) showed how the required oracle for h+ could
be constructed generating unhit action landmarks or verify-
ing that all landmarks of the relaxed planning problem have
been hit. An advantage of this view of computing h+ is that
any set of landmarks L provides a lower bound for h+ and
thus an admissible heuristic for A∗. Any relaxed plan must
contain contain at least one action from every landmark in
L, and hence every plan must have cost at least equal to the
cost of a minimum cost hitting set of L. Thus the cost of a
minimum cost hitting set of any set of landmarks is a lower
bound for h+.

In a parallel development (Davies and Bacchus 2011)
have proposed a new approach to solving MAXSAT that also
exploits hitting sets. The main framework is shown in Algo-
rithm 2.

Algorithm 2 MaxHS Algorithm (Davies and Bacchus 2011)
MaxHS(F , K)
while TRUE do

hs = FindMinCostHittingSet(K)
(sat?, κ) = sat solve(F \ hs)
if sat? then

return κ
end if
K = K ∪ {κ}

end while

This approach to solving MAXSAT is based on the idea
of generating a set of cores (sets of soft clauses κ such that
κ ∪ hard(F) is UNSAT), and finding minimum cost hitting
sets of these cores. It can be initialized with a set of cores K
(possibly empty). Its first step is to compute a minimum cost
hitting set of these cores, hs , which is a set of soft clauses.
Then it tests if the input CNF F with these clauses removed
is satisfiable. If it is “sat?” the satisfying assignment returned
in κ by the SAT solver is a MAXSAT solution and the cost
of an optimal solution is equal to the cost of hs , the mini-
mum cost hitting set of the current set of cores. Otherwise
the SAT solver returns a new core that is un-hit by hs and
that is added to the set of cores K. It can be shown that this
algorithm is sound and complete for solving MAXSAT.

If we consider our encodings abe (or abe+state) we see
that all cores from these encodings are sets of unit clauses
of the form (¬a) for some action variable. That is, the cores
say that it cannot be the case that we can satisfy the hard
clauses of abe (which specify that we have enough actions
to support the goal and all needed preconditions), without
making at least one of these clauses false. That is, at least one
of the actions in these clauses must be true. In other words,
the cores returned by the SAT solver are landmarks. This
means that the MAXSAT encoding provides an alternative
and more general way of computing action landmarks.
Proposition 3. For an unsatisfiable core κ, l = {a|(¬a) ∈
κ} is an action landmark.

Since κ is a core we have by definition that hard(F) ∧ κ
is unsatisfiable. κ = (¬a1) ∧ . . . ∧ (¬ak) for some set of



actions a1, . . . an, since the only soft clauses of F are unit
clauses of the form (¬ai) for some action variable ai. The
unsatisfiability of hard(F) ∧ κ implies ¬hard(F) ∨ a1 ∨
. . . ∨ ak is a tautology, and thus hard(F) |= a1 ∨ . . . ∨
ak. It is not difficult to see that every valid relaxed plan of
Π+ satisfies hard(F) (including any added hard blocking
clause), so a1, . . . , ak must be a landmark for Π+.

Furthermore, we observe that a hitting set of the cores
computed by MaxHS is a minimal set of soft clauses (¬a)
that must be falsified in order to satisfy the hard clauses.
That is, this hitting set is a minimal cost set of actions that
must be true, thus its cost provides a lower bound on h+.

There are two immediate consequences to these obser-
vations. First, we can seed the MaxHS algorithm with any
valid set of landmarks. In our work, we initialize MaxHS
with the set of landmarks computed by LM-Cut. These land-
marks are utilized in the “FindMinCostHittingSet” routine,
they are not added to the MAXSAT encoding. (In the im-
plementation of MaxHS “FindMinCostHittingSet” is com-
puted by the integer program solver CPLEX.) Thus, in the
first iteration of the algorithm we already are working with
hitting sets (candidate plans) that have cost at least equal
to the LM-Cut heuristic. Successive iterations can only in-
crease the size of these candidate plans, thus improving our
lower bound on h+.

Thus, we are ensured that our MAXSAT solver will always
return a solution κ whose actions cost at least as much as
the value of the LM-Cut heuristic. We have also observed
empirically that seeding MaxHS with the LM-Cut computed
landmarks serves to speed up the solver by a factor of 4-5 (it
no longer has to spend time computing these cores).

The second consequence of these observations is that if
we add information about deletes to the MAXSAT encoding
(which could be done, e.g., by adding time stamped actions)
then we could compute landmarks for non-relaxed planning
problems by way of SAT (not MAXSAT) solving. This pro-
vides a general and immediate way of computing landmarks
that is not dependent on the graph cut formalization pre-
sented in (Bonet and Helmert 2010) which cannot compute
landmarks that are implied by the action’s delete effects.

Lower Bound Approximations of h+ As noted above
each iteration of Algorithm 1 (before we add a new block-
ing clause) yields a potentially improved lower bound on
h+. In particular, ρ the solution to each MAXSAT problem F
specifies a set of true action variables whose cost is always
a lower bound on h+. Hence, we can stop our computation
and use this lower bound before adding the next blocking
clause. (Of course, if ρ specifies a legal relaxed plan we can
then calculate h+ exactly). In addition to these outer level
iterations, if we use the MaxHS algorithm to solve each
MAXSAT problem, we can stop at each inner level itera-
tion were a minimum cost hitting set of the current set of
cores has been computed using “FindMinCostHittingSet”.
Again as noted above, the cost of this minimum cost hitting
set is always a lower bound on h+. Hence, we can stop our
computation after adding some bounded number of block-
ing clauses or after computing the minimum cost hitting set
of some bounded number of cores. This yields considerable

flexibility for achieving a useful tradeoff between heuristic
accuracy and computation time. In our empirical results we
generate lower bound approximations of h+ by limiting the
CPU time provided to the MAXSAT solver (MaxHS), and
the number of blocking clauses Alg. 1 is allowed to add.
Utilizing other MAXSAT Solvers. Any other MAXSAT
solver could be used in Alg. 1 rather MaxHS. These solvers
could also be seeded with the landmarks computed by LM-
Cut by adding these landmarks as hard clauses stating that
at least one of the actions in the landmark must be true.1

There are, however, two practical advantages of using
MaxHS in our empirical results. First, we had access to the
source code so we could more conveniently terminate its
execution and still obtain the latest lower bound from it.
Second, in other MAXSAT solvers the LM-Cut landmarks
would have to be added as clauses to the MAXSAT en-
coding. With solvers using the sequence of SAT approach
this could potentially speed up the solver, but these solvers
would still have to refute various lower cost solutions be-
fore they reached a bound equal to the LM-Cut bound. With
MaxHS, on the other hand, the LM-Cut landmarks are added
to the CPLEX model which immediately calculates a lower
bound at least equal to the LM-Cut bound.

Lazy Heuristic Evaluation in A∗

The final technique we have developed to optimize time is to
limit the use of MAXSAT solving to compute h+ during A∗
search. In particular, we utilize LM-Cut as our base heuris-
tic. Initially, nodes of the search space are placed on the
OPEN list with their heuristic value set to that computed
by LM-Cut—we do not invoke the MAXSAT solver to com-
pute a more accurate estimate of h+ at this stage. Rather
we wait until we have selected a node n from OPEN to
be expanded next. If n’s heuristic value was computed by
MAXSAT, we expand it and add its successors to OPEN.
However, if the n’s heuristic value is still the LM-Cut value,
we invoke Alg. 1 to compute a better heuristic value. Given
that Alg. 1 is seeded with the cores (landmarks) computed
by LM-Cut, this can only increase n’s heuristic value. Once
we finish this computation, we check to see if n should still
be at the front of OPEN given its new (potentially higher) f-
value. If not we place it back on OPEN, and move on to the
node on OPEN that now has lowest f-value. In this way we
never invoke the more expensive MAXSAT computation for
nodes that never make it to the front of OPEN. It is easy to
see that since all of these heuristic estimates are admissible,
A∗will still find an optimal cost plan.

Experiment Results
Our experiments were run using FastDownward planner
platform (Helmert 2006) and an Intel Xeon 5150 machine.
Time and memory limits were set to 1800 seconds and 4GB
per problem. The MaxHS solver (Davies and Bacchus 2011)
we use employs MiniSAT 1.4 as its SAT solver and CPLEX
to compute minimum hitting sets.

Our first set of experiments examine the accuracy of our
MAXSAT computations. We ranA∗using our MAXSAT com-

1Thanks to the reviewers for pointing this out.



Table 1: Comparison of solved task over IPC benchmark domains.
Domain Coverage Nodes Expanded Relative to LM-Cut Time (CPU sec.)

MS Lm-cut M1 M2 MS Lm-cut M1 M2 MS Lm-cut M1 M2
elevators(20) 9 16 17 17 230.09 1.00 0.48 0.62 706.57 254.91 2,231.50 828.16
floortile(20) 2 6 5 5 61.66 1.00 0.19 0.48 8.56 2.57 186.42 32.49
mystery(30) 14 15 14 15 83.91 1.00 0.31 0.97 214.04 191.41 1869.42 259.22
nomystery(20) 14 14 10 16 8.51 1.00 0.15 0.53 16.09 603.90 715.40 179.20
openstacks(20) 4 14 13 14 1.03 1.00 1.00 1.00 744.93 18.68 37.79 25.90
parcprinter(20) 8 13 11 15 576.09 1.00 0.99 1.00 105.04 50.49 557.31 372.14
pegsol(20) 0 17 12 17 - 1.00 0.93 1.00 - 114.48 1742.15 1359.56
sat(10) 0 2 2 2 - 1.00 0.02 0.02 - 993.12 707.00 528.31
satellite(36) 6 7 8 10 903.58 1.00 0.28 0.30 298.09 229.38 596.44 140.11
scanalyzer(20) 9 11 7 11 1.25 1.00 0.34 0.35 256.75 148.68 600.96 223.87
sokoban(20) 8 20 11 19 432.51 1.00 0.47 0.99 3301.20 1177.75 2363.33 1552.12
tidybot(20) 1 13 8 11 1.00 1.00 1.00 1.00 0.10 0.10 0.10 0.10
transport(20) 6 6 3 4 76.17 1.00 0.44 0.65 8.58 34.52 863.14 284.97
trucks(30) 5 10 8 8 444.09 1.00 0.24 0.64 135.04 5.77 1058.59 94.12
visitall(20) 9 10 11 14 1.80 1.00 0.00 0.00 246.15 335.32 429.97 199.70
woodworking(20) 6 11 10 14 21.76 1.00 0.34 0.35 59.74 59.12 293.13 55.08
SUM 101 185 150 192 2843.46 16.00 7.20 9.90 6100.88 4220.20 14652.65 6205.05

puted heuristics on the 12 problem instances shown in Ta-
ble 2. We employed four configurations of resource limits
for the MAXSAT solver: (0.1, 5), (1,10), (5,20), and (10,40)
where (x,y) indicates that x CPU seconds were given and
at most y blocking clauses could be added. Fig.2 (a) shows
the percentage of node evaluations in each of these problems
where the MAXSAT solver was able to compute the exact h+
value, and 2 (b) shows the time to complete the search. The
x-axis on these graphs indicate the problem instance being
solved. The The graphs indicate that as we increase the re-
source limits, we more frequently compute h+. However, ten
seconds (10,40) is not sufficient to compute h+ much more
than 25% of the time in instances 2, 10, and 11. Table 2 also
shows that as the computational resources are increased we
get a higher percentage reduction in the number of expanded
nodes (up to the last f-layer) as compared to LM-Cut. How-
ever, the search time can increase significantly as we provide
MAXSAT with more resources as seen in Fig. (b).

Table 2 gives a brief comparison of our approach to that
of (Bonet and Helmert 2010) on the same set of 12 problem
instances. We compare our MAXSAT configurations with
the most expensive of the heuristic estimators presented by
Bonet and Helmert, namely h(5,15). We compare the per-
centage reduction over LM-Cut using the same benchmark
problems. (The numbers in the LM-Cut column are the abso-
lute number of nodes expanded). We see that h(5,15) tends to
be more accurate than our cheapest configuration, but not as
accurate as our most expensive configuration. Unfortunately,
the sample set is too small to draw any clear conclusions. A
more in-depth comparison is on-going work.

Next we conducted a more detailed evaluation of the over-
all performance of our planning approach on 16 different do-
mains. 12 of them are selected from the most recent interna-
tional planning competitions (IPC7). The others are domains
that are considered challenging for LM-cut. The evaluation
compares the performance of A∗when computing a cost op-
timal plan using the merge and shrink (Helmert, Haslum,

Table 2: Percentage of reduction of expanded nodes up to
last f layer compared to h(5,15) in (Bonet and Helmert 2010)

Inst. LM-cut h(5,15) (0.1,5) (1,10) (5,20) (10,40)
Freecell-01 390 100.00 90.77 99.49 100.00 100.00
Mystery-09 30 61.50 3.33 10.00 33.33 40.00
Mystery-27 3 66.70 66.67 100.00 100.00 100.00
Mystery-28 2 100.00 100.00 100.00 100.00 100.00
Openstacks-01 1822 70.40 30.52 76.29 90.40 93.08
Openstacks-03 1805 70.50 30.53 76.01 90.47 92.35
Openstacks-04 1817 71.50 30.32 77.55 89.32 92.74
Openstacks-05 1819 69.80 31.45 74.16 88.89 91.64
Pipesworld-Tank.-05 129 70.30 15.50 41.86 57.36 61.24
Pipesworld-NoT.-06 560 68.20 15.36 49.29 67.86 69.64
Pipesworld-NoT.-07 56 100.00 7.14 23.21 60.71 64.29
Satellite-03 6 66.67 66.67 66.67 66.67 66.67

and Hoffmann 2007) heuristic, the LM-cut heuristic, and
our MAXSAT heuristics. M1 is standard A* search, while
M2 are the results obtained when lazy heuristic evaluation
of the MAXSAT heuristic is used. Both M1 and M2 use the
resource bounds (0.1, 5). The number of problems solved,
nodes expanded as a proportion of the nodes expanded when
using the LM-cut heuristic,, and total CPU time taken (in
seconds) for that problem domain (not counting timed out
instances) is shown in Table 1. For each problem domain
the number of problem instances is shown in brackets.

The best results obtained for a domain are bolded. In par-
ticular, the planner that solves the most problems in the do-
main is considered to be the best performer, with ties broken
by the least CPU time taken.

From the table, we can see that the nodes expanded by
M2 are slightly greater than M1. However, this is due to dif-
ferent tie breaking behavior and the difference is not sig-
nificant. M1 and M2 in general expand considerably fewer
nodes than LM-Cut, while merge and shrink tends to ex-
pand more. Even though the MAXSAT heuristics are com-
putationally more expensive than LM-Cut, M2 still achieves
better performance in seven domains, solving a larger total
number of problems. However, on some domains it is con-
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Figure 2: (a): percentage of node evaluations that compute
h+ exactly (i.e., that terminate within the given resources),
(b): the overall search time of different MAXSAT configura-
tions compared to LM-cut

siderably slower than LM-Cut. We also see that M2 (lazy
heuristic evaluation) achieves a very useful performance im-
provement over M1.

Conclusion
In this paper, we have formulated the problem of computing
h+ as a MAXSAT problem using a novel encoding that em-
ploys constraint generation. More complex encodings could
in principle capture certain delete effects of actions. In that
case, the MAXSAT approach we have used would be able
to produce landmarks (cores) for relaxations more accurate
than the delete relaxation. Our empirical results indicate that
using MAXSAT has promise for solving the optimal planning
problem, and also allows us to exploit future developments
in MAXSAT solver technology.

In future work we plan to investigate richer MAXSAT en-
codings that can capture some delete information. We also
plan to investigate whether or not MAXSAT can be used di-
rectly to compute optimal plans using constraint generation
style encodings.
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