
Exploiting Decomposition in Constraint Optimization
Problems

Matthew Kitching and Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada
{kitching,fbacchus}@cs.toronto.edu

Abstract. Decomposition is a powerful technique for reducing the size of a
backtracking search tree. However, when solving constraint optimization prob-
lems (COP’s) the standard technique of invoking a separate recursion to solve
each independent component can significantly reduce the strength of the bounds
that can be applied when using branch and bound techniques. In this paper we
present a new search algorithm that can obtain many of the computational bene-
fits of decomposition without having to resort to separate recursions. That is, the
algorithm explores a standard OR tree not an AND-OR tree. In this way incre-
mental information gathered from any component can be immediately applied to
improve the bounding information for all of the other components. We also dis-
cuss how caching and local propagation can be combined with our approach and
finally test our methods empirically to verify their potential.

1 Introduction

In this paper we investigate the use of decomposition during search to aid in solving
Constraint Optimization Problems (COPs). In particular, we are interested in COPs
whose objective function is decomposed into a sum of sub-objectives. This means that
when variables are instantiated during search the COP can split into independent com-
ponents that can be solved separately.

Since backtracking’s worst case time complexity is exponential in the number of vari-
ables, decomposition into independent components can yield an exponential speedup
when applied recursively. More precisely, decomposition can reduce the worst case time
complexity from 2O(n) to nO(1)2O(w) where n is the number of variables and w is the
tree-width of the constraint graph, see, e.g., [1,7].

The downside to using decomposition in COPs is that it can reduce the effective-
ness of the bounding techniques that are essential for solving COPs. In particular, the
standard method for exploiting decomposition during search is to invoke a separate
recursion for each independent component generated during the search, yielding an
AND/OR search tree [7,8,9,10,12,14]. Unfortunately, the bounds that can be employed
in these separate recursions can be quite weak causing inefficiencies in the search.

In this paper we present an algorithm that is able to exploit decomposition in a stan-
dard backtracking search tree (an OR tree). Our algorithm has complete freedom in its
variable ordering and is able to switch between working on different components while
retaining the space efficiency of depth-first search. In this way incremental information

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 478–492, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploiting Decomposition in Constraint Optimization Problems 479

gathered from any component can be used to improve the bounding information for all
of the other components. This can often mean that an entire collection of components
can be rejected without ever having to solve any of them to optimality. In addition we
discuss how local propagation (soft-arc consistency) [6] can be employed in conjunction
with our algorithm, and demonstrate how a fixed tree-decomposition can be flexibly uti-
lized to improve decomposition without having it impose excessive restrictions on the
variable ordering.

In the sequel we first present some background on branch and bound and AND/OR
search with bounding. Our new algorithm is then presented and some of its proper-
ties illustrated. After a discussion of local propagation and our technique for flexibly
exploiting a fixed tree-decomposition, we present empirical results demonstrating the
potential of our approach.

2 Background

A COP, C, is specified by a tuple 〈Vars , Dom , Cons , Obj 〉, where Vars is a set of
variables, for each V ∈ Vars, Dom[V] is a domain for V , Cons is a set of constraints,
and Obj is an objective function mapping every complete assignment to Vars to a real
value. A solution of C is a complete set of assignments to Vars that minimizes Obj and
satisfies the constraints in Cons .

The techniques we discuss in this paper are effective on COPs whose constraints and
objective function are decomposable. In particular, we require that Obj be decomposed
into a sum of sub-objectives oi such that: (1) each oi (and each constraint in Cons)
depends on only a proper subset of the variables in Vars , denoted by scope(oi); (2)
each oi maps assignments to the variables in scope(oi) to a real value; and (3) on any
complete assignment A the total objective is the sum of the sub-objectives, Obj (A) =∑

i oi(A).1

The constraints in Cons can be treated as additional sub-objectives that map satisfy-
ing assignments to 0 and violating assignments to ∞. Thus the problem can be reformu-
lated with a single unified objective Obj =

∑
i oi +

∑
cj∈Cons cj , and we simply need

to minimize this unified objective. Hence, we regard a COP as being defined by a tuple
〈Vars ,Dom,Objs〉 where Objs includes both the original objective sub-functions and
the hard constraints. We use the term objectives to denote the sub-objectives in Objs .

Let A be any set of assignments to some of the variables of Vars : we use varsOf (A)
to denote the set of variables assigned by A; cost(A, C) to denote the sum of the costs
of all objectives in the COP C that are fully instantiated by A; and mincost(C) to denote
cost(A, C) of any solution A to C (i.e., the optimal objective value achievable in C).

A set of assignments A reduces the original COP C to a smaller COP C|A whose
variables are the variables of C not assigned in A (C.Vars − varsOf (A)), and whose
objectives are those that contain at least one unassigned variable and are obtained by
restricting the original objectives of C by A. That is, for any objective oi ∈ Objs if
scope(oi) �⊆ varsOf (A), then the reduction of oi by A, oi|A, is the new objective

1 If the objective function or constraints are not decomposable (and they can often be reformu-
lated in a decomposed form), our techniques will still correct solve the COP, but no computa-
tional advantage will be gained from decomposition.

480 M. Kitching and F. Bacchus

Algorithm 1. Branch and Bound
BB

`C, UB
´

1
/* Return bounds (C.lb, C.ub) on mincost(C). If mincost(C) < UB, then return exact bounds

C.lb = mincost(C) = C.ub. Else return bounds such that UB ≤ C.lb ≤ mincost(C) ≤ C.ub. */
begin2

(C.lb, C.ub) = getBounds(C)3

if
`C.lb < UB ∧ C.lb �= C.ub

´
then4

choose (a variable V ∈ C.Vars)5
foreach d ∈ Dom[V] do6

UB = min(UB, C.ub)7

Δd = cost(V = d, C)8

(lbd,ubd) = BB
`C|V =d, UB − Δd

´
9

C.ub = min(C.ub, ubd + Δd)10

C.lb = max
`C.lb, MINd∈Dom[V] lbd + Δd

´
11

return (C.lb, C.ub)12
end13

function with scope(oi|A) = scope(oi) − varsOf (A) and on any set of assignments α
to the variables in scope(oi|A) we have that oi|A(α) = oi(A ∪ α).

Branch and Bound: (Alg. 1) is a standard technique for solving COPs using backtrack-
ing search. It works by building up partial variable assignments in a depth-first manner
using bounding to prune the search space. Each recursion is passed a COP C (a reduc-
tion of the original COP by the current set of assignments) and an upper bound UB. It
tries to compute mincost(C), subject to the condition that it can abort its computation
as soon as it can conclude that mincost(C) ≥ UB.

The computation starts with obtaining valid bounds on mincost(C) (various ap-
proximations can be used). If it is possible that mincost(C) < UB (i.e., C.lb < UB)
and mincost(C) is not already known (i.e., C.lb �= C.ub), then the computation of
mincost(C) can proceed. For any variable V ∈ C.Vars we know that mincost(C) must
be achieved by assigning V one of its values, and we can try each of these values in
turn. The minimal cost for C under the assignment V = d is the sum of Δd, the cost
contributed by any objectives of C that are fully instantiated by V = d (line 8), and
mincost(C|V =d). Hence, to achieve a total cost for C of less than UB under V = d, we
must achieve a cost less than UB − Δd for C|V =d (line 9). After the recursive call we
know that mincost(prob) can be no greater than the returned ubd plus Δd, so we can
reset C.ub to this value if it provides a tighter bound. We can also update the desired
bound for the next value to be the minimum of what was already required, UB, and
the current upper bound for C, C.ub (line 7). That is, we force the rest of the search
to achieve an even better value for C. After trying all values, we know that both the
initially estimated lower bound, C.lb, and the minimum of the lower bounds, lbd + Δd,
achieved under the different values of V are valid lower bounds for C. Hence, we can
use the tightest (maximum) of these as a new lower bound C.lb. Note that when all
variables have been assigned the recursion must stop. In particular, the passed C will be
the empty COP and will have exact bounds C.lb = 0 = C.ub.

Branch and Bound with Decomposition: (Alg. 2) A more recent technique used in
solving COPs (and other types of constraint problems) is search with decomposition (or

Exploiting Decomposition in Constraint Optimization Problems 481

Algorithm 2. AND-OR Decomposition with Branch And Bound
AND-OR-Decomp (κ, UB)1
/* On entry (κ.lb, κ.ub) must be valid bounds on mincost(κ). If mincost(κ) < UB, then compute

exact bounds κ.lb = mincost(κ) = κ.ub. Else compute bounds such that
UB ≤ κ.lb ≤ mincost(κ) ≤ κ.ub. */

begin2
if

`
κ.lb < UB ∧ κ.lb �= κ.ub

´
then3

choose (a variable V ∈ κ.Vars)4
foreach d ∈ Dom[V] do5

UB = min(UB, κ.ub)6

Δd = cost(V = d, κ)7
// Start new Processing for decomposition.
Kd = toComponents(κ|V =d)8

foreach κd ∈ Kd do9
(κd.lb, κd.ub) = getBounds(κd)10

foreach κd ∈ Kd while
“ P

κd∈Kd κd.lb < UB − Δd
”

do11
UBκd = UB − Δd − P

κ′∈K∧κ′ �=κd κ′.lb12

AND-OR-Decomp (κd, UBκd)13

(lbd,ubd) =
P

κd∈K(κd.lb, κd.ub)14
// End new Processing for decomposition.
κ.ub = min(κ.ub,ubd + Δd)15

κ.lb = max
`
κ.lb, MINd∈Dom[V] lbd + Δd

´
16

end17

AND/OR search) [7,8,10,14]. As variable assignments are made during backtracking
search, the COP can become separated into smaller independent COPs called com-
ponents. These components are COPs that share no variables and hence they can be
solved independently of each other. For example, if C has the objectives o1(V1, V2, V3)
and o3(V3, V4, V5) then the assignment V3 = d will split C into two components, the
first containing the variables V1 and V2, and the objective o1|V3=d while the second
contains the variables V4 and V5, and the objective o2|V3=d. Setting the variables of one
component has no effect on the other. AND/OR search works by invoking a separate
recursion for each component κ generated during search.

In Alg. 2 components are represented by a data structure κ that is created and de-
stroyed as Alg. 2 performs its search. κ is defined by some subset of the objectives
of the original input problem, κ.Objs , that have been reduced by some set of assign-
ments κ.A sufficient to disconnect these objectives from the rest of the problem. The
variables of κ, κ.V ar, are all of the unassigned variables of these objectives (thus
varsOf (κ.A) ∪ κ.V ars =

⋃
o∈κ.Objs scope(o)). Also note that κ is a COP so we

can evaluate cost(A′, κ) for any set of assignments A′. κ also contains fields κ.lb and
κ.ub used to store bounds on mincost(κ).

The search starts with the call κ = C and with κ.lb ≤ mincost(κ) ≤ κ.ub, i.e.,
a request to solve the original problem with valid bounds on the optimal cost. Each
recursion solves a single component κ created by the current set of assignments. To
solve the component κ we try all values of one of its variables V , reducing κ by each
possible assignment. The reduced component, κ|V =d, is first separated into a set of sub-
components Kd and a data-structure κd is created for each of these sub-components

482 M. Kitching and F. Bacchus

(line 8). Each sub-component is solved independently (line 13). We know that in order
to achieve a total cost of less than UB for κ under the assignment V = d, the sum
of the lower bounds over all components in K must be less than UB − Δd (where Δd

is the immediate cost of making the assignment V = d). Thus each sub-component
κd ∈ K must achieve a value of no greater than UB − Δd minus the sum of the lower
bounds of all of the other sub-components in K (line 12). Since each recursive call
updates the lower bound of a sub-component in K, we can abort the solving of these
sub-components whenever the sum of their lower bounds exceeds UB − Δd (line 11).

Once we have finished with the value V = d all of the data structures in Kd can
be deleted—so that the space requirements of the algorithm remain polynomial. On the
other hand, during search with decomposition the same component can be encountered
many times. Thus it is natural to cache the computed bounds for these components so
that when they are encountered again we can use these better bounds to optimize the
next attempt at solving the component. Cache look up can occur inside of the function
getBounds (line 10) where the better bounds (perhaps exact bounds) stored in the cache
can be retrieved.

3 Decomposition without Separate Recursions

Although the above use of decomposition with bounding gains computational advan-
tage from breaking the problem into independent sub-problems, it suffers from a weak-
ening of the bounding information it can utilize.

Consider solving a component κ under UB = 100. Say that we branch on variable
V making the assignment V = d, and that this adds zero to the cost (Δd = 0) while
breaking κ into five components κ1, . . . , κ5. If mincost(κi) = 25 this value for V must
eventually be rejected as under V = d, κ can only achieve a minimal cost of 125. Say
further that for each of the κi, our estimated lower bounds, κi.lb, is 10. We can see that
the upper bound applied when solving κ1 will be 100 − 4 ∗ 10 = 60, and the search
will be forced to solve κ1 to optimality. This will update κ1.lb to 25, and yield an upper
bound of 100 − (3 ∗ 10 + 25) = 45 for solving κ2. Thus the search will also be forced
to solve κ2 to optimality. The bound for κ3 will then be 30, and κ3 must be solved to
optimality. The bound for κ4 will be 15 and now the search can terminate before solving
κ4, after which

∑
i κi.lb > 100 and we can reject V = d. Computing the optimal value

for κ1–κ3 can be very expensive, and it could be that some much shallower search of all
of the components could have served to move their lower bounds to 20 or higher so that
V = d could be rejected without having to solve any of them to optimality. Thus we
see that although we are solving simpler problems, the bounds we can exploit in these
problems are weaker.

The key contribution of this paper is to demonstrate how the computational benefits
of decomposition can be obtained without having to perform separate recursions for
each component. Instead our method exploits the ideas originally presented in [1] for
counting problems where the benefits of decomposition are obtained in a regular back-
tracking search tree (OR-tree). We extend the ideas of [1] in a non-trivial way so that
bounding can be exploited.

Exploiting Decomposition in Constraint Optimization Problems 483

Algorithm 3. Decomposition and Bounding in a Standard Backtracking Tree
OR-Decomp (K, UB)1

/* On entry each κ ∈ K must have valid bounds (κ.lb, κ.ub). If
P

κ∈K mincost(κ) < UB

then compute exact bounds for every κ ∈ K, κ.lb = mincost(κ) = κ.ub . Else compute
valid bounds on the components in K such that UB ≤ P

κ∈K κ.lb. */
begin2

if
`P

κ∈K κ.lb < UB ∧ P
κ∈K κ.lb �= P

κ∈K κ.ub
´

then3
choose (a component τ ∈ K with τ.lb �= τ.ub and a variable V ∈ τ.Vars)4
AddConstraint(τ , τ.ub)5

foreach d ∈ Dom[V] while
P

κ∈K κ.lb < UB do6
UB = min(UB,

P
κ∈K κ.ub)7

Δd = cost(V = d, τ)8

Kd = toComponents(τ |V =d)9

foreach κd ∈ Kd do10

(κd.lb, κd.ub) = getBounds(κd)11

K′ =
`K− τ ∪ Kd

´
12

OR-Decomp (K′, UB − Δd)13

(lbd, ubd) =
P

κd∈Kd(κd.lb, κd.ub)14

τ.ub = min(τ.ub, ubd + Δd)15

RemoveConstraint(τ , τ.ub)16

τ.lb = max
`
τ.lb, MINd∈Dom[V] lbd + Δd

´
17

end18

Our new algorithm is shown in Alg. 3. Like Alg. 1 the algorithm takes as input the
entire remaining problem. However, instead of regarding the input as being a single
reduced COP (C), the input has been broken up into a set of components K. The aim is
to solve all of the components in K (compute bounds such that ∀κ ∈ K : κ.lb = κ.ub or
equivalently

∑
κ∈K κ.lb =

∑
κ∈K κ.ub), subject to the condition that we can give up on

the computation once we have concluded that the combined cost of these components
is greater than or equal to the passed upper bound UB (i.e., when

∑
κ∈K κ.lb ≥ UB).

If neither of these conditions have been met, some unassigned variable is chosen, and
all of its values are tried. On each instantiation the component, τ , containing V might
be split up into a new collection of components. These replace τ in the recursive call
(line 12), and as in Alg. 1 the upper bound is updated to account for the cost of making
the assignment V = d. Note that unlike Alg. 2 we pass all of the remaining components
to the recursive call (line 13)—we do not recurse just on a single component. Thus
the sub-tree search below this invocation can choose to branch on variables from any
component in any order—it is not constrained to branch only on the remaining variables
of a single passed component as in Alg. 2.

On return from the search below the newly generated components in Kd will poten-
tially have had their bounds updated, and we can update the upper bound of τ (line 15).
After trying all of the values for V we can update the lower bound of τ (line 17).

Note that in the search below the other components in K can be branched on, and
can have their bounds updated. Thus we may obtain sufficient information to abort the
for loop before trying all of the values of V . This motivates the while test during the for

484 M. Kitching and F. Bacchus

C=0

A=1

B=1 B=1

A=0

B=0 B=0

D=1

E=1 E=1

D=0

E=0 E=0

C=0

A=1

B=1 B=1

A=0

B=0 B=0

D=1

E=1 E=1

D=0

E=0 E=0

a) AND-OR-Decomp Search Space b) OR-Decomp Search Space

Fig. 1. Search Space of AND/OR decomposition and OR decomposition

loop (line 6). Note also that if any of these components are solved, i.e., if exact bounds
on their value are computed, we will never branch on them again: the branch variable
must be from an unsolved component (line 4). That is, if under V ’s first value we solve
some component κ′ ∈ K, then in the sub-trees generated by all of V ’s other values
we will never branch on any of the variables of κ′ again. This is where decomposition
is exploited. If all of the components of K beside τ are solved (which will occur if
UB − Δd >

∑
κ∈K∧κ �=τ mincost(κ)) then Alg. 3 will obtain all of the computational

benefits of decomposition.

Example 1. Consider a COP C with two objectives o1(A, B, C) = A + B + C and
o2(C, D, E) = C + D + E and where all of the variables have domain {0, 1}. Thus
mincost(C) = 0 is obtained when all variables have been set to zero. Also suppose
that getBounds always returns the minimum and maximum values for the remaining
reduced sub-COP. Say that we first branch on C = 0 which splits the problem into two
components κ1 = {o1(A, B, C = 0)} and κ2 = {o2(C = 0, D, E).

If Alg. 1 is used always trying the value 1 before 0, it can be demonstrated that
the search below C = 0 will attempt 20 variable assignments. In contrast the search
by Alg. 2, shown in Fig 1.a is smaller attempting only 12 assignments. It is able to
detect that the problem consists of two independent components and solve them inde-
pendently. Alg. 3, shown in Fig 1.b also searches only 12 nodes. It also exploits decom-
position but in a different search tree. In particular, under the left most instantiation of
the variables A and B, κ2 is solved exactly. Hence, the search need never branch on D
and E again until it tries a different value for C.

Example 2. However, sometimes bounding in Alg. 3 can interfere with independently
solving the components in K. Say that K contains two components κ1 and κ2, where
κ1 contains only a single unassigned variable V that has values {a, b, c}. If Alg. 3 first
branches on V , then after each value for V it will attempt to solve K′ = {κ2} (Kd

will be a empty set of components since V is κ1’s final value). Dependent on Δd we
will be trying to solve κ2 under different, perhaps too stringent bounds. For example, if
mincost(κ2) = 10, UB = 15, and Δa = 7, Δb = 6, and Δc = 3, the attempts to solve
κ2 under both V = a and V = b will fail (although we will increase κ2.lb). Only when
V = c will we try to solve κ2 under a bound that is greater than mincost(κ2). As the
number of variables in κ1 increases, these repeated attempts to solve κ2 can multiply.
Some savings can, however, occur since each solution attempt can tighten the bounds
on κ2. Nevertheless, a multiplicative effect can occur destroying independence.

Exploiting Decomposition in Constraint Optimization Problems 485

Thus on the positive side Alg. 3 can interleave the solving of the current components
by branching on variables from different components at each recursion. This can pro-
duce refined bounding information that can be sufficient to refute a whole collection of
components without ever having to solve any component to optimality. This can be ac-
complished while still obtaining many of the benefits of decomposition. On the negative
side however, bounding can sometimes interfere with the benefits of decomposition, as
illustrated in the example above.

Fortunately, there are a couple of simple ideas that can remove the worst of the
negative effects of bounding on decomposition. The first idea is to force a component
to be solved once and for all, if the search continues to return to it. The second idea is to
force the complete solution of a component if that component is sufficient small. In the
example above, the first method would solve κ2 (i.e., find mincost(κ2)) after having
returned to it some number of times; while the second method would solve κ1 (finding
that V = c is the correct assignment to make) before advancing to κ2 since κ1 is small.
In our implementation we did not find an effective way of utilizing the first idea: any
fixed count of how often the search can return to a component before forcing it to be
solved sometimes degraded performance. The second idea of forcing the solution of
a component when it is small was effective, and in our implementation we forced the
solution of any component whose variables had a product domain size of 20 or less.

Local Bounding: There is one further aspect of Alg. 3: the two lines AddConstraint
and RemoveConstraint that bracket the for loop over V ’s values. The intuition for
these lines is that the current component τ has an upper bound τ.ub that is initialized
when τ was first added to K and is updated after each value for V has been attempted
(line 15). Thus in the search below it is never effective to instantiate the variables of
τ.Vars to values that will cause τ to achieve a value greater than τ.ub. Note that this
can happen even though the global bound of

∑
κ∈K .lb < UB remains valid. We have

found that the easiest way to enforce this local bound on the settings of τ.Vars is to
post a constraint on the search below. Note that the strength of this constraint increases
as we obtain tighter bounds on τ.ub.

For example, say that τ contains the objectives o1(A, B, C), o2(A, E, F), and o3(F,
G) and that τ.ub = 10. If we branch on A = a with Δa = 3 then sometime later on
F = f with Δf = 3, we will have broken τ into three sub-components: κ1 = {o1(A =
a, B, C)}, κ2 = {o2(A = a, E, F = f)}, and κ3 = {o3(F = f, G)}, and accumulated
an immediate cost of Δa +Δf = 6. This means that if κ1.lb +κ2.lb +κ3.lb > (10−6)
we can immediately backtrack to the deepest point a variable of τ has been instantiated
(in this case to undo the assignment F = f). That is, under the assignments A = a
and F = f , τ cannot achieve its optimal value—it is already exceeding a known upper
bound on its optimal value. More formally, we require that in the subtree below if S is
the set of components that have been generated from τ , and A is the set of assignments
that have been made to variables of τ , then

∑
κ∈S κ.lb + cost(A, τ) ≤ τ.ub.

There are other ways of implementing this local bound condition, but utilizing a hard
constraint is a simple method. There are also potentially other ways the local bounds
could be used, including, e.g., using more sophisticated propagation of the added con-
straint. In our current implementation we are only checking this constraint and back-
tracking when it is violated.

486 M. Kitching and F. Bacchus

Formal Results: It can be proven that Alg. 3 is correct.

Theorem 1. If on entry to Alg. 3 ∀κ ∈ K.
(
κ.lb ≤ mincost(κ) ≤ κ.ub

)
, then if UB >

∑
κ∈K mincost(κ) on return ∀κ ∈ K.

(
κ.lb = mincost(κ) = κ.ub

)
. On the other

hand under the same entry conditions, if UB ≤
∑

κ∈K mincost(κ), then on return
UB ≤

∑
κ∈K lb(κ).

This theorem can be proved by induction on the total number of variables in the set of
components in K. The base case is when there are no variables in K, i.e., K is empty.
The inductive case is straight-forward. This theorem means that Alg.3 correctly solves
the initial input COP, C, as long as the initial bounds on mincost(C) are valid—any
valid bounds will work, but tighter bounds can yield smaller search trees.

The space requirements of Alg. 3 are also worth looking at. It can be noted that after
the value V = d has been tried, all newly generated components (Kd) can be discarded.
If the input COP C has n variables, then there can be at most n components in K (each
component must contain at least one variable), and we can descend a path of at most
length n. Thus at most O(n2) space is ever needed to store the active components during
the algorithm’s operation, above and beyond the space initially needed to represent the
input problem C.

The algorithm’s performance can be considerably enhanced by remembering previ-
ously encountered components in a cache. Thus after new bounds on τ have been com-
puted, at line 17, these bounds (perhaps exact) can be stored in the cache and reused
whenever τ is encountered again in the search. Caching is an important part of our im-
plementation and we have utilized the template techniques described in [10] to make its
use more efficient. Note, that the cache serves only to improve the algorithm’s perfor-
mance, it is not required for the algorithm’s correctness.

4 Local Propagation

An important technique when solving COPs is local propagation or soft-arc consis-
tency, developed in a number of previous works, e.g., [6,8,13]. This technique works
by “sweeping” values from the sub-objectives to a zero-arity sub-objective. The value
of the zero-arity objective can then be used as a lower-bound on the COP’s value, and
to prune the variable domains.

The technique works by adding to the original COP unary sub-objectives oi(Vi),
one for each variable, and a zero-arity objective 0() (none of these added objectives
affect decomposition). Sweeping (enforcing soft-arc consistency) moves value into the
zero-arity objective.

Two sweeping transformations are employed. First, values can be swept between a
unary objective o1(V) and any binary objective involving V , e.g., o2(V, X). In partic-
ular, if for a ∈ Dom[V] we have that minb∈Dom[X] o2(a, b) = α > 0, then we can
sweep α from o2 into o1: for all b ∈ Dom [X] we reset o2(a, b) = o2(a, b) − α,
and o1(a) = o1(a) + α. Intuitively, if o2 yields a value of at least α when V =
a, then we can move α into the unary objective over V adding it to the unary cost
of V = a. Similarly, we can sweep a value from o1 into o2. If o1(a) = α > 0:
we reset o2(a, b) = o2(a, b) + α for all b ∈ Dom [X], and o1(a) = 0. Second,

Exploiting Decomposition in Constraint Optimization Problems 487

values can be swept from a unary objective o1(V) into the zero-ary objective 0():
if mina∈Dom[V] o1(a) = α > 0 we can reset 0() = 0() + α and o1(a) = o1(a)− α for
all a ∈ Dom[V]. These two types of transformations are equivalence preserving in the
sense that the updated COP has an unchanged minimum cost.

Local propagation can be added to the three previously specified algorithms as fol-
lows. For Alg. 1 we set Δd on line 8 so that it is equal to all of the costs that have been
swept to 0() as a result of applying local propagation after the assignment V = d, and
we invoke the algorithm recursively (line 9) on C|V =d after local propagation has been
applied to the reduced problem (thus the bounds computed at line 3 are with respect
to a problem that has already been modified by local propagation). Similarly to add
local propagation to Alg. 2, we set Δd on line 7 to be the total value swept to 0() from
variables of the component κ, and break κ|V =d into components (line 8) after local
propagation has been performed.

Finally, to add local propagation to our new algorithm (Alg. 3), we again set Δd

(line 8) to be the total value swept to 0() as a result of applying local propagation after
the assignment V = d, and break κ|V =d into components (line 9) after local propaga-
tion has been performed. In addition, to accommodate local bounding we enforce the
constraints added at line 5 by ensuring that in the search below the sum of the lower
bounds of all of the components generated from τ plus the total value swept to 0() from
variables of τ always remains ≤ τ.ub.

Caching: Local propagation can also interfere with caching. With caching, we store the
bounds computed on components that arise during search and reuse these bounds if the
component reappears in the search. However, the next time the component appears local
propagation might have moved a different amount of value into or out of the component
as compared to the previous time the component was encountered. This can invalidate
the cached bounds.

To exploit caching in the presence of local propagation we must make the bounds in-
dependent of the current propagation before we store them in the cache, and adjust these
bounds to account for the current propagation when we retrieve them from the cache. In
[8] a technique was developed for accomplishing this when a fixed tree-decomposition
is used to guide the search. With a fixed decomposition the components that will arise
during search can be predicted ahead of time. In Alg. 3, however, the order in which
the variables are instantiated is unconstrained—i.e., a fixed tree-decomposition is not
used. Rather, components are detected dynamically whenever they are created by the
instantiated variables. Nevertheless, we were able to generalize the techniques of [8] so
that we can compute the value that has flowed into and out of the components as they
are generated during search. Using these flows the cached bounds can be adjusted so
that they are made independent of the context when they are to be stored in the cache,
and made compatible with the current context when retrieved from the cache.

5 Tree Decompositions

A commonly used technique for exploiting decomposition during search is to compute
a tree-decomposition T for the constraint graph prior to search. T is a tree where each

488 M. Kitching and F. Bacchus

node is labeled by a set of variables of the COP (these labels satisfy certain conditions,
see, e.g., [1]). We then force the variable ordering of the backtracking search to follow T
by requiring that it always branch on an unassigned variable from an active node of T .
Initially only the root of T is active, and once all variables in an active node have been
assigned all of its children become active nodes. By then forcing the variable ordering
to follow the tree-decomposition the components that will appear during search can be
determined before the search commences. This reduces the overhead of detecting and
caching components. The other advantage of computing a tree-decomposition prior to
search is that more expensive algorithms can be used that can better analyze how to
effectively decompose the COP.

We have specified our algorithms as using arbitrary variable orderings. When these
orderings are not following a fixed tree-decomposition detecting and caching compo-
nents during search is more expensive. However, such fully dynamic variable orderings
can yield small search trees. In [1] it was proved that for some problem instances fully
dynamic variables orderings can yield a super-polynomial speedup over variable order-
ings forced to follow any fixed tree-decomposition. Empirical evidence has also been
given that despite the higher overheads, search with decomposition can perform better
with dynamic variable orderings in COPs [15].

With the additional flexibility for variable ordering provided by our algorithm we
have found that a hybrid approach can be very effective. In this hybrid we compute
a tree-decomposition and try to follow it. However, we allow the algorithm to deviate
from the ordering dictated by the tree-decomposition if an alternative variable looks
particularly promising. In particular, using a heuristic to score the variables, we impose
an additional penalty on any variable that would violate the ordering imposed by the
tree-decomposition. However, if that variable’s heuristic score (measuring the merit of
branching on it next) is high enough it can overcome the penalty and cause the search
to make a different decision than that dictated by the tree-decomposition.

6 Experimental Results

We implemented the three algorithm described above. We have additionally added lo-
cal propagation to these algorithms, and for Alg. 2 and Alg. 3 we include caching
of previously solved components. We have tested these algorithms on both weighted-
CSP (wCSP) problems and Most Probable Explanation (MPE) problems from Bayesian
networks.

The following specific versions of these algorithms were tested: (1) BB which is
Alg. 1 with FDAC local propagation implemented in the state-of-the-art solver Tool-
bar [3]; (2) AND/OR which is Alg. 2 with FDAC local propagation using a variable
ordering that follows a fixed tree-decomposition; (3) OR-Decomp+T which is our
Alg. 3 with FDAC local propagation using a variable ordering that follows a fixed
tree-decomposition; (4) OR-Decomp+D which is Alg. 3 with FDAC local propaga-
tion using a heuristically guided dynamic variable ordering; and (5) OR-Decomp+G
which is Alg. 3 with FDAC local propagation using a hybrid variable ordering that fol-
lows a fixed tree-decomposition but can opportunistically branch on other variables if
they have high enough heuristic score. It should be noted that although OR-Decomp+T

Exploiting Decomposition in Constraint Optimization Problems 489

follows a fixed tree-decomposition it still has more flexibility in its variable ordering
than AND/OR following a fixed tree-decomposition. This added flexibility arises from
the fact that OR-Decomp+T can branch on a variable from any active node of the tree
decomposition, AND/OR search on the other hand must commit to a particular node
n of the tree-decomposition and branch on all variables in the subtree below n before
being able to branch on any variable in the labels of n’s siblings.

The heuristic score used for in the variable ordering decisions2 is the an adaptation of
the Jerslow heuristic that has previously been used for solving COPs [3]. Previous work
has found that this heuristic tends to be more effective than simpler heuristics based
on domain size or variable degree. Intuitively, in COPs this heuristic considers both
the variable’s domain size and the average cost of the objective functions the variable
appears in.

All algorithms utilized a value ordering determined by the unary objectives used dur-
ing local propagation. That is, the values for variable Vi were ordered by lowest unary
cost oi(Vi). For those algorithms that utilized a tree decomposition, these decompo-
sitions were computed using a min-fill algorithm [11]. The AND/OR search ordered
its components so as to solve the largest component first. All experiments were run
with 600 second timeouts, and were conducted on 2.66GHx machines with 8GB of
memory. In our experiments we found that the space used in caching never exceeded
available memory, so we did not have to prune the cache during search. The following
four benchmarks were tested.

The Radio Link Frequency Assignment Problem (RLFAP) assigns frequencies
to a set of radio links in such a way that all the links may operate together without
noticeable interference. The RLFAP instances were cast as binary wCSP’s [5]. The
benchmark family includes 6 problems.

The Earth Observing Satellites (SPOT5) problems select from a set of candidate
photographs a subset such that some imperative constraints are satisfied and the total
importance of the selected photographs is maximized. The problems have been formu-
lated as wCSP’s with binary and ternary constraints in the SPOT5 benchmark [2]. The
benchmark family consists of 20 problems.

The GridNetworks (Grid) problems involve computing the setting of the variables
in a Bayes Net that have maximum probability (an MPE problem). The net is a N ×N
grid with CPT’s that have been filled with values that were either randomly (uniformly)
chosen from the interval (0,1) or were randomly assigned 0 or 1. The problem instances
have N ranging between 10 and 38, with 90% of the CPTs entries were 0 or 1 [17]. The
benchmark family consists of 13 problems.

ISCAS-89 circuits are a benchmark used in formal verification and diagnosis. The
problem set has been converted into n-ary wCSPs [4]. The benchmark family consists
of 10 problems.

Table 1 summarizes the number of problems solved by the various algorithms form
the various benchmarks. Of the 49 total problem instances BB solved 22 problems
across the four benchmarks; AND/OR solved 22 problems; OR-BBDecomp+T solved

2 Even in those algorithms where the variable ordering must follow a fixed tree-decomposition
there are typically a range of variables in the active nodes that can be branched on; the choice
of which of these variable to branch on next is determined by the heuristic score.

490 M. Kitching and F. Bacchus

Table 1. Number of Problems Solved (600 second timeout)

Benchmark RLFAP (6) Spot5 (20) Grids (13) Iscas89 (10) Total (49)
BB 5 4 4 9 22

AND/OR 5 5 3 9 22

OR-Decomp+T 5 5 3 10 23

OR-Decomp+D 5 4 4 9 22

OR-Decomp+G 5 5 4 10 24

Table 2. RLFAP Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
CELAR6-SUB0 0.16 0.03 0.21 0.33 0.21

CELAR6-SUB1-24 2.64 13.2 8.27 2.95 3.35

CELAR6-SUB1 41.3 94.96 57.14 43.42 55.16

CELAR6-SUB2 15.42 101.21 135.19 16.15 16.2

CELAR6-SUB3 239.65 446.28 430.98 222.67 228.61

Table 3. Spot5 Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
1502 0.05 0.02 0.06 0.04 0.06

29 1.66 0.01 0.04 0.03 0.03

404 89.18 0.7 1.2 1.49 1.83

54 0.18 0.01 0.02 0.04 0.03

503 Timeout 0.23 1.19 Timeout 40.19

23 problems, showing an improvement by dtrack over standard AND/OR search; and
OR-BBDecomp+G solved the most problems at 24.

The RLFAP instances have small tree-width that can be calculated quickly. Hence
decomposition techniques offer a much lower theoretical time bounds than standard
branch and bound search. However, we found that many of the instances benefit more
from added flexibility in variable ordering than from decomposition.

In particular, as shown in Table 2 BB, OR-Decomp+D, and OR-Decomp+G all
perform well on these benchmarks, since they allow for the largest variable ordering
freedom. AND/OR and OR-Decomp+T both perform poorly on the benchmarks, al-
though OR-Decomp+T took less total time to solve all instances since it allows more
freedom of variable selection than AND/OR.

The Spot5 instances shown in Table 3 are solved efficiently by algorithms exploit-
ing decomposition. For example, BB and OR-Decomp+D could not solve one of the
instances that was solved by all other approaches. Although OR-Decomp+D can de-
compose problems, the problem does not decompose quickly unless a tree decompo-
sition is used to guide search toward decompositions. AND/OR, OR-Decomp+T, and
OR-Decomp+G all used decomposition effectively on the Spot5 instances.

Exploiting Decomposition in Constraint Optimization Problems 491

Table 4. Grid Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
90-10-1 0 1.01 0.85 0.03 0.06

90-14-1 0.02 17.74 1.74 0.12 0.26

90-16-1 0.23 364.07 89.93 1.08 4.45

90-24-1 455.11 Timeout Timeout 3.26 10.82

Table 5. ISCAS’89 Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
c432 0.23 0.13 129.76 0.58 5.17

c499 0.09 0.09 0.23 0.39 0.43

c880 0.3 0.28 0.82 1.33 1.54

s1196 0.13 0.13 256.03 0.57 0.65

s1238 0.11 0.12 0.5 0.55 0.63

s1423 1.64 1 3.23 0.89 1.04

s1488 0.17 0.16 0.53 0.88 1.01

s1494 Timeout 0.16 0.51 Timeout 1.0

s386 3.38 0.01 0.36 12.39 0.06

s953 0.09 Timeout 0.05 3.38 1.07

Table 6. Number of instances solved (600 second timeout)

Benchmark RLFAP Spot5 Grids Iscas89 Total
OR-Decomp+G 5 5 4 10 24

BF 0 5 8 10 23

The Grid problems also benefit greatly from flexibility in variable ordering. OR-
Decomp+D and OR-Decomp+G are both extremely effective since they exploit de-
composition in the problem while still allowing complete dynamic variable ordering.
Neither AND/OR nor OR-Decomp+T could solve instance 90-24-1.

ISCAS’89 instance also benefit from more flexible variable ordering, but decompo-
sition is also effective. The two algorithms that solved the most ISCAS’89 instances are
OR-Decomp+T and OR-Decomp+G. OR-Decomp+T could solve one instance not
solved by AND/OR.

Finally, we compared OR-Decomp+G with Best First search using static mini buck-
ets (BF) [16]. This algorithm explores an AND/OR tree, but does so in a best first
manner rather than in a depth-first manner. Thus it can need considerably more space,
which unlike caching is required for correctness. So we see, e.g., that it could not solve
any of the RLFAP problems due to its space requirements. However, it was also able to
solve some problems not solvable by OR-Decomp. It is difficult to assess the cause of
this difference however, since the bounding technique of mini-buckets is quite distinct
from the bounding technique of local propagation. Thus it is hard to say if these results
(except for the RFLAP results) are due to better bounding or due to the differences in
the search used by the algorithms.

492 M. Kitching and F. Bacchus

7 Conclusions and Future Work

Constraint Optimization Problems can benefit greatly from both dynamic variable or-
dering and decomposition. Unfortunately the recursive nature of current decomposition
techniques forces search to solve only one active component at a time. In this paper, we
have introduced a novel search method that is able to exploit decomposition while at
the same time allowing complete freedom to branch on any unassigned variable of any
active component. We also introduced a new variable ordering algorithm which guides
search toward decomposition, but still allows for the flexibility to choose any variable.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and Complexity Results for #SAT and
Bayesian Inference. In: 44th Symposium on Foundations of Computer Science (FOCS), pp.
340–351 (2003)

2. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management. Con-
straints 4(3), 293–299 (1999)

3. Bouveret, S., de Givry, S., Heras, F., Larrosa, J., Rollon, E., Sanchez, M., Schiex, T., Verfail-
lie, G., Zytnicki, M.M.: Max-csp competition 2007. In: Proceedings of the Second Interna-
tional CSP Solver Competition, pp. 19–21 (2008)

4. Brglez, F., Bryan, D., Kozminski, K.: Combinatorial Profiles of Sequential Benchmark Cir-
cuits. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp.
1229–1234. IEEE, Los Alamitos (1989)

5. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency assignment.
Constraints 4(1), 79–89 (1999)

6. Cooper, M., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proceedings of the
International Joint Conference on Artifical Intelligence (IJCAI), pp. 68–73 (2007)

7. Darwiche, A.: Recursive conditioning. Artif. Intell. 126(1-2), 5–41 (2001)
8. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft Local Con-

sistency in Weighted CSP. In: AAAI, pp. 22–27 (2006)
9. Jégou, P., Ndiaye, S., Terrioux, C.: Dynamic heuristics for backtrack search on tree-

decomposition of csps. In: IJCAI, pp. 112–117 (2007)
10. Kitching, M., Bacchus, F.: Symmetric component caching. In: IJCAI, pp. 118–124 (2007)
11. Kjaerulff, U.: Triangulation of graphs - algorithms giving small total state space, Technical

Report R90-09. Technical report, Department of Computer Science, University of Aalborg
(March 1990)

12. Larrosa, J., Meseguer, P., Sánchez, M.: Pseudo-tree search with soft constraints. In: ECAI,
pp. 131–135 (2002)

13. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc consistency. Artificial Intel-
ligence 159(1-2), 1–26 (2004)

14. Marinescu, R., Dechter, R.: And/or branch-and-bound for graphical models. In: IJCAI, pp.
224–229 (2005)

15. Marinescu, R., Dechter, R.: Dynamic orderings for and/or branch-and-bound search in graph-
ical models. In: ECAI, pp. 138–142 (2006)

16. Marinescu, R., Dechter, R.: Best-first and/or search for graphical models. In: Proceedings of
the AAAI National Conference (AAAI), pp. 1171–1176 (2007)

17. Sang, T., Beame, P., Kautz, H.: Performing bayesian inference by weighted model counting.
In: AAAI, pp. 475–482 (2005)

	Exploiting Decomposition in Constraint Optimization Problems
	Introduction
	Background
	Decomposition without Separate Recursions
	Local Propagation
	Tree Decompositions
	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

