
Generalizing GraphPlan by Formulating Planning as a CSP

Adriana Lopez
Dept. of Computer Science

University of Toronto
Toronto, Ontario

Canada, M5S 3G4
alopez@cs.toronto.edu

Fahiem Bacchus
Dept. Of Computer Science

University of Toronto
Toronto, Ontario

Canada, M5S 3G4
fbacchus@cs.toronto.edu

Abstract
We examine the approach of encoding planning
problems as CSPs more closely. First we present
a simple CSP encoding for planning problems and
then a set of transformations that can be used to
eliminate variables and add new constraints to the
encoding. We show that our transformations un-
cover additional structure in the planning problem,
structure that subsumes the structure uncovered by
GRAPHPLAN planning graphs. We solve the CSP
encoded planning problem by using standard CSP
algorithms. Empirical evidence is presented to val-
idate the effectiveness of this approach to solving
planning problems, and to show that even a pro-
totype implementation is more effective than stan-
dard GRAPHPLAN . Our prototype is even compet-
itive with far more optimized planning graph based
implementations. We also demonstrate that this ap-
proach can be more easily lifted to more complex
types of planning than can planning graphs. In par-
ticular, we show that the approach can be easily ex-
tended to planning with resources.

1 Introduction
A powerful technique for solving planning problems, first
used in[Kautz and Selman, 1996], is to impose a fixed bound
on plan length. This converts the problem to one that lies
in NP. The resulting problem can then be solved by encod-
ing it in any of a number of alternative NP-complete for-
malisms, e.g., SAT[Kautz and Selman, 1996], integer pro-
gramming[Vossenet al., 2001], or constraint satisfaction
problems(CSPs)[van Beek and Chen, 1999; Do and Kamb-
hampati, 2001], and then using the powerful algorithms that
have been designed to solve these general problems.

In this paper we examine the approach of encoding plan-
ning problems as CSPs more closely. We use a very simple
encoding to translate the planning problem into a CSP. The
advantage of using CSPs in general, and our encoding in par-
ticular, is that it preserves much of the structure of the original
planning problem, and thus various transformations that uti-
lize this specific structure can be applied to create a new CSP
that is easier to solve.

The utility of exploiting planning specific structure has
been convincingly demonstrated by the BLACK BOX [Kautz

and Selman, 1998] and GP-CSP [Do and Kambhampati,
2001] planners. These systems encode a transformed repre-
sentation of the planning problem called theplanning graph
to SAT and CSP respectively. The planning graph is a plan-
ning specific construction, due to[Blum and Furst, 1997], that
computes and represents some important additional structural
information about the planning problem. Thus by encoding
the planning graph rather than the original planning problem,
BLACK BOX and GP-CSP are able to capture more of the
structure of the planning problem in their encoding, which
results in a significant improvement in performance.

In our approach we bypass the construction of a planning
graph. Instead, we study techniques that can equally well
exploit the structure of the planning problem and at the same
time work directly on the CSP encoding. We demonstrate
that it is possible to develop transformations that uncoverall
of the additional structure obtained from planning graphs.

The advantage of our approach is that it works directly on
a much richer and more robust representation. Consequently
we obtain at least three important advances over the planning
graph construction: (1) Our approach allows us togeneral-
ize planning graphs. In particular, we can enhance our ap-
proach to extract other kinds of structure to allow us to solve
the planning problem more efficiently. (2) We can more eas-
ily extend our approach to morecomplex types of planning
problems, e.g., those involving resource usage. (3) Since the
final result is a CSP we canautomatically utilize CSP solu-
tion techniqueswhich can be more powerful than standard
GRAPHPLAN searching methods. In the paper we will pro-
vide evidence for all of these points.

First, we present our CSP encoding of a planning problem.
Then we present a set of transformations that can be used to
eliminate variables and add new constraints to the encoding,
and show that these transformations subsume and generalize
planning graphs. Then we present empirical evidence to val-
idate the effectiveness of our approach to solving planning
problems. To demonstrate that our approach can be more eas-
ily lifted to more complex types of planning, we show how it
can be easily extended to planning with resources. Finally we
close with some conclusions and a description of future work.

2 Generating theBASE-CSP

To encode a planning problem as a CSP we impose a bound
k on the “size” of the plan. In this paper we will measure



plan size by the number of GraphPlan-concurrent steps (GP-
steps) in the plan. It will become apparent in the sequel what
GP-steps means.

In k GP-steps each proposition or action can change at
mostk times. So to encode ak GP-step plan in a CSP we
can utilizek + 1 sets of propositional variablesP s

i , andk
sets of action variablesAs

j , wheres ranges from 0 tok for
propositions and 0 tok − 1 for actions, andi and j range
over the number of distinct propositions and action instances
in the planning problem respectively. Each of these variables
will be boolean. Intuitively,P s

i means that propositionPi is
true at GraphPlan steps, andAs

j means that action instance
Aj was executed at GraphPlan steps (¬P s

i and¬As
j denote

the opposite).
Clearly by setting each of these variables we can capture

any k GP-step plan and its effects. However, many illegal
plans and nonsensical outcomes are also captured. We need
constraints to ensure that any solution to the CSP (i.e., any
setting of the variables that satisfies all of the constrains) is a
legal plan. There are various possible sets of constraints that
can serve our purpose. Here we present one particular set:
1. Unary initial state and goal constraints. The propositional
variables from step zero,P 0

i , and from stepk, P k
i are required

to have values compatible with the initial and goal states of
the planning problem.
2. Precondition constraints. An actionAs

j cannot be true
unless its precondition is satisfied. This gives the constraint
As

j → Pre(Aj)
s, wherePre(Aj)

s is Aj ’s precondition rela-
tive to GP-steps.
3. Successor state constraints. Implicit in classical planning
representations is the frame assumption: predicates not men-
tioned in the action’s description are unaffected by the action.
We can capture the effects of actions, including the implicit
non-effects in a number of different ways. Here we use Re-
iter’s formulation of successor state axioms[Reiter, 2001].
In particular, for each propositional variableP s

i at GP-steps
(s > 0) we have a constraint between it and the same propo-
sition at GP-steps−1. The constraint says thatP s

i is true if
and only if some action made it true, or it was previously true
and no action made it false. Thus the successor state axiom
constraints take the form:

P s
i ↔

∨

Aj∈Create(Pi)

As−1
j ∨

(

P s−1
i ∧

∧

Aj∈Delete(Pi)

¬As−1
j

)

,

whereCreate(Pi) andDelete(Pi) are the set of actions that
create and deletePi. It is easy to automatically generate a set
of successor state constraints from a set of STRIPSaction de-
scriptions. Additionally, by using successor state constraints
that mention additional propositions from steps−1, it is easy
to encode ADL [Pednault, 1989] operators as a set of succes-
sor state axioms.1

1Note that the successor state constraints do not encode the
action preconditions. These are encoded as separate constraints.
Thus, the only complication with ADL actions has to do with con-
ditional effects. IfPi is a conditional effect of actionAj , subject to
the conditionφ, the successor state constraint will have a disjunct
“As−1

j ∧ φs−1”. That is, P s
i will be true if Aj was executedand

conditionφ held at the previous step.

4. GP-Concurrency Constraints. The above successor state
axiom allows the unintended model in which we have two
actions at the same step, one creating a proposition and one
deleting it. To avoid such unintended solutions we must re-
strict concurrent actions in some way. The most natural way
is a serial constraint, which says that only one action variable
can be true at any step.2 Another type of constraint is one that
imposes GraphPlan concurrency. Basically it asserts that two
actions cannot be simultaneously true if they interfere with
each other. In this work we have chosen to use the GraphPlan
(GP) concurrency constraints.
5. Non-Null Steps Constraints. We impose the constraint that
for every steps at least one action variable should be true.
This blocks null steps in the plan, in contrast[Blum and Furst,
1997] and[Do and Kambhampati, 2001] both allow null plan
steps.

We will refer to this set of variables and constraints as
the BASE-CSP. Any solution to theBASE-CSP will contain
a setting of the action variables that comprises a valid GP-
concurrent plan. If theBASE-CSP has no solution then nok
GP-step plan exists for the problem.

3 Reduction of theBASE-CSP

Given aBASE-CSP representing ak-step planning problem
we can use various transformations to modify it, generatinga
new CSP that is empirically easier to solve, and that is equiv-
alent to theBASE-CSP in the sense that any solution to the
new CSP can easily be extended to a solution to the origi-
nal BASE-CSP. These transformations include inferring new
constraints that can be added to the CSP and eliminating var-
ious single valued variables. Our transformations are related
to the well known techniques of enforcing local consistency
on a CSP prior to solving it[Freuder, 1985], however they are
based on taking advantage of the specific logical form of the
above set of constraints.

3.1 Adding GraphPlan Mutex Constraints
A well known technique for making CSPs easier to solve is to
add redundant constraints, e.g.,[Getooret al., 1997], which
are constraints that make explicit additional relations between
the variables. Redundant constraints that are useful to addare
usually determined by examining the structure of the partic-
ular CSP. This is precisely what is done in planning graphs,
where insights into the manner in which actions and propo-
sitions interact, are used to generate a new set of binary con-
straints called mutexes.

New binary constraints can be added to a CSP by enforcing
2-j consistency[Freuder, 1985]. A CSP is2-j consistentif
for every valid assignment to a pair of variables, there is a set
of values for everyj additional variables such that the2+j
assignments satisfy all of the constraints over these variables.
Making a CSP 2-j consistent can be very expensive as it in-
volves testing all sets of2+j variables, and each test in the
worst case takes time exponential inj. In planning problems
there can be thousands of variables, so it would be impossible

2Serial actions can be used to represent true concurrency by
adding timestamps to the states[Bacchus and Ady, 2001; Pirri and
Reiter, 2000].



to make the entireBASE-CSP2-j consistent even for smallj.
The contribution of GRAPHPLAN is that it demonstrated a
technique that quickly achieves a very effective partial form
of 2-j consistency over a limited collection of2+j variables.

We can use the CSP representation to directly compute the
binary mutex constraints generated by planning graphs. In
this manner we lift the mutex computation to a more general
framework where it can be more easily generalized.

Mutexes in GraphPlan are generated by three simple rules:
(1) Base Action Mutexes.Actions in the same GP-step with
interfering effects and preconditions are mutex. (2)Addi-
tional Action Mutexes.Two actions in the same GP-step are
mutex if there is a pair of propositions, one from each action’s
preconditions, that are mutex at this GP-step. (3)Proposi-
tional Mutexes.Two propositions,P s

i andP s
j , at the same

GP-step, are mutex if every action that achievesP s
i is mutex

with every action that achievesP s
j . We can create all of these

binary constraints by testing for very similar conditions in the
CSP encoded planning problem:

Base Action Mutexes. These mutexes are already present
in theBASE-CSP; they are the GP-concurrency constraints.

Additional Action Mutexes. The GRAPHPLAN condition
for detecting additional action mutexes only handles actions
with conjunctive preconditions, e.g., STRIPSactions. Thus if
we have a pair of preconditionsP s

i for As
i andP s

j for As
j ,

the corresponding precondition constraintsAs
i → P s

i and
As

j → P s
j , and a mutex constraint¬P s

i ∨ ¬P
s
j , a simple

2-2 consistency test with these variables and constraints al-
lows us to derive the new mutex constraint¬As

i ∨ ¬A
s
j . In

fact, we can short-circuit this test by using the presence ofthe
mutex constraint betweenP s

i andP s
j to immediately mark all

actions with preconditionP s
i as being mutex with all actions

with preconditionP s
j . Furthermore, if an actionAs

k contains
bothP s

i andP s
j in its precondition we obtain the constraint

¬As
k ∨ ¬A

s
k, i.e., we obtain a unary constraint that forcesAs

k

to be false. As we will describe below, single valued variables
can be used to further reduce the CSP. A similar approach can
be followed with more general types of preconditions using
more general local consistency tests, e.g., with ADL actions
where the GRAPHPLAN test is no longer valid.

Propositional Mutexes. For propositional mutexes we
have one added complication, which is that our encoding, un-
like planning graphs, does not utilize no-ops. Nevertheless, a
general condition for when two propositionsP s

i andP s
j are

mutex can be given by examining the three cases.

1. ¬P s−1
i ∧ ¬P s−1

j holds. In this case forP s
i andP s

j both
to be true in the next state they must both be created by
an action. In particular, neither proposition can remain
true by inertia. For a mutex betweenP s

i andP s
j to hold

we must have for every actionAs−1
i creatingP s

i that
¬As−1

i ∨
∧

Aj∈Create(Pj)(A
s−1
i → ¬As−1

j ). That is,
either the action is not possible, or it must be mutex with

all actions that createP s
j .3 A similar condition must be

satisfied by the actions creatingP s
i .

2. ¬P s−1
i ∧P s−1

j (or analogouslyP s−1
i ∧¬P s−1

j ) holds. In
this case for bothP s

i andP s
j to holdP s

i must be created
by an action. For the mutex to hold we must have for
every actionAs−1

i creatingP s
i that¬As−1

i ∨ (As−1
i →

¬P s
j ). That is, either the action is not possible or it must

deleteP s
j (elseP s

j can be true by inertia).

3. P s−1
i ∧P s−1

j holds. In this case we must have for every
actionAs−1 that¬As−1∨(As−1 → ¬P s−1

i )∨(As−1 →

¬P s−1
j ). That is, either the action is not possible, or

it must delete at least one ofPi or Pj . Note that this
condition relies on the fact that at least one action must
be executed at every step (the non-null steps constraint).

As in planning graphs, We can use the constraints added
at stepi to test for new mutex constraints at stepi+1. The
following result can then be easily proved (we omit the proof
for reasons of brevity).

Proposition 1 If the planning graph construction has de-
tected a mutex constraint between two variablesV s

i andV s
j

(action or propositional variables), then after transforming
the BASE-CSP to add the above mutex constraints we will
have that either (a) both variables in the CSP will have be-
come single valued with not both being true or (b) there will
be a binary constraint in the CSP between these variables
that prohibits them from both being true.

That is, the transformed CSP will capture all of the planning
graph mutexes. Furthermore, it might containmore mutexes
than those inferred by the planning graph. In the simplest case
this can arise from the last case presented above where every
action deletes one ofPi or Pj . This can create a new mutex
in the middle of the plan. In planning graphs, on the other
hand, oncePi andPj appear in the graph without a mutex
between them, they can never become mutex again (due to
the presence of no-ops and the possibility of null steps in the
plan).

3.2 Symbolic Reduction of Single Valued Variables
In any CSPP , if P has a variableV with only a single
valuea in its domain, we can reduceP by making the as-
signmentV ← a, to produce a new CSPP ′ that does not
contain the variableV . P ′ has the property that for any so-
lution S of P ′, S ∪ {V ← a} is a solution to the original
P . To reduceP , we replace every constraint mentioningV ,
e.g., C(V, V1, . . . , Vk) by a new constraintC′(V1, . . . , Vk)
such thatC′(V1 ← x1, . . . , Vk ← xk) is true of a tuple of
assignments(x1, . . . , xk) if and only if C(V ← a, V1 ←
x1, . . . , Vk ← xk) is true.

Our translation from a planning problem produces aBASE-
CSP in which every constraintC is representedsymboli-
cally by a logical formula. We can simplify this logical for-
mula directly by replacing the single valued variableV by its
value, and then performing standard logical reductions, e.g.,

3Note that ifAs−1

i deletesP s
j then it will be mutex with all ac-

tions creatingP s
j via the GP-concurrency constraints.



FALSE∧α⇒ FALSE, FALSE∨α⇒ α, etc. This yields a new
logical formula that represents the reduced constraintC′.

In the case of theBASE-CSP we also know the form of
its different constraints. This allows us to precompute many
types of constraint reductions, so we can realize many types
of single valued variable reductions more efficiently.

The reduction of a single valued variable, or the applica-
tion of some of the other transformations described below,
might generate new single valued variables that can in turn
be reduced. It can also interact with the generation of mutex
constraints, allowing new mutexes to be detected. For exam-
ple, say that we have determined that a propositional variable
P s

j must be false. IfP s
j appears in any conjunctive precon-

ditions, e.g.,As
j → P s

j , we will also immediately infer¬As
j ,

i.e., thatAs
j has also become single valued (false). WithAs

j

false it can no longer be a candidate for producing some other
propositionP s+1

i , and we could possibly infer a new mutex
involving P s+1

i since one of the ways of making it true is
now blocked. With mutexes, single valued variable reduction
subsumes reachability analysis of planning graphs.

Proposition 2 The variables that remain in the CSP after
single valued variables have been reduced, are a subset of
the variables appearing in the planning graph.

4 Beyond GRAPHPLAN

Besides subsuming, and slightly generalizing, the planning
graph inferences, further transformations can be utilizedon
the CSP. These transformations either add more constraintsto
the CSP or cause further variables to become single valued.
In either case, like the planning graph inferences, they are
used to make the CSP easier to solve. These additional con-
straints can also feed into the standard GraphPlan reductions
described above, and thus generate even further mutexes.

4.1 Additional Binary Constraints
Graphplan mutexes only prohibit the single pair of values
for two variables(TRUE, TRUE). Our representation treats
negated propositions and actions in an entirely symmetric
fashion. This means that the analysis for mutexes given above
will allow us to compute mutexes between any two values.
For example,when applied toP s

i and¬P s
j , P s

i being mutex
with ¬P s

j means thatP s
i is “mutin” with P s

j ; i.e., these vari-
ables must both be true or both be false. Such binary con-
straints can be detected and added to theBASE-CSP.

4.2 Single Valued Variable Reduction beyond
GRAPHPLAN Reachability

As demonstrated above, single valued variable reduction isas
powerful as the reachability analysis inherent in the planning
graph construction. However, in the CSP encoding it is more
powerful, obtaining, for example, the following additional re-
ductions:

1. Propositions that are never modified by any action, are
propagated without change in the planning graph. Since
these propositions have no creators nor deletors, their
successor state axiom reduces all of them to being equiv-
alent to their status in the initial state, i.e., they will all

become single valued. Thus they can be reduced from
the CSP prior to searching for a solution.

2. If all possible actions at steps create propositionP s+1
i

thenP s+1
i is forced to be true. Similarly if it is deleted

by all possible actions then it is forced to be false.P s+1
i

can then be reduced from the CSP. This particular reduc-
tion is not possible in planning graphs due to the pres-
ence of no-ops.

3. Variables that are forced to be true further reduce all
variables that are mutex with them to be false. This
does not help reduce a planning graph since in planning
graphs mutexes are monotonically decreasing and, other
than the initial state variables, variables are never forced
to be true.4 But in the CSP encoding the previous rules
for forcing a variable to be true, and for creating a new
mutex when it did not exist at the previous step, enable
additional single valued variable reductions.

4.3 Sequence Constraints
There are some additional constraints that can be imposed on
plans to rule out obvious inefficiencies. For example, it never
makes sense in the plan to immediately follow an action by
its inverse (e.g., a load followed by an unload). Adding this
constraint allows eliminating different invalid combinations
of actions by making mutex any inverse pairs of actions at
consecutive time steps.

Blocking the immediate sequencing of inverse actions also
allows us to infer additional sequence constraints. Say that
actionsAi andAj are inverses of each other, and thatAi is
the only action that producesPk while Aj is the only action
that deletes it. Then another constraint that can be inferred
from the mutex betweenAs

i andAs+1
j is that whenPk first

becomes true, it must remain true for at least one more time
step:

¬P s
k ∧ P s+1

k → P s+2
k .

There is also a similar constraint for whenPk first becomes
false.

Our system automatically detects action pairs that are in-
verses of each other as well as any predicates over which a
sequence constraint can be imposed.

5 CSP-PLAN : Implementation
Based on the transformations explained before, we have de-
veloped a planner called CSP-PLAN that will find a solution
to a planning problem. CSP-PLAN builds theBASE-CSP in-
crementally up to steps (beginning withs = 1), and then
sends it to a CSP Solver for its solution. If the solver reports
no solution to it, then theBASE-CSP is constructed fors+1.
This cycle can continue until some termination condition has
been reached or a plan has been found. It is important to
notice CSP-PLAN solves these problems incrementally, thus
ensuring that it finds a GP-step optimal plan.

The CSP solver used by CSP-PLAN is EFC[Katsirelos and
Bacchus, 2001] which allows the use of different techniques

4This means that the variable that is mutex with the true variable
never appears in the planning graph until the mutex no longerholds.



Problem GAC GACCBJ GACvsCBJ RecordNoGoods
Bw-large-12 0.46 0.10 0.10 0.11
Bw-large-a 1.44 0.49 0.49 0.50
Rocket-a 21.66 13.74 14.01 10.67
Rocket-b 5.26 4.44 4.48 3.39
DriverLog2 59.13 21.09 21.28 10.38
DriverLog3 0.42 0.23 0.23 0.15
DriverLog4 71.13 29.96 29.96 16.54
DriverLog5 139.98 62.98 63.65 29.59
DriverLog6 0.06 0.05 0.06 0.06

Table 1: Effect of changing the search algorithm on the per-
formance of the CSP solver for planning problems. Experi-
ments were run using the standard CSP heuristic dom+deg.

to solve a CSP problem, including: the ability to create and
use tailored heuristics for dynamic variable ordering (DVO),
the use of different state of the art CSP algorithms and a novel
method to record nogoods. CSP-PLAN uses these methods as
follows to efficiently solve general planning problems:
DVO: CSP-PLAN uses a dynamic variable ordering heuristic
called BSEARCH, specially tailored for planning problems.
This heuristic instantiates first the variables that propagate the
most changes in the domain.
Search Algorithm: The CSP algorithm uses a version of
GAC propagation[Bacchus, 2000] during backtracking along
with nogood recording. In addition, for each constraint with
an arity higher than 2, special purpose propagators were de-
veloped to increase the efficiency of GAC. It can be noted that
although nogood recording is a generic CSP technique, in the
form implemented it is strictly more general than the mem-
oization of bad goal agendas described in[Blum and Furst,
1997].

6 Experimental Results
To test the performance of CSP-PLAN , we used STRIPSprob-
lems from IPC2 and IPC3 (International Planning Competi-
tion 2000/2002). All experiments run on a Xeon 2.40GHz
machine with 400MB of RAM. Times are in CPU seconds.

6.1 Effect of CSP techniques on CSP-PLAN

Table 1 shows the effect of a few different CSP algorithms
on the performance of CSP-PLAN on some representative
problems (using a standard CSP variable ordering heuris-
tic dom+deg).5 We can see that GACCBJ and GACvsCBJ6

perform over 2 times faster than plain GAC. GACCBJ and
GACvsCBJ have comparable results on these problems, but
we found that GACvsCBJ performed better on more com-
plex problems, e.g., for Gripper-04, GACvsCBJ finds a plan
in 877 secs while GACCBJ required 1,133 secs. The table
also shows that nogood recording yields another factor of
almost 2 improvement over GACvsCBJ. Hence, we choose
GACvsCBJ+RecordNoGood as our default CSP search algo-
rithm.

6.2 Effect of planning specific techniques
Some of the CSP simplification techniques explained in this
article use planning related information, e.g, planning specific

5Other CSP algorithms were experimented with, but they did not
provide adequate performance.

6GACvsCBJ is described in[Bacchus, 2000].

Problem dom+deg BSEARCH
Bw-large-12 0.10 0.08
Bw-large-a 0.51 0.56
Rocket-a 10.65 0.54
Rocket-b 3.38 1.24
DriverLog2 10.38 0.46
DriverLog3 0.15 0.03
DriverLog4 16.54 0.19
DriverLog5 24.59 0.17
DriverLog6 0.06 0.01

Table 2: Effect of changing the DVO heuristic on the perfor-
mance of the CSP solver for planning problems. Experiments
were run using GACvsCBJ+RecordNoGoods

Problem No redundant Inverse Sequence
constraints mutexes constraints

Log-a 0.06 0.09 0.06
Log-b 16.14 15.17 213.50
Rocket-a 1.41 1.48 1.31
Rocket-b 1.85 1.77 2.15
Gripper-01 0.12 0.06 0.10
Gripper-02 17.11 13.20 17.01

Table 3: Effect of adding mutexes between inverse actions
and sequence constraints to theBASE-CSP.

DVO heuristics, the addition of redundant constraints, there-
moval of single valued variables, etc. The addition of redun-
dant binary constraints, particularly mutexes, and the detec-
tion and removal of single valued variables has a clear and
dramatic effect on the efficiency of CSP-PLAN , even for sim-
ple problems. For example, on bw-large-12, theBASE-CSP
has 1,289 variables and 10,426 constraints, but only 657 vari-
ables and 2,847 constraints after single valued variables are
removed. Similarly, without the inferred mutex constraints
and the removal of single valued variables, CSP-PLAN re-
quired 154.3 sec. to solve the problem. Adding the mutex
constraints reduced this time down to 0.33 sec, and removing
single valued variables brought the time down even further to
0.04 secs. The effect of some of the other planning specific
techniques is described below.
DVO heuristic: The order in which variables are instanti-
ated during search greatly affects the solution times for a
CSP. Table 2 shows the difference in performance between
the standard CSP heuristic dom+deg, and our BSEARCH
heuristic which was designed specifically to take advantage
of the planning based structure of the CSPs that CSP-PLAN is
solving. These representative problems show that BSEARCH
performs much better than dom+deg.
Redundant Constraints: Table 3 shows the performance of
CSP-PLAN when mutexes between inverse actions and se-
quence constraints are added to theBASE-CSP. On these
problems we see that there is a slight improvement in CSP-
PLAN when mutexes between inverse actions are present. In-
terestingly, adding sequence constraints did not help. Minor
improvements on some problems were negated by significant
degradation on others.

6.3 Comparison with similar approaches
The results in Table 4 show how CSP-PLAN (using the same
setting for all problems)7 compares with GRAPHPLAN [Blum

7A number of planning domains could be solved faster with dif-
ferent settings; e.g., the heuristics sometimes performeddifferently



Problem CSP-PLAN GRAPHPLAN GP-CSP BLACK BOX IPP(4.1)
Bw-large-a 0.18 0.21 0.63 0.23 0.06
Bw-large-b 15.18 19.53 106.00 17.50 2.84
Gripper-02 15.36 2.17 62.00 1.87 0.10
Gripper-03 1,328.63 135.00 > 3 hrs. 2,485.00 1.08
Log-a 0.05 1,733.00 47.75 5.50 165.20
Log-b 14.87 675.00 143.00 5.72 120.64
Rocket-a 1.51 46.46 40.50 5.44 5.96
Rocket-b 1.79 128.00 22.68 5.57 21.10
Depots3 11.03 2.41 15.75 2.36 0.22
Depots4 4.59 3.80 82.00 3.72 0.44
DriverLog8 0.78 16.05 0.38 5.70 2.67
DriverLog9 28.99 270.00 90.00 6.27 6.50
DriverLog10 77.75 123.00 22.23 7.89 11.08
ZenoTravel6 0.24 0.64 0.55 0.43 CNP
ZenoTravel7 0.18 0.67 0.61 0.44 CNP
ZenoTravel8 0.52 1.40 1.24 0.90 CNP
ZenoTravel9 37.16 4.84 4.10 3.40 CNP
ZenoTravel10 3.55 9,228.00 28.53 7.52 CNP
Satellite3 0.13 0.23 0.20 0.23 0.04
Satellite4 5.08 271.00 77.02 6.26 4.83
Satellite5 262.72 9,256.00 5,759.00 6.49 175.27
Freecell1 0.10 14.24 183.00 12.90 0.88

Table 4: Comparison of CSP-PLAN with GRAPHPLAN , GP-
CSP, BLACK BOX and IPP on a set of problems from the
STRIPS domain. “CNP” means could not parse. Lowest
times are in bold.

and Furst, 1997], GP-CSP [Do and Kambhampati, 2001],
BLACK BOX [Kautz and Selman, 1998] and IPP4.1[Koehler
et al., 1997]. These planners have in common the construc-
tion of a planning graph. The planning graph is either then
compiled into a CSP (GP-CSP) or a SAT formula (BLACK -
BOX), or searched directly for a solution (GRAPHPLAN and
IPP 4.1). CSP-PLAN , on the other hand, bypasses the plan-
ning graph construction and directly exploits the CSP encod-
ing of the problem as explained above.

It can be seen that CSP-PLAN yields significantly better
performance in almost all cases over the standard planning
graph planners GRAPHPLAN and GP-CSP. This provides
evidence of the effectiveness of the additional constraints
and reductions computed by CSP-PLAN . The results against
BLACK BOX are mixed. This version of BLACK BOX utilizes
the highly engineered Zchaff[Moskewiczet al., 2001] SAT
solver. Zchaff utilizes very different heuristics and techniques
for learning nogoods (clauses) than CSP-PLAN and is more
efficient that our current CSP code on larger problems. Nev-
ertheless, there is considerable scope for making our CSP-
PLAN implementation more efficient, and our heuristics are
at this stage very simple. Even so, our approach demonstrates
its usefulness on problems like gripper.

Similarly against IPP our results are mixed. A key com-
ponent of IPP is a method for solving planning problems by
dividing them into a set of smaller problems using a goal
agenda[Koehler, 1998b]. This technique is particularly effec-
tive on domains like BlocksWorld, Depots and Gripper, and
it can easily be recast in terms of CSPs. Hence, CSP-PLAN
could be extended to utilize this technique. On other domains
like logistics CSP-PLAN is more effective. This is due partic-
ularly to the presence of mutexes between inverse actions in
these domains that can be effectively used by CSP-PLAN .

on different domains.

M IPSOpt. Level Time Steps Acts. Res.
1 3.52 110 175 11,761
3 7.09 102 178 11,505
5 28.02 108 197 13,130
7 80.44 105 221 10,853
9 96.44 104 225 11,630
CSP-PLAN 774.86 75 194 11,345

Table 5: Effect of changing the optimization value for MIPS.
Each value in this table is the sum of the results for Driver-
Log1 to DriverLog10. “Res”: resource usage, “Steps”: num-
ber of GP-steps, and “Acts”: number of actions in the plan.

7 Extensions: Planning with Resources
A major advantage of encoding planning problems as CSPs
is that we can easily extend the encoding to represent more
complex planning problems. For example, planning prob-
lems with resources can simply be represented as CSPs with
numeric variables. To demonstrate the flexibility of our ap-
proach we implemented an extension of CSP-PLAN to deal
with such planning problems. Previous approaches based on
planning graphs (e.g.,[Koehler, 1998a]) have had to develop
from scratch methods for dealing with the resources variables
in the planning graph, like interval arithmetic and bounds
propagation. These techniques are already well known in the
CSP field.

To handle planning with resources we introduced the fol-
lowing into CSP-PLAN : (1) Mathematical operation con-
straints, e.g.,x = z + y; (2) comparison constraints, e.g.,
x > y; (3) precondition constraints containing comparisons,
e.g.,fuel(truck) > 0; (4) successor state constraints to define
how the numeric variables could change between states, e.g.,
if no action affecting it is true, its value cannot change; (5)
and finally, additional concurrency constraints to block ac-
tions from simultaneously altering a numeric variable. These
new constraints were very easy to add to theBASE-CSP, and
the reduction transformations described above were used al-
most unchanged to simplify theBASE-CSP.

We compared CSP-PLAN with M IPS [Edelkamp, 2002] 8

to evaluate its performance on resource planning problems.
M IPS combines two paradigms, model checking and heuris-
tic search, to find totally ordered plans that are then made
concurrent using a post-processing procedure. This combi-
nation of paradigms introduces additional complexity to the
algorithm, in contrast with the uniform paradigm used in our
approach. MIPS tries to minimize the number of steps in the
final plan, using an optimization parameter that ranges from
1 to 10. Table 5 shows this how parameter affects the qual-
ity of the final plans in MIPS. Increasing the parameter causes
M IPS to spend more time trying to find plans with fewer steps.
However, this search is not always successful. In fact MIPS
can spend more time and generate worse results. CSP-PLAN ,
on the other hand, is an optimal planner always finding the
shortest plan in terms of number of GP-steps. This is a sightly
different optimization criteria from that used by MIPS. How-
ever, even under MIPS’s optimization criteria CSP-PLAN ’s
plans are much better than those found by MIPS.9

Table 6 compares both planners (MIPS running with its op-
timization flag set to 5). The results in this table show that

8M IPS competed in IPC3. No planning graph based planner was



CSP-PLAN MIPS
Problem Time Steps Acts Res Time Steps Acts Res
Depots1 0.05 7 11 32 0.04 9 11 32
Depots2 1.55 10 16 43 0.06 10 18 44
DriverLog1 0.01 6 8 1099 0.04 6 8 1099
DriverLog2 0.47 9 23 979 0.08 12 22 1605
DriverLog3 0.08 7 12 907 0.04 7 14 1051
DriverLog4 0.13 7 18 703 5.77 9 19 757
DriverLog5 0.21 8 18 654 1.21 13 22 838
DriverLog6 0.04 5 13 965 0.15 7 15 1667
DriverLog7 0.14 6 18 1060 0.25 7 13 866
DriverLog8 5.24 8 27 1920 15.78 17 29 2217
DriverLog9 73.27 11 32 2485 1.67 14 30 2787
DriverLog10 695.27 8 25 573 3.03 16 25 243

Table 6: Performance comparison of CSP-PLAN and MIPS
on resource planning problems. “Res”, “Steps” and “Acts” as
explained in table 5.

CSP-PLAN has a performance comparable to MIPS, and in
most cases, the quality of the plans (number of steps) is con-
siderably better. However, CSP-PLAN does not scale as well
as MIPS, e.g., it takes much longer than MIPS on Driver-
Log10. But is not surprising since CSP-PLAN is an optimal
planner while MIPS is not. Achieving optimality quickly be-
comes very difficult. It is also important to note that our pro-
totype implementation uses very simple techniques to prop-
agate numeric variables. These techniques are far from the
current state of the art in CSPs. Nonetheless, we see that we
still obtain results competitive with the competition version
of M IPS.

8 Conclusions
Our implementation of CSP-PLAN has demonstrated that the
structure of planning problems can be exploited directly in
a CSP encoding. By lifting the planning problem to a CSP
we obtain a richer and more robust representation for which
many sophisticated and effective solution techniques have
been developed. In particular, we are able to capture and gen-
eralize the important inferences generated by planning graphs
directly in the CSP representation. This provides excellent
performance for CSP-PLAN in comparison with similar tech-
niques. Additionally, by showing how easily we can extend
our representation to planning with resources, we have pro-
vided evidence for the benefits of lifting the problem to a CSP
encoding.

This work naturally leads to a number of future research
topics. For example, the fastest current planners are based
on local search. Nevertheless, the heuristics used in these
planners utilize notions from the planning graph construction.
It seems feasible that instead of planning graphs, CSP tech-
niques could be utilized directly to compute better heuristics.
This could be particularly beneficial for computing more in-
formative admissible heuristics. Better heuristics and addi-
tional transformations could also be explored. In particular,
there is still much scope for improving the performance of
this approach. Finally, the approach is well suited to resource
usage optimization using branch and bound techniques dur-
ing the search, and this could be further investigated.

extended to deal with resources in this competition.
9Note that neither planner is actually trying to optimize resource

usage, just the size of the plan.

References
[Bacchus and Ady, 2001] Fahiem Bacchus and Michael Ady. Plan-

ning with resources and concurrency, a forward chaining ap-
proach. InIJCAI-2001, pages 417–424.

[Bacchus, 2000] Fahiem Bacchus. Extending forward checking. In
CP2000, number 1894 in LNCS, pages 35–51. Springer-Verlag.

[Blum and Furst, 1997] Avrim Blum and Merrick Furst. Fast plan-
ning through planning graph analysis.Artificial Intelligence,
90:281–300, 1997.

[Do and Kambhampati, 2001] Minh Binh Do and Subbarao Kamb-
hampati. Planning as constraint satisfaction: Solving theplan-
ning graph by compiling it into CSP.Artificial Intelligence,
132(2):151–182, 2001.

[Edelkamp, 2002] Stefan Edelkamp. Mixed propositional and nu-
merical planning in the model checking integrated planningsys-
tem. InAIPS-2002, Workshop on Temporal Planning, 2002.

[Freuder, 1985] E. Freuder. A sufficient condition for backtrack-
bounded search.Journal of the ACM, 32(4):755–761, 1985.

[Getooret al., 1997] L. Getoor, G. Ottosson, M. Fromherz, and
B. Carlson. Effective redundant constraints for online schedul-
ing. In AAAI-1997, pages 302–307.

[Katsirelos and Bacchus, 2001] George Katsirelos and Fahiem
Bacchus. A library for solving CSPs, 2001.
www.cs.toronto.edu/˜gkatsi/efc.tar.gz.

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Push-
ing the envelope: planning, propositional logic, and stochastic
search. InAAAI-1996, pages 1194–1201.

[Kautz and Selman, 1998] H. Kautz and B. Selman. Blackbox: A
new approach to the application of theorem proving to problem
solving. Workshop on Planning as Combinatorial Search, AIPS-
1998.

[Koehleret al., 1997] J. Koehler, B. Nebel, J. Hoffmann, and Y. Di-
mopoulos. Extending planning graphs to an ADL subset. InEu-
ropean Conference on Planning, pages 273–285, 1997.

[Koehler, 1998a] J. Koehler. Planning under resource constraints.
In ECAI-1998, pages 489–493.

[Koehler, 1998b] J. Koehler. Solving complex planning tasks
through extraction of subproblems. InAIPS-1998, pages 62–69.

[Moskewiczet al., 2001] M. Moskewicz, C. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering an efficient sat
solver. InProc. of the Design Automation Conference (DAC),
2001.

[Pednault, 1989] E. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. InKR-1989, pages
324–332.

[Pirri and Reiter, 2000] F. Pirri and R. Reiter. Planning with natural
actions in the situation calculus. In Jack Minker, editor,Logic-
Based Artificial Intelligence. Kluwer Press, 2000. in press.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.MIT
Press, 2001.

[van Beek and Chen, 1999] P. van Beek and X. Chen. CPlan: A
constraint programming approach to planning. InAAAI-1999,
pages 585–590.

[Vossenet al., 2001] T. Vossen, M. Ball, A. Lotem, and D. Nau.
Applying integer programming to AI planning.Knowledge En-
gineering Review, 16:85–100, 2001.


