1

A powerful technique for solving planning problems, first
used in[Kautz and Selman, 199ds to impose a fixed bound
on plan length. This converts the problem to one that lie
in NP. The resulting problem can then be solved by enco
ing it in any of a number of alternative NP-complete for-
malisms, e.g., SATKautz and Selman, 1996integer pro-
gramming[Vossenet al, 2001, or constraint satisfaction
problems(CSPs)[van Beek and Chen, 1999; Do and Kamb-
hampati, 200, and then using the powerful algorithms that

Generalizing GraphPlan by Formulating Planning as a CSP

Adriana Lopez
Dept. of Computer Science
University of Toronto
Toronto, Ontario
Canada, M5S 3G4
alopez@cs.toronto.edu

Abstract

We examine the approach of encoding planning
problems as CSPs more closely. First we present
a simple CSP encoding for planning problems and
then a set of transformations that can be used to
eliminate variables and add new constraints to the
encoding. We show that our transformations un-
cover additional structure in the planning problem,
structure that subsumes the structure uncovered by
GRAPHPLAN planning graphs. We solve the CSP
encoded planning problem by using standard CSP
algorithms. Empirical evidence is presented to val-
idate the effectiveness of this approach to solving
planning problems, and to show that even a pro-
totype implementation is more effective than stan-
dard QRAPHPLAN. Our prototype is even compet-
itive with far more optimized planning graph based
implementations. We also demonstrate that this ap-
proach can be more easily lifted to more complex
types of planning than can planning graphs. In par-
ticular, we show that the approach can be easily ex-
tended to planning with resources.

Introduction

have been designed to solve these general problems.

In this paper we examine the approach of encoding plan
ning problems as CSPs more closely. We use a very simpl
encoding to translate the planning problem into a CSP. Th
advantage of using CSPs in general, and our encoding in p

ticular, is that it preserves much of the structure of thgiogl

planning problem, and thus various transformations that ut
lize this specific structure can be applied to create a new CS

that is easier to solve.

been convincingly demonstrated by theAgk Box [Kautz

al

Fahiem Bacchus
Dept. Of Computer Science
University of Toronto
Toronto, Ontario
Canada, M5S 3G4
fbacchus@cs.toronto.edu

and Selman, 1998and G>-Csp [Do and Kambhampati,
2001] planners. These systems encode a transformed repre-
sentation of the planning problem called {hlanning graph

to SAT and CSP respectively. The planning graph is a plan-
ning specific construction, duefBlum and Furst, 1997that
computes and represents some important additional stalictu
information about the planning problem. Thus by encoding
the planning graph rather than the original planning pnoble
BLAackBox and G>-Csp are able to capture more of the
structure of the planning problem in their encoding, which
results in a significant improvement in performance.

In our approach we bypass the construction of a planning
graph. Instead, we study techniques that can equally well
exploit the structure of the planning problem and at the same
time work directly on the CSP encoding. We demonstrate
that it is possible to develop transformations that unca¥ler
of the additional structure obtained from planning graphs.

The advantage of our approach is that it works directly on
a much richer and more robust representation. Consequently
we obtain at least three important advances over the plgnnin
graph construction: (1) Our approach allows ugyémeral-
ize planning graphs In particular, we can enhance our ap-
proach to extract other kinds of structure to allow us to solv
the planning problem more efficiently. (2) We can more eas-
ily extend our approach to momplex types of planning
problems e.g., those involving resource usage. (3) Since the

{inal result is a CSP we casutomatically utilize CSP solu-

tion techniquesvhich can be more powerful than standard
GRAPHPLAN searching methods. In the paper we will pro-
vide evidence for all of these points.

First, we present our CSP encoding of a planning problem.
Then we present a set of transformations that can be used to
eliminate variables and add new constraints to the encoding
and show that these transformations subsume and generalize
planning graphs. Then we present empirical evidence to val-
igate the effectiveness of our approach to solving planning

roblems. To demonstrate that our approach can be more eas-
ily lifted to more complex types of planning, we show how it
can be easily extended to planning with resources. Finaly w
close with some conclusions and a description of future work

5 Generating theBASE-CsP

The utility of exploiting planning specific structure has To encode a planning problem as a CSP we impose a bound

k on the “size” of the plan. In this paper we will measure

plan size by the number of GraphPlan-concurrent steps (GR+. GP-Concurrency ConstraintsThe above successor state
steps) in the plan. It will become apparent in the sequel whaaxiom allows the unintended model in which we have two
GP-steps means. actions at the same step, one creating a proposition and one
In k GP-steps each proposition or action can change aleleting it. To avoid such unintended solutions we must re-
mostk times. So to encode fa GP-step plan in a CSP we strict concurrent actions in some way. The most natural way
can utilizek + 1 sets of propositional variableB?, andk s a serial constraint, which says that only one action égia
sets of action variabled?, wheres ranges from O to; for ~ can be true at any stépAnother type of constraint is one that
propositions and 0 t& — 1 for actions, and andj range imposes GraphPlan concurrency. Basically it assertswat t
over the number of distinct propositions and action insgtanc actions cannot be simultaneously true if they interferenwit
in the planning problem respectively. Each of these vagimbl each other. In this work we have chosen to use the GraphPlan
will be boolean. Intuitively,P? means that propositioR; is (GP) concurrency constraints.
true at GraphPlan step and A3 means that action instance 5. Non-Null Steps Constraint§Ve impose the constraint that
A; was executed at GraphPlan step-P; and—A? denote for every steps at least one action variable should be true.
the opposite). This blocks null steps in the plan, in contréBtum and Furst,
Clearly by setting each of these variables we can captur&997 and[Do and Kambhampati, 209both allow null plan
any k GP-step plan and its effects. However, many illegalsSteps.
plans and nonsensical outcomes are also captured. We need/Ne will refer to this set of variables and constraints as
constraints to ensure that any solution to the CSP (i.e., anfpe BASE-CsP. Any solution to theBASE-CsP will contain
setting of the variables that satisfies all of the constjagia @ setting of the action variables that comprises a valid GP-
legal plan. There are various possible sets of constraiats t concurrent plan. If th&@Ase-Csp has no solution then nb
can serve our purpose. Here we present one particular set: GP-step plan exists for the problem.
1. Unary initial state and goal constraint§ he propositional
variables from step zer®?, and from stefg, PF arerequired 3 Reduction of theBASE-CsP

to have vglues compatible with the initial and goal states Obiven aBASE-CSP representing &-step planning problem
the planning problem. _ we can use various transformations to modify it, generating

2. Precondition constraints An action A} cannot be true ey CSP that is empirically easier to solve, and that is equiv
unless its precondition is satisfied. This gives the comitra gient 1o thesase-Cspin the sense that any solution to the
Aj — Pre(4;)*, wherePre(A;)" is A;’s preconditionrela- he CSP can easily be extended to a soiution to the origi-
tive to GP-step. _ L _ _ nal BASE-CsP. These transformations include inferring new
3. Successor state constraintsnplicit in classical planning constraints that can be added to the CSP and eliminating var-
representations is the frame assumption: predicates not mejoys single valued variables. Our transformations areedla
tioned in the action’s description are unaffected by th®act {5 the well known techniques of enforcing local consistency
We can capture the effects of actions, including the implici o 5 cSP prior to solving [Freuder, 1985 however they are

non-effects in a number of different ways. Here we use Repased on taking advantage of the specific logical form of the
iter's formulation of successor state axiofi®eiter, 2001 zpove set of constraints.

In particular, for each propositional variab® at GP-steps
(s > 0) we have a constraint between it and the same propa3.1 Adding GraphPlan Mutex Constraints

sition at (.SP-stepy—ll. The con_straint Says that? is.true if A wellknown technique for making CSPs easier to solve is to

and only if some action made it true, or it was previously true; 44 redundant constraints e Ietooret al, 1997, which

and no .actlonkmahdefn false. Thus the successor state axiof}e constraints that make explicit additional relatiortsieen

constraints take the form: the variables. Redundant constraints that are useful taald

ps ALy (psLa A1 usually determined by examining the structure of the partic
i \/ J (¢ /\ J)’ ular CSP. This is precisely what is done in planning graphs,

where insights into the manner in which actions and propo-

whereCreate(P;) and Delete(P;) are the set of actions that sitions interact, are used to generate a new set of binary con
create and delet;,. It is easy to automatically generate a setStraints called mutexes. _
of successor state constraints from a sett#18s action de- New binary constraints can be added to a CSP by enforcing
scriptions. Additionally, by using successor state caists 27 consistencyFreuder, 1985 A CSP is2-j consistenif
that mention additional propositions from stepl1, it is easy for every valid assignment to a pair of variables, there sta s
to encode AL [Pednault, 19800perators as a set of succes- Of values for every; additional variables such that ti2e-j
sor state axioms. assignments satisfy all of the constraints over theseiasa
- Making a CSP 2j consistent can be very expensive as it in-
!Note that the successor state constraints do not encode th@lves testing all sets df+; variables, and each test in the
action preconditions. These are encoded as separate aintstr Worst case takes time exponentialinin planning problems
Thus, the only complication with BL actions has to do with con- there can be thousands of variables, so it would be impassibl
ditional effects. IfP; is a conditional effect of actiod;, subjectto
the conditiong, the successor state constraint will have a disjunct 2Serial actions can be used to represent true concurrency by
“Ajfl A ¢*71". That is, Py will be true if A; was executecnd adding timestamps to the staf@acchus and Ady, 2001; Pirri and
condition¢ held at the previous step. Reiter, 2000.

AjeCreate(P;) Aj€Delete(P;)

to make the entireASe-CspP2-;j consistent even for smajl
The contribution of @APHPLAN is that it demonstrated a
technique that quickly achieves a very effective partiahfo
of 2-j consistency over a limited collection 24-; variables.

We can use the CSP representation to directly compute the
binary mutex constraints generated by planning graphs. In
this manner we lift the mutex computation to a more general

framework where it can be more easily generalized.

Mutexes in GraphPlan are generated by three simple rules:

(1) Base Action MutexesActions in the same GP-step with
interfering effects and preconditions are mutex. A2)di-
tional Action MutexesTwo actions in the same GP-step are
mutex if there is a pair of propositions, one from each aition
preconditions, that are mutex at this GP-step. RR)posi-
tional Mutexes.Two propositions,P? and P¢, at the same
GP-step, are mutex if every action that achielé9s mutex
with every action that achievd®’. We can create all of these
binary constraints by testing for very similar conditionghe
CSP encoded planning problem:

all actions that creaté’j.3 A similar condition must be
satisfied by the actions creatitty .

-P: AP (or analogoushyP: ~* AP~ 1) holds. In
this case for bott#; and P} to hold P’ must be created
by an action. For the mutex to hold we must have for
every actionA; ! creatingP; that-A45~* v (A5~! —
—P?#). Thatis, either the action is not possible or it must
deleteP;’ (elseP; can be true by inertia).

2.

3. Py~' A P! holds. In this case we must have for every

actionA*~! that-A4°~1v (A5~ — =P v (4! —
ﬁPj?*l). That is, either the action is not possible, or
it must delete at least one @, or P;. Note that this
condition relies on the fact that at least one action must
be executed at every step (the non-null steps constraint).

As in planning graphs, We can use the constraints added
at stepi to test for new mutex constraints at stepl. The
following result can then be easily proved (we omit the proof
for reasons of brevity).

Base Action Mutexes. These mutexes are already present”Toposition 1 If the planning graph construction has de-

in the BASE-CsP, they are the GP-concurrency constraints.

Additional Action Mutexes. The GRAPHPLAN condition
for detecting additional action mutexes only handles astio
with conjunctive preconditions, e.g.78IPsactions. Thus if
we have a pair of preconditions’ for A7 and P} for A3,
the corresponding precondition constraints — P and
A% — P?, and a mutex constrairtP® v —P¢, a simple
2-2 consistency test with these variables and constraints
lows us to derive the new mutex constraiftly V —~A7. In
fact, we can short-circuit this test by using the presenthef
mutex constraint betweey” and P to immediately mark all
actions with preconditio®? as being mutex with all actions
with precondition”;. Furthermore, if an actiord; contains
both P7 and P! in its precondition we obtain the constraint
—A; v —AZ, i.e., we obtain a unary constraint that forcg&s
to be false. As we will describe below, single valued vagabl

tected a mutex constraint between two variafif¢sand V*
(action or propositional variables), then after transfang

the BASE-CsP to add the above mutex constraints we will
have that either (a) both variables in the CSP will have be-
come single valued with not both being true or (b) there will
be a binary constraint in the CSP between these variables
that prohibits them from both being true.

That is, the transformed CSP will capture all of the planning
graph mutexes. Furthermore, it might containre mutexes

%han those inferred by the planning graph. In the simples# ca
this can arise from the last case presented above where every

action deletes one d?; or P;. This can create a new mutex
in the middle of the plan. In planning graphs, on the other
hand, onceP; and P; appear in the graph without a mutex
between them, they can never become mutex again (due to
the presence of no-ops and the possibility of null stepsen th

plan).

can be used to further reduce the CSP. A similar approachca®2 Symbolic Reduction of Single Valued Variables

be followed with more general types of preconditions using

more general local consistency tests, e.g., with_Aactions
where the RAPHPLAN test is no longer valid.

Propositional Mutexes. For propositional mutexes we
have one added complication, which is that our encoding, u
like planning graphs, does not utilize no-ops. Neverttelas
general condition for when two propositios% and P; are
mutex can be given by examining the three cases.

1. =P;~' A=P?~! holds. In this case foP; and P; both

n

In any CSPP, if P has a variabld/ with only a single
valuea in its domain, we can reducE by making the as-
signmentV «+ a, to produce a new CSP’ that does not
contain the variablé”. P’ has the property that for any so-
lution S of P’, S U {V « a} is a solution to the original
P. To reduceP, we replace every constraint mentioniig
e.g.,C(V,Vi,..., Vi) by a new constrainC’(Vy,..., V)
such thatC’(V; «— x1,...,Vk < xx) is true of a tuple of
assignmentgzy,...,zy) if and only if C(V «— a, V4 «
x1,..., Vg < 1) IS true.

Our translation from a planning problem produce&aaEe-

to be true in'the next state they must both be created bsp in which every constraintC' is representedymboli-
an action. In particular, neither proposition can remaincally by a logical formula. We can simplify this logical for-

true by inertia. For a mutex betweéif and P; to hold
we must have for every actioﬂf*1 creating P? that
_‘Afil v /\AjECreate(Pj)(Afil - _‘Aiil)' That is,

mula directly by replacing the single valued variabldy its
value, and then performing standard logical reductions, e.

®Note that if A;~" deletesP; then it will be mutex with all ac-

either the action is not possible, or it must be mutex withtions creatingP;’ via the GP-concurrency constraints.

FALSEA a = FALSE, FALSEV a = «, etc. Thisyields a new become single valued. Thus they can be reduced from
logical formula that represents the reduced consti@int the CSP prior to searching for a solution.

_In the case of th@Ase-Cspwe also know the form of 5 1 4 possible actions at stepcreate propositio+*

its different constraints. This allows us to precompute ynan then P+ is f dto be t Similarly if it i dZI ted
types of constraint reductions, so we can realize many types enr; IS forced to be true. simiarly it itis efle

of single valued variable reductions more efficiently. by all possible actions then it s forced to be fal&g.

The reduction of a single valued variable, or the applica- ~ ¢&n then be reduced from the CSP. This particular reduc-
tion of some of the other transformations described below, ~ tion is not possible in planning graphs due to the pres-
might generate new single valued variables that can in turn ~ €nce of no-ops.
be reduced. It can also interact with the generation of mutex 3. Variables that are forced to be true further reduce all
constraints, allowing new mutexes to be detected. For exam- variables that are mutex with them to be false. This

ple, say that we have determined that a propositional viariab does not help reduce a planning graph since in planning
P# must be false. IfP? appears in any conjunctive precon- graphs mutexes are monotonically decreasing and, other
ditions, e.g., A — P7, we will also immediately infer A7, than the initial state variables, variables are never fibrce
i.e., thatA; has also become single valued (false). Wit to be truet But in the CSP encoding the previous rules
false it can no longer be a candidate for producing some other for forcing a variable to be true, and for creating a new
propositionP; ™!, and we could possibly infer a new mutex mutex when it did not exist at the previous step, enable
involving P! since one of the ways of making it true is additional single valued variable reductions.

now blocked. With mutexes, single valued variable redunctio)

subsumes reachability analysis of planning graphs. 4.3 Sequence Constraints

- _ o There are some additional constraints that can be imposed on
Proposition 2 The variables that remain in the CSP after plans to rule out obvious inefficiencies. For example, itatev
single valued variables have been reduced, are a subset ofiakes sense in the plan to immediately follow an action by

the variables appearing in the planning graph. its inverse (e.g., a load followed by an unload). Adding this
constraint allows eliminating different invalid combirats
4 Beyond GRAPHPLAN of actions by making mutex any inverse pairs of actions at

consecutive time steps.
Blocking the immediate sequencing of inverse actions also

allows us to infer additional sequence constraints. Saly tha
ctionsA; and A; are inverses of each other, and thtis

ie only action that produced; while 4; is the only action

1at deletes it. Then another constraint that can be irderre
rom the mutex betweedd? and Aj“ is that whenP;, first
becomes true, it must remain true for at least one more time
step:
4.1 Additional Binary Constraints —Pi AP — Pt

Graphplan mutexes only prohibit the single pair of valuesThere is also a similar constraint for whéh first becomes

for two variables(TRUE, TRUE). Our representation treats false.

negated propositions and actions in an entirely symmetric Our system automatically detects action pairs that are in-
fashion. This means that the analysis for mutexes givenebowerses of each other as well as any predicates over which a
will allow us to compute mutexes between any two valuessequence constraint can be imposed.

For example,when applied t§° and—-P7, P being mutex

with ~P? means thal’? is “mutin’ with P7;i.e., thesevari- 5 Cgp-PLAN: Implementation

ables must both be true or both be false. Such binary con-

Besides subsuming, and slightly generalizing, the plagnin
graph inferences, further transformations can be utilized
the CSP. These transformations either add more consttaints
the CSP or cause further variables to become single value
In either case, like the planning graph inferences, they ar
used to make the CSP easier to solve. These additional co
straints can also feed into the standard GraphPlan redhsctio
described above, and thus generate even further mutexes.

straints can be detected and added torthge-CsP. Based on the transformations explained before, we have de-
veloped a planner calledsB-PLAN that will find a solution
4.2 Single Valued Variable Reduction beyond to a planning problem. §€~PLAN builds theBASE-CsPin-
GRAPHPLAN Reachability crementally up to step (beginning withs = 1), and then

sends it to a CSP Solver for its solution. If the solver report
no solution to it, then theAse-CsPis constructed fos+1.
his cycle can continue until some termination conditioa ha
een reached or a plan has been found. It is important to
notice GP-PLAN solves these problems incrementally, thus
» -~] ensuring that it finds a GP-step optimal plan.
1. Propositions that are never modified by any action, are Tnhe CSP solver used byse-PLAN is EFC[Katsirelos and

propagated without change in the planning graph. Sinc@acchus, 2001which allows the use of different techniques
these propositions have no creators nor deletors, their

successor state axiom reduces all of them to being equiv- “This means that the variable that is mutex with the true bigia
alent to their status in the initial state, i.e., they will al never appears in the planning graph until the mutex no lohgleis.

As demonstrated above, single valued variable reductias is
powerful as the reachability analysis inherent in the pilagn
graph construction. However, in the CSP encoding it is mor
powerful, obtaining, for example, the following additidne-
ductions:

Problem GAC GACCBJ GACvsCBJ | RecordNoGoods Problem dom+deg | BSEARCH
Bw-large-12 0.46 0.10 0.10 0.11 Bw-large-12 0.10 0.08
Bw-large-a 1.44 0.49 0.49 0.50 Bw-large-a 0.51 0.56
Rocket-a 21.66 13.74 14.01 10.67 Rocket-a 10.65 0.54
Rocket-b 5.26 4.44 4.48 3.39 Rocket-b 3.38 1.24
DriverLog2 59.13 21.09 21.28 10.38 DriverLog2 10.38 0.46
DriverLog3 0.42 0.23 0.23 0.15 DriverLog3 0.15 0.03
DriverLog4 71.13 29.96 29.96 16.54 DriverLog4 16.54 0.19
DriverLog5 139.98 62.98 63.65 29.59 DriverLog5 24.59 0.17
DriverLog6 0.06 0.05 0.06 0.06 DriverLog6 0.06 0.01

Table 1: Effect of changing the search algorithm on the perTable 2: Effect of changing the DVO heuristic on the perfor-
formance of the CSP solver for planning problems. Experi-mance of the CSP solver for planning problems. Experiments
ments were run using the standard CSP heuristic dom+deg.were run using GACvsCBJ+RecordNoGoods

)) . Problem No redundant | Inverse Sequence

to solve a CSP problem, including: the ability to create and constraints | mutexes | constraints
: Toti H H H Log-a 0.06 0.09 0.06

use tailored heuristics for dynamic variable ordering (DYO Tog TR P BT T R Ty
the use of different state of the art CSP algorithms and alnove Rocket-a T4l 148 131
Rocket-b 1.85 1.77 2.15

method to record nogoods s@ PLAN uses these methods as Gripper 0T T o5 S
follows to efficiently solve general planning problems: Gripper-02 1711 | 1320 T7.01

DVO: Csp-PLAN uses a dynamic variable ordering heuristic)])
called BSEARCH, Specia”y tailored for p|anning pr0b|ems_Tab|e 3: Effect of add_lng mutexes between inverse actions
This heuristic instantiates first the variables that prapathe ~ and sequence constraints to 8rese-CsP.

most changes in the domain.

Search Algorithm: The CSP algorithm uses a version of

; , : DVO heuristics, the additi f redundant traint
GAC propagatiofiBacchus, 2000during backtracking along euristics, the addition of redundant constraintsyée

moval of single valued variables, etc. The addition of redun

with nogood recording. In addition, for each constraintwit a0t inary constraints, particularly mutexes, and thedet
an arity higher than 2, special purpose propagators were dggn and removal of single valued variables has a clear and

veloped to increase the efficiency of GAC. It can be noted thafj, 4 matic effect on the efficiency of€®-PLAN, even for sim-
although nogood recording is a generic CSP technique, in th&e problems. For example, on bW-Iarge-i2 thesE-Csp
form implemented it is strictly more general than the mem-p,¢'y 589 variables and 10,426 constraints, but only 657 var
oization of bad goal agendas describedBium and Furst, apjes’and 2,847 constraints after single valued variabtes a
19972. removed. Similarly, without the inferred mutex constraint

. and the removal of single valued variablessFEPLAN re-
6 Experimental Results quired 154.3 sec. to solve the problem. Adding the mutex

To test the performance of$e-PLAN, we used $RIPSsprob- constraints reduced this time down to 0.33 sec, and removing
lems from IPC2 and IPC3 (International Planning Competi-single valued variables brought the time down even furubler_t_
tion 2000/2002). All experiments run on a Xeon 2.40GHz0.04 secs. The effect of some of the other planning specific

machine with 400MB of RAM. Times are in CPU seconds. techniques is described below.
DVO heuristic: The order in which variables are instanti-

6.1 Effect of CSP techniques on GP-PLAN ated during search greatly affects the solution times for a
Table 1 shows the effect of a few different CSP algorithmsCSP. Table 2 shows the difference in performance between
on the performance of €>PLAN on some representative the standard CSP heuristic dom+deg, and our BSEARCH
problems (using a standard CSP variable ordering heurideuristic which was designed specifically to take advantage
tic dom+deg® We can see that GACCBJ and GACvs€BJ of the planning based structure of the CSPs thet-ELAN is
perform over 2 times faster than plain GAC. GACCBJ andsolving. These representative problems show that BSEARCH
GACvsCBJ have comparable results on these problems, b@erforms much better than dom+deg.

we found that GACvsCBJ performed better on more com-Redundant Constraints: Table 3 shows the performance of
plex problems, e.g., for Gripper-04, GACvsCBJ finds a planCSP-PLAN when mutexes between inverse actions and se-
in 877 secs while GACCBJ required 1,133 secs. The tabl@uence constraints are added to 8rse-Csp. On these
also shows that nogood recording yields another factor oproblems we see that there is a slight improvement&m-C
almost 2 improvement over GACvsCBJ. Hence, we choos®LAN when mutexes between inverse actions are present. In-

GACvsCBJ+RecordNoGood as our default CSP search algderestingly, adding sequence constraints did not help.oMin
rithm. improvements on some problems were negated by significant

degradation on others.
6.2 Effect of planning specific techniques

Some of the CSP simplification techniques explained in thiS-3 Comparison with similar approaches
article use planning related information, e.g, planningciic ~ The results in Table 4 show hows®-PLAN (using the same

- setting for all problemg)compares with @®APHPLAN [Blum
Other CSP algorithms were experimented with, but they did no

provide adequate performance. A number of planning domains could be solved faster with dif-
8GACvsCBJ is described ilBacchus, 2000 ferent settings; e.g., the heuristics sometimes perfordiféztently

Problem CsP-PLAN GRAPHPLAN GP-CspP BLACKBOX 1PA(4.1) MiPsOpt. Level Time Steps | Acts. Res.

Bw-large-a 0.18 0.21 0.63 0.23 0.06 1 3.52 110 175 11,761

Bw-large-b 15.18 19.53 106.00 17.50 2.84 3 7.09 102 178 11,505

Gripper-02 15.36 2.17 62.00 1.87 0.10 5 28.02 108 197 13,130

Gripper-03 1,328.63 135.00 > 3hrs. 2,485.00 1.08 7 80.44 105 221 10,853

Log-a 0.05 1,733.00 47.75 5.50 165.20 9 96.44 104 225 11,630

Log-b 14.87 675.00 143.00 5.72 120.64 CsP-PLAN 774.86 75 194 11,345

Rocket-a 151 46.46 40.50 5.44 5.96

Rocket-b 179 128.00 22.68 557 21.10) o

Depots3 11.03 241 15.75 2.36 0.22 Table 5: Effect of changing the optimization value formg.
Depots4 4.59 3.80 82.00 3.72 0.44 H H H H
Driverogs s TeoE 5 = = Each value in this table is the sum of the results for Driver-
DriverLog9 28.99 270.00 90.00 627 650 Logl to DriverLog10. “Res”: resource usage, “Steps”: num-
DriverLog10 77.75 123.00 22.23 7.89 11.08 “ ”. : H

e o e — o e ber of GP-steps, and “Acts”: number of actions in the plan.
ZenoTravel7 0.18 0.67 0.61 0.44 CNP

ZenoTravel8 0.52 1.40 1.24 0.90 CNP . . .

ZenoTravel9 37.16 484 410 340 | CNP 7 Extensions: Planning with Resources

ZenoTravel10 3.55 9,228.00 28.53 7.52 CNP i X i

Satellite3 013 023 020 023 004 A major advantage of encoding planning problems as CSPs
Satellite4 5.08 271.00 77.02 6.26 4.83 . . .

Satolies 6372 9.756.00 | 5.756.00 549 1527 is that we can easily extend the encoding to represent more
Freecelll 0.10 1424 | 18300 12.90 0.88 complex planning problems. For example, planning prob-

_) lems with resources can simply be represented as CSPs with
Table 4: Comparison of €~-PLAN with GRAPHPLAN, GP- hmeric variables. To demonstrate the flexibility of our ap-
Csp, BLACKBOx and IPP on a set of problems from the r65ch we implemented an extension G§FEPLAN to deal
STRIPS domain. “CNP” means could not parse. Lowes\yith such planning problems. Previous approaches based on
times are in bold. planning graphs (e.glKoehler, 1998} have had to develop
from scratch methods for dealing with the resources vagibl
) in the planning graph, like interval arithmetic and bounds
and Furst, 1997 Gp-Csp [Do and Kambhampati, 2001 propagation. These techniques are already well known in the
BLACK Box [Kautz and Selman, 199&nd IPP4.1[Koehler cSP field.
etal, 1997. These planners have in common the construc- To handle planning with resources we introduced the fol-
tion of a planning graph. The planning graph is either thenowing into Csr-PLAN: (1) Mathematical operation con-
compiled into a CSP (&CsP) or a SAT formula (RACK- straints, e.g.z = z + y; (2) comparison constraints, e.g.,
Box), or searched directly for a solution RBPHPLAN and ;> 4: (3) precondition constraints containing comparisons,
IPP4.1). GsP-PLAN, on the other hand, bypasses the plan-e g. fuel(truck) > 0; (4) successor state constraints to define
ning graph construction and directly exploits the CSP encodhow the numeric variables could change between states, e.g.
ing of the problem as explained above. if no action affecting it is true, its value cannot change; (5
It can be seen that $>PLAN vyields significantly better a}nd finally, .additional concurrency constrgints to block ac
performance in almost all cases over the standard planninigens from simultaneously altering a numeric variable. Sthe
graph planners 8aPHPLAN and GP-Csp. This provides New constraints were very easy to add toghse-CsP, and
evidence of the effectiveness of the additional constsaintthe reduction transformations described above were used al
and reductions computed bys& PLAN. The results against mMost unchanged to simplify tteasE-CsP.
BLACKBOX are mixed. This version of Bsck Box utilizes We compared 6p-PLAN with Mips [Edelkamp, 200p®
the highly engineered ZchalfMoskewiczet al, 200] SAT 10 evaluate_lts performanc_e on resource plannlng problems.
solver. Zchaff utilizes very different heuristics and teiues ~ M1Ps combines two paradigms, model checking and heuris-
for learning nogoods (clauses) thasiEPLAN and is more tic search, to .flnd totally ordereo_l plans that are thgn madg
efficient that our current CSP code on larger problems. Nevconcurrent using a post-processing procedure. This combi-
ertheless, there is considerable scope for making @ C nation of paradigms introduces additional complexity te th
PLAN implementation more efficient, and our heuristics are@lgorithm, in contrast with the uniform paradigm used in our
at this stage very simple. Even so, our approach demonstrat@pproach. Mpstries to minimize the number of steps in the
its usefulness on problems like gripper. final plan, using an optimization parameter that ranges from
1 to 10. Table 5 shows this how parameter affects the qual-
ity of the final plans in MPs. Increasing the parameter causes
Mipsto spend more time trying to find plans with fewer steps.
However, this search is not always successful. In fag
can spend more time and generate worse resufts-RLAN,
on the other hand, is an optimal planner always finding the

could be extended to utilize this technique. On other domaing?ﬁoéﬁgﬁi gla?r:]?;:{i?r?g;{g:{g?ﬁ:ﬁiﬁ;ﬁ;%%;g? ﬁgﬂghtl

like logistics GSP-PLAN is more effective. Th|§ is due partic- ever, even under Mss optimization criteria GP-PLAN’S
ularly to the presence of mutexes between inverse actions 'Blans are much better than those found by 5#

these domains that can be effectively used sp@LAN. Table 6 compares both plannersigh running with its op-
timization flag set to 5). The results in this table show that

Similarly against PP our results are mixed. A key com-
ponent of PPis a method for solving planning problems by
dividing them into a set of smaller problems using a goal
agenddKoehler, 1998h This technique is particularly effec-
tive on domains like BlocksWorld, Depots and Gripper, and
it can easily be recast in terms of CSPs. Hencep-ELAN

on different domains. 8Mipscompeted in IPC3. No planning graph based planner was

CsP-PLAN MIPS References
Problem Time | Steps | Acts Res | Time | Steps [Acts Res . .
Depotsl 0.05 7 11| 32| o004 9 11| 3 [Bacchus and Ady, 20@1Fahiem Bacchus and Michael Ady. Plan-
Depots2 15| 10 16| 43] 006] 10] 18| 44 ning with resources and concurrency, a forward chaining ap-
DriverLogl 0.01 6 8 1099 0.04 6 8 1099 h | |JCA| 200 417_424
DriverLog?2 0.47 9 23 | 979 | 008 2 22 | 1605 proacn. In -2001 pages .
g:;g[tggi 90 LA L UL [Bacchus, 2000 Fahiem Bacchus. Extending forward checking. In
DriverLog5 0.21 8 T8 | 654 | 1.21 3 | 22 | 838 CP200Q number 1894 in LNCS, pages 35-51. Springer-Verlag.
DriverLog6 0.04 5 13 965 0.15 7 15 1667 . .
DriverLog? 0.14 6T 18 [1060 | 025 — T 13| 866 [Blum and Furst, 1997 Avrim Blum and Merrick Furst. Fast plan-
DriverLog8 5.24 8 27 | 1920 | 15.78 17 29 | 2217 ning through planning graph analysisArtificial Intelligence
DriverLog9 73.27 11 32 2485 1.67 14 30 2787 90:281-300. 1997
DriverLog10 695.27 8 25 573 3.03 16 25 243 : ! :

[Do and Kambhampati, 2001Minh Binh Do and Subbarao Kamb-

Table 6: Performance comparison o§€PLAN and MiPS hampati. Planning as constraint satisfaction: Solvingpias-

on resource planning problems. “Res”, “Steps” and “Acts” as ning graph by compiling it into CSP.Artificial Intelligence
explained in table 5. 132(2):151-182, 2001.

[Edelkamp, 200R Stefan Edelkamp. Mixed propositional and nu-
merical planning in the model checking integrated planrsysr

CspP-PLAN has a performance comparable toRg, and in tem. InAIPS-2002, Workshop on Temporal Planni2g02.
most cases, the quality of the plans (number of steps) is CoNfereuder, 198b E. Freuder. A sufficient condition for backtrack-
siderably better. However,<&-PLAN does not scale as well bounded searchlournal of the ACM32(4):755-761, 1985.
as Mps, eg., it takes F“.“Ch I_onger tham% on Dr'yer' [Getooret al, 1997 L. Getoor, G. Ottosson, M. Fromherz, and
Log10. But is not surprising sincese-PLAN is an optimal B. Carlson. Effective redundant constraints for onlineestth-
planner while Mpsis not. Achieving optimality quickly be- ing. In AAAI-1997 pages 302—307.
comes very difficult. It is also important to note that our{pro [Katsirelos and Bacchus, 200Teorge Katsirelos and Fahiem

totype implementation uses very simple techniques to prop-"g_ chus. A library for solving CSPs, 2001
agate numeric variables. These techniques are far from the .y cs toronto.edurgkatsifefc tar.gz.

current state of the art in CSPs. Nonetheless, we see that

still obtain results competitive with the competition viers Wﬁ?ﬁéztﬁgdeiam%%12%?]_'“?:3 éigtgsﬁig(:‘a?al&ieg%n' P”i sh-
of Mips. search. IPAAAI-1996 pages 1194-1201.

8 Conclusions [Kautz and Selman, 1998H. Kautz and B. Selman. Blackbox: A

Our implementation of €P-PLAN has demonstrated that the ~ Néw approach to the application of theorem proving to proble

structure of planning problems can be exploited directly in igg’é”g' Workshop on Planning as Combinatorial Search.SAIP

a CSP encoding. By lifting the planning problem to a CSP '

we obtain a richer and more robust representation for whictiKoehleretal, 1997 J. Koehler, B. Nebel, J. Hoffmann, and Y. Di-

many sophisticated and effective solution techniques have MopPoulos. Extending planning graphs to an ADL subseEun

been developed. In particular, we are able to capture and gen "0Pean Conference on Planningages 273-285, 1997.

eralize the important inferences generated by planninghgra [Koehler, 1998k J. Koehler. Planning under resource constraints.

directly in the CSP representation. This provides excellen In ECAI-1998 pages 489-493.

performance for P-PLAN in comparison with similar tech- [Koehler, 1998b J. Koehler. Solving complex planning tasks

nigues. Additionally, by showing how easily we can extend through extraction of subproblems. APS-1998pages 62—69.

our representation to planning with resources, we have prqyoskewiczet al, 2004 M. Moskewicz, C. Madigan, Y. Zhao,

vided evidence for the benefits of lifting the problemtoa CSP | zhang, and S. Malik. Chaff: Engineering an efficient sat

encoding. solver. InProc. of the Design Automation Conference (DAC)
This work naturally leads to a number of future research 2001.

topics. For example, the fastest current planners are basgdednault, 1989 E. Pednault. ADL: Exploring the middle ground

on local search. Nevertheless, the heuristics used in these between STRIPS and the situation calculus KR-1989 pages

planners utilize notions from the planning graph constounct 324-332.
It seems feasible that instead of planning graphs, CSP teclipjrri and Reiter, 2000 F. Pirri and R. Reiter. Planning with natural
niques could be utilized directly to compute better heiosst actions in the situation calculus. In Jack Minker, editargic-

This could be particularly beneficial for computing more in- Based Artificial IntelligenceKluwer Press, 2000. in press.
formative admissible heuristics. Better heuristics andi-ad [geiter 2001 R. Reiter. Knowledge in Action: Logical Founda-
tional Fran;formatmns could a}lso be.explored. In pardcul tions for Specifying and Implementing Dynamical Systevhg.
there is still much scope for improving the performance of press, 2001.

this approach. Finally, the approach is well suited to reseu [’

S . - van Beek and Chen, 19p®P. van Beek and X. Chen. CPlan: A
usage optimization using branch and bound techniques duf- ., <traint programming approach to planning. AAAI-1999

ing the search, and this could be further investigated. pages 585-590.

_— o - [Vosseret al, 2001 T. Vossen, M. Ball, A. Lotem, and D. Nau.

extended to deal with resources in this competition. Applying integer programming to Al planningKnowledge En-
®Note that neither planner is actually trying to optimizeoase gineering Reviewl6:85-100, 2001.

usage, just the size of the plan.

