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Abstract

A new approach for learning Bayesian belief networks from raw data is presented�
The approach is based on Rissanen�s Minimal Description Length �MDL� principle�
which is particularly well suited for this task� Our approach does not require any prior
assumptions about the distribution being learned� In particular� our method can learn
unrestricted multiply�connected belief networks� Furthermore� unlike other approaches
our method allows us to tradeo� accuracy and complexity in the learned model� This
is important since if the learned model is very complex �highly connected� it can be
conceptually and computationally intractable� In such a case it would be preferable to
use a simpler model even if it is less accurate� The MDL principle o�ers a reasoned
method for making this tradeo�� We also show that our method generalizes previous
approaches based on Kullback cross�entropy� Experiments have been conducted to
demonstrate the feasibility of the approach�
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� Introduction

Bayesian belief networks� advanced by Pearl ����	
� have become an important paradigm
for representing and reasoning with uncertainty� Systems based on Bayesian networks have
been constructed in a number of di�erent application areas� ranging from medical diagnosis�
e�g�� �Beinlich et al�� ����
� to reasoning about the oil market� e�g�� �Abramson� ����
�
Despite these successes� a major obstacle to using Bayesian networks lies in the di�culty of
constructing them in complex domains� It can be a very time
consuming and error
prone
task to specify a network that can serve as a useful probabilistic model of the problem
domain� there is a knowledge engineering bottleneck� Clearly� any mechanism that can help
automate this task would be bene�cial� A promising approach to this problem is to try to
automatically construct� or learn� such network representations from raw data� In many
areas raw data can be provided from a database of records� If techniques can be constructed
for automatically learning Bayesian networks from data� not only will this help address the
knowledge engineering problem� but it will also facilitate the automatic re�nement of the
representation as new data is accumulated�

In this paper we present a new approach to learning Bayesian networks� Our method
can discover arbitrary network structures from raw data without relying on any assump

tions about the underlying probability distribution that generated the data� In particular�
the method can learn unrestricted multiply�connected networks� Multiply
connected net

works are more expressive than tree or polytree networks� and that extra expressiveness is
sometimes essential if the network is to be a su�ciently accurate model of the underlying
distribution�

Although multiply
connected networks allow us to more accurately model the underlying
distribution� they have a number of disadvantages� Computationally they are much more
di�cult to deal with� It is well known that in the worst case it is intractable to compute
posterior probabilities in multiply
connected Bayesian networks� to be precise this computa

tion is NP
Hard �Cooper� ����
� Furthermore� the time complexity of the known algorithms
increases with the degree of connectivity of the network� For large multiply
connected net

works approximation algorithms are often used� either based on stochastic simulation� e�g��
�Chavez and Cooper� ����� Chavez� ����� Dagum and Chavez� ����� Fung and Chang�
����� Henrion� ����� Pearl� ����� Shachter and Peot� ����
� or search through the space
of alternative instantiations� e�g�� �Cooper� ����� Henrion� ����� Henrion� ����� Peng and
Reggia� ����a� Peng and Reggia� ����b
� In practice these algorithms allow one to reason
with more complex networks than can be handled by the exact algorithms� However� it has
recently been shown that in general computing approximations in multiply
connected net

works is also NP
hard �Dagum and Luby� ����
� Besides the time complexity of reasoning
with multiply
connected networks� such networks also present a space complexity problem�
In particular� the space complexity of the network increases with its degree of connectiv

ity� Bayesian networks with more connections between their nodes require the storage of
more probability parameters� the number of probability parameters required at each node
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increases exponentially with the number of its parents� i�e�� with the number of incoming
arcs� Hence� irrespective of the type of algorithm used there are computational� both time
and space� bene�ts in using networks of low connectivity�

Besides computational advantages� networks of low connectivity also possess conceptual
advantages� The topology of a Bayesian network expresses information about the underlying
causal and probabilistic relationships in the domain� Networks with simpler topologies are
easier to understand� Hence� when we learn a network from raw data� there is an advantage
in constructing simpler networks� they are simpler to understand� This can be particularly
important if we also wish to explain the results computed using the network�

Hence� we are faced with a tradeo�� More complex networks allow for more accurate
models� but at the same time such models are computationally and conceptually more di�

cult to use� The approach we take is to construct Bayesian networks that balance accuracy
and usefulness� Our method will learn a less complex network if that network is su�ciently
accurate� and at the same time� unlike some previous methods� it is still capable of learn

ing a complex network if no simpler network is su�ciently accurate� To make this tradeo�
we use a well
studied formalism� Rissanen�s Minimum Description Length �MDL
 Principle
�Rissanen� ����
�

Besides the reasons given above� making a tradeo� between accuracy and usefulness
seems to be particularly important when learning from raw data� The raw data is itself
only an approximate picture of the true underlying distribution� It is highly unlikely that
the frequencies expressed in the raw data match the true frequencies of the underlying
distribution� Since the raw data is only a sample of the population� the only guarantee
we have is that the frequencies in the raw data are probably close to the true frequencies�
Hence� any method that attempts to uncover the true underlying distribution can at best
only uncover an approximation to the underlying distribution� the approximation that is
expressed in the raw data� If all we can do is approximate the underlying distribution� then
it seems only reasonable to prefer approximations that are more useful�

Example � �Approximately Equivalent Networks� To better illustrate this point consider
the two networks in Figure � in which all the nodes take on binary values� In the graph G��
the node C has two parents� A and B� while in G�� C�s only parent is B� G� is a simpler
singly
connected network� However� if we examine the conditional probability parameters
associated with node C in graph G� we �nd that C�s value depends mainly on the value of
B and only in a minor way on the value of A� Hence� the dependency relationships of the
distribution described by G� are almost the same as those in the distribution described by
G�� these two Bayesian networks can be considered as approximately equivalent structures
even though they have di�erent topologies�

Bayesian networks are commonly used to manage belief update as some of the nodes
become instantiated to particular values� Under this usage two networks can be regarded as
being approximately equivalent if they exhibit close results after belief update� For example�
the two networks in Figure � are approximately equivalent under this usage� Suppose there
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Figure �� Approximately Equivalent Bayesian Belief Networks

is an initial evidence supporting P �a�
 � ���� After performing belief update on these two
networks� both of them lead to almost the same result� P �b�
 � ���� in both networks�
P �c�
 � ����	 in G�� and P �c�
 � ����	 in G�� In this case there is little loss in accuracy
modeling the underlying distribution using the simpler network G� instead of the more
complex G��

Furthermore� say that we learned the probability parameters� P �c�ja�� b�
� � � �� P �c�ja�� b�
�
from frequencies taken over raw data where an error of ��� was possible�� Then it is quite
possible that� e�g�� P �c�ja�� b�
 � P �c�ja�� b�
 � ���� in the true distribution� even though
this was not the case in the raw data� That is� it is quite possible that G� is in fact a more
accurate model of the underlying distribution than G� �although it is not a more accurate
model of the raw data
� Given in addition the fact that it is a simpler� and thus more useful�
model� the approach of learning the most accurate model of the raw data is moot�

As mentioned above we use the MDL principle to make a tradeo� between accuracy and
usefulness� The MDL principle says that the best model of a collection of data is the one that
minimizes the sum of the encoding lengths of the data and the model itself� That is� with
the aid of the model we can represent� or encode� the data more compactly� by exploiting
the probabilistic regularities described by the model� However� the model itself will require

�If this amount of error in the raw data seems excessive� then it should be noted that we could easily
alter this example to accommodate smaller errors�
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some representation� The MDL principle speci�es that both components should be taken
into consideration� However� �nding the network �model
 that minimizes the sum of these
two components is a computationally intractable task� there are simply too many networks to
search� Hence� our realization of the MDL principle is based on a heuristic search algorithm
that tries to �nd a network that has low� but not necessarily minimum� description length�
We have conducted a number of experiments that successfully demonstrate the feasibility of
our method�

In the sequel we �rst discuss related work on learning Bayesian Networks� Then we
discuss in more detail the MDL principle and the manner in which it can be applied to the
task at hand� A discussion of our heuristic search algorithm follows along with a presentation
of the experimental results� We conclude with a discussion of future work�

� Related Work

The earliest work that can be viewed as learning network models was that of Chow and
Liu ���	�
� Their approach was able to recover simple tree structured belief networks from
a database of records� If the database was generated by a distribution that had a tree
structure� it could be exactly recovered� given su�cient raw data� Otherwise their method
guaranteed that the probability distribution of the learned tree network was the closest of
all tree networks to the underlying distribution of the raw data� The criterion of �closeness�
they used was the well
known Kullback
Leibler cross
entropy measure �Kullback and Leibler�
����
� The main restriction of this work was that it could only learn tree structures� Hence� if
the raw data was the result of a non
tree structured distribution� the learned structure could
be very inaccurate� In subsequent work Rebane and Pearl �����
 were able to extend Chow
and Liu�s methods to the recovery of networks of singly connected networks �polytrees
�
If the underlying distribution had a polytree structure� its topological structure could be
exactly recovered �modulo the orientation of some of the arcs
� But again if the raw data
came from a non
polytree distribution� the learned structure could be very inaccurate�

If we have three random variables� X� Y � and Z� we can say that X is independent of
Y given Z if for every value of X� Y � Z� say x� y� z� we have that P �X � xjZ � z
 �
P �X � xjZ � z� Y � y
� That is� the probability that X takes on value x given that Z
takes on value z is una�ected by Y taking on value y� for all values x� y� z� We can denote
this independence relationship by I�X�Y�Z
� Given a set of such independencies� Geiger
et al� developed an approach �����
 that can discover a minimal
edge I
map� A network
structure is an I
map of a probability distribution if every independence relation exhibited
in the network holds also in the distribution �Pearl� ����� Geiger and Pearl� ����
� However�
their approach is again limited to polytrees� it is only guaranteed to work in the case where
the underlying distribution has a polytree structure�

All of the above approaches fail to recover the richer and more realistic class of multiply

connected networks� which topologically are directed acyclic graphs �dags
� Recently� Spirtes
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et al� �����
 have developed an algorithm that can construct multiply
connected networks�
And� more recently� Verma and Pearl ������ ����
 have developed what they call an IC

Algorithm that can also recover these kinds of structures� However� both approaches require
that the underlying distribution being learned be dag�isomorphic�� But� not all distributions
are� As a result� both of these methods have the common drawback that they are not
guaranteed to work when the underlying distribution fails to be dag
isomorphic� In such
cases no conclusions can be drawn about the closeness of �t between the learned structure
and the underlying distribution�

All of these methods share the common disadvantage that they make assumptions about
the underlying distribution� Unfortunately� we are hardly ever in a position to know prop

erties of the underlying distribution� This is what we are trying to learn� Hence� we have no
assurance that these methods will work well in practice� These methods might produce very
inaccurate models if the underlying distribution fails to fall into the category of distributions
they can deal with� Nevertheless� these approaches have provided a great deal of information
pertinent to learning Bayesian networks�

An interesting alternate approach which can also deal with multiply
connected networks
is that of Cooper and Herskovits �����
� Their approach tries to �nd the most probable
network using a Bayesian approach� As with all Bayesian approaches� they must assume a
prior distribution over the space of all possible network structures� They have taken this
prior to be uniform�� Unfortunately� it seems to us that this is the wrong choice� By choosing
this prior their method would prefer a more accurate network� even if that network is much
more complex and only slightly more accurate� Given that we must perform learning with
only a limited amount of data� this insistence on accuracy is questionable��

One way of viewing the MDL principle is as a Bayesian approach in which the prior dis

tribution over the models is inversely related to their encoding length� i�e�� their complexity�
Hence� the MDL principle has a bias towards learning models that are as simple as possible�
As we have argued in Section �� this seems to us to be a far more reasonable approach�

Cooper and Herskovits face the same problem we do� the space of possible network
structures is simply too large to explore exhaustively� Hence� they also develop a heuristic
method that searches a constrained set of structures looking� in their case� for the one with
highest posterior probability� and in our case for the one with minimal description length�
The heuristic method they choose requires a user speci�ed ordering of the variables� and
the network that they learn respects this ordering �i�e�� the parents of a node are always

�A distribution is dag�isomorphic if there is some dag that displays all of its dependencies and indepen�
dencies �Pearl� ����	�

�Cooper and Herskovits have also considered other priors� However� an essential di
culty remains in
justifying any particular choice� With the MDL principle there is a natural justi�cation for preferring less
complex networks�

�Interestingly� the method Cooper and Herskovits used to construct their �uniform
 prior did not in
fact assign equal prior probability to every network� Rather� their prior introduced what appears to be an
entirely accidental �in so far as it was never pointed out in their paper	 bias for simpler networks�

	



lower in this ordering
� The heuristic method we develop� however� does not require such
an ordering� which is an advantage in situations where there is insu�cient information to
generate a total ordering�

� The MDL Principle

In this section we will discuss in greater detail Rissanen�s Minimal Description Length �MDL

principle� a well studied formalism in learning theory� see e�g�� �Gao and Li� ����� Rissanen�
����
� The MDL principle is based on the idea that the best model of a collection of data
items is the model that minimizes the sum of

�� the length of the encoding of the model� and

�� the length of the encoding of the data given the model�

both of which can be measured in bits�

Example � �Polynomials� Say that the data items consist of n points on the plane� each
speci�ed by a pair of real coordinates with �xed precision� �x�� y�
� � � � � �xn� yn
� Suppose we
wish to �nd a function �model
 that �ts these points� If we use an n degree polynomial that
passes precisely through these points we would need n�� numbers to specify the coe�cients
of the polynomial �item �
� To store the data given this polynomial �item �
 we would
need to store the n x
coordinates� x�� � � � � xn� However� we would not need to store the
y
coordinates� y�� � � � � yn� as each yi could be computed precisely from our polynomial and
the respective x
coordinate xi� Hence the sum of the description lengths would be �n � �
times the number of bits required to store the numbers at the given precision�

On the other hand if we used a lower order polynomial� say order k� we would only need
k � � numbers to store the coordinates �item �
� Once again we could store the data points
by specifying the x
coordinates� n numbers� However� now we could not guarantee that our
polynomial precisely �ts the data� hence there would in general be some error �i between the
y
value of the polynomial evaluated at xi and the actual y
coordinate of the i
th data point�
yi� Hence� to encode the data points we would need to store these error factors along with
the x
coordinates� However� if max���� � � � � �n
 was small� we would need less bits to store
these error factors than an ordinary number� In particular� we might be able to store these
error factors in less space than would be required to store the extra n�k coordinates needed
when using a n
degree polynomial� Hence� there might be some polynomial of degree k � n
that yields the minimal description length�

To apply the MDL principle to Bayesian networks we need to specify how we can perform
the two encodings� the network itself �item �
 and the raw data given a network �item �
�
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��� Encoding the Network

To represent a particular Bayesian network� the following information is necessary and suf

�cient�

� A list of the parents of each node�

� The set of conditional probabilities associated with each node� These are required to
parameterize the network�

Suppose there are n nodes in the problem domain� For a node with k parents� we need
k log��n
 bits to list its parents� To represent the conditional probabilities� the encoding
length will be the product of the number of bits required to store the numerical value of each
conditional probability and the total number of conditional probabilities that are required�
In a Bayesian network� a conditional probability is needed for every distinct instantiation of
the parent nodes and node itself �except that one of these conditional probabilities can be
computed from the others due to the fact that they all sum to �
� For example� if a node
that can take on � distinct values has � parents each of which can take on � distinct values�
we will need ��� ����
 conditional probabilities� Hence� under this simple scheme the total
description length for a particular network will be�

nX

i��

�ki log��n
 � d�si � �

Y

j�Fi

sj�� ��


where there are n nodes� and for node i� ki is the number of its parent nodes� si is the
number of values it can take on� and Fi is the set of its parents� and d represents the number
of bits required to store a numerical value� For a particular problem domain� n and d will
be constants� This is not the only encoding scheme possible� but it is simple and it performs
well in our experiments�

By looking at this equation� we see that highly connected networks require longer encod

ings� First� for many nodes the list of parents will get larger� and hence the list of conditional
probabilities we need to store for that node will also increase� In addition� networks in which
nodes that have a larger number of values have parents with a large number of values� will
require longer encodings� Hence� the MDL principle will tend to favor networks in which
the nodes have a smaller number of parents �i�e�� networks that are less connected
 and also
networks in which nodes taking on a large number of values are not parents of nodes that
also take on a large number of values�

As discussed in the introduction� with Bayesian networks the degree of connectivity is
closely related to the computational complexity� both space and time� of using the network�
Hence� our encoding scheme generates a preference for more e�cient networks� That is� since
the encoding length of the model is included in our evaluation of description length� we are
enforcing a preference for networks that require the storage of fewer probability parameters
and on which computation is more e�cient� The encoding length of the model is� however�
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not the only factor in determining the description length� we also have to consider the
encoding length of the data given the model�

��� Encoding the Data Using the Model

Let us �rst be more precise about the form of the raw data� The task is to learn the joint
distribution of a collection of random variables �X � fX�� � � � �Xng� Each variable Xi has an
associated collection of values fx�i � � � � � x

s
ig that it can take on� where the number of values s

will in general depend on i� Every distinct choice of values for all the variables in �X de�nes
an atomic event in the underlying joint distribution and is assigned a particular probability
by that distribution�

For example� we might have three random variables X�� X�� and X�� with X� having
f�� �g� X� having f�� �� �g� and X� having f�� �g as possible values� There are � � � � �
di�erent complete instantiations of the variables� Each of these is an atomic event in the
underlying joint distribution� and has a particular probability of occurring� For example�
the event in which fX� � ��X� � ��X� � �g is one of these atomic events�

We assume that the data points in the raw data are all atomic events� That is� each data
point speci�es a value for every random variable in �X � Furthermore� we assume that the
data points are the result of independent random trials� Hence� we would expect� via the
central limit theorem� that each particular instantiation of the variables would eventually
appear in the database with a relative frequency approximately equal to its probability�
These assumptions are standard�

Given a collection of N data points we want to encode� or store� the data as a binary
string� There are various ways in which this encoding can be done� but here we are only
interested in using the length of the encoding as a metric� via item � in the MDL principle�
for comparing the merit of candidate Bayesian Networks� Hence� we can limit our attention
to character codes �Cormen� Leiserson and Rivest� ����� pp� ���
� With character codes
each atomic event is assigned a unique binary string� Each of the data points� which are
all atomic events� is converted to its character code� and the N points are represented by
the string formed by concatenating these character codes together� For example� say that
we assign the code ���� to the event e��� � fX� � ��X� � ��X� � �g and the code ���� to
the event e��� � fX� � ��X� � ��X� � �g� Then if the raw data consists of the sequence
of atomic events� e���� e���� e��� then it would be encoded as the binary string ������������
using these character codes�

It is well known that for character codes we can minimize the length of the �nal binary
string by taking into account the frequency of occurrence of the di�erent atomic events� In
fact� there is an algorithm for generating optimal� i�e�� minimal length� character codes� This
is Hu�man�s algorithm for generating Hu�man codes �Cormen� Leiserson and Rivest� ����
�
Intuitively� what we do is assign events that occur more frequently shorter codes so that the
total length of the string representing the data becomes shorter� For example� if we have
���� data points and the �� atomic events speci�ed above� then with a �xed length code
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for each event we would need � bits to encode each data point� and ���� bits to encode the
entire database� On the other hand� say that event e��� occurs ��� times� event e��� ���
times� and all the other �� events occur �� times each� Then if we assign the code words �
to e���� �� to e��� and the code words ������ ������ ������ ������ ������� ������� �������
������� ������ ������ to the remaining �� events� we will need

��� � ��� � � � 	 � ��� � �
 � �� ��� � 	
 � ����

bits to encode the entire database� This is the minimal number of bits required using a
character code��

Hu�man�s algorithm requires as input the frequency of occurrence of each event in the
database� In fact� its operation only depends on the relative frequency of occurrence� That
is� the numbers ���� ���� and �� used above could be have been replaced by ���� ����� and
������ where the total number of data points� ����� has been factored out� Now say that
we are expecting to accumulate more and more data points� and we wish to design a code
that will be optimal in the long run as the database becomes larger and larger� Since we are
assuming that the data points are generated by a �xed underlying probability distribution�
we know that in the long run the relative frequency of each di�erent atomic event in the
database will tend to its probability as determined by the underlying distribution� Hence� we
could use those probabilities in Hu�man�s algorithm to design an code that will be optimal
in the long run�

Say that in the underlying distribution each atomic event ei has probability pi� Then
Hu�man�s algorithm� when run using these probabilities� will assign event ei a codeword
of length approximately �log��pi
 �Lelewer and Hirschberg� ����
� When we have N data
points� where N is large� we would expect that there will be Npi occurrences of event ei�
Hence� the length of the string encoding the database will be approximately

�N
X

i

pi log��pi
� ��


where we are summing over all possible atomic events�
Of course we don�t have these probabilities pi� if we did we could construct our Bayesian

network directly from this information� Say instead that we construct� via some learning
scheme� a particular Bayesian network from the raw data� This Bayesian network acts as a
model of the underlying distribution and it also assigns a probability� say qi� to every atomic
event ei� Of course� in general qi will not be equal to pi� as the learning scheme cannot
guarantee that it will construct a perfectly accurate network� Nevertheless� the aim is for qi
to be close to pi� and the closer it is the more accurate is our model�

The constructed Bayesian network is intended as our best �guess� representation of the
underlying distribution� Hence� given that the probabilities qi determined by the network

�These codes were computed using Hu�man�s simple algorithm� If the number of atomic events is some
power of two and all events occur with equal frequency then Hu�man�s algorithm would generate a �xed
length code� This is one of the few times when a �xed length code can be optimal�
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are our best guess of the true values pi� it makes sense to design our Hu�man code using
these probabilities� This means that each event ei will be assigned a codeword of length
approximately �log��qi
 instead of its optimal value of �log��pi
� Despite our use of the
values qi in assigning codewords� the raw data will continue to be determined by the true
probabilities pi� That is� we still expect that for large N we will have Npi occurrences of
event ei� as pi is the true probability of ei occurring� Therefore� when we use the learned
Bayesian network to encode the data the length of the string encoding the database will be
approximately

�N
X

i

pi log��qi
� ��


where again we are summing over all atomic events� How does this encoding length compare
to the encoding length if we had access to the true probabilities pi� An old theorem due
originally to Gibbs gives us the answer�

Theorem ��� �Gibbs� Let pi and qi� i � �� � � � � t� be non�negative real numbers that sum to
�� Then

�
tX

i��

pi log��pi
 � �
tX

i��

pi log��qi
�

with equality holding if and only if �i�pi � qi� In the summation we take � log���
 to be ��

In other words� this theorem shows that the encoding using the estimated probabilities qi
will be longer than the encoding using the true probabilities pi� It also says that the true
probabilities achieve the minimal encoding length possible�

The MDL principle says that we must choose a network that minimizes the sum of its
own encoding length� which we have seen depends on the complexity of the network� and the
encoding length of the data given the model� which we have seen depends on the closeness
of the probabilities qi determined by the network to the true probabilities pi� i�e�� it depends
on the accuracy of the model�

We can use Equation � to evaluate the second item required by the MDL principle� the
encoding length of the data given the model� However� there are two problems with using
this equation directly� First� we do not know the values of pi� In some cases� however� this
problem can be overcome� By the law of large numbers we would expect that the event
ei will appear in the database of N points approximately Npi times� if N is large� Hence�
we can use the actual number of occurrences of ei divided by the number of data points as
an estimator for pi� The second problem� however� is more di�cult� Equation � involves a
summation over all the atomic events� and the number of atomic events is exponential in the
number of variables��

�This also points out that we often will not be able to use the relative frequency of occurrence of the
event ei as an estimator for its probability pi� With an exponential number of atomic events ei some of the
probabilities pi will be so small that our database will not be able to o�er reliable estimates� The database
might only be large enough to estimate low�order marginals which are the union of many di�erent atomic
events�
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Instead of trying to use Equation � directly we can use Gibbs�s theorem to relate the
encoding length of the data to another well known measure� Kullback
Leibler cross
entropy�
Cross
entropy is an important technique in previous work on learning Bayesian networks�

De	nition ��� �Kullback
Leibler Cross
Entropy� Let P and Q be distributions de�ned over
the same event space� e�� � � � � et� Let event ei be assigned probability pi by P and probability
qi by Q� The Kullback
Leibler cross
entropy is a measure of closeness between two di�erent
distributions de�ned over the same event space� In particular� the cross
entropy between P
and Q� C�P�Q
� is given by the equation

C�P�Q
 �
tX

i��

pi�log��pi
� log��qi

� ��


It follows from Gibbs�s theorem that this quantity is always non
negative and that it is zero
if and only if P � Q� i�e�� �i�pi � qi�

From Equation � we know that the minimal possible encoding length of the data will
be �N

P
i pi log��pi
� Hence� from Equation � when using a model that assigns probabilities

qi the encoding length will increase by N�
P

i pi�log��pi
 � log��qi


� That is� we have the
following theorem relating the encoding length of the data to the cross
entropy measure�

Theorem ��� The encoding length of the data is a monotonically increasing function of the
cross�entropy between the distribution de�ned by the model and the true distribution�

This theorem shows that instead of using the data encoding length� Equation �� to
evaluate candidate models� we can equivalently use the cross
entropy measure� Equation ��
Furthermore� this can be accomplished in a computationally feasible manner� That is� al

though Equation � also involves a summation over an exponentially number of atomic events�
we can develop an approach to evaluating cross
entropy that uses local computation over
low
order marginals� This approach is an extension of previous work due to Chow and Liu
���	�
�

Chow and Liu �Chow and Liu� ��	�
 developed a method for �nding a tree structure that
minimized the cross
entropy� and their method was extended by Rebane and Pearl �����

to �nding polytrees with minimal cross
entropy�

Theorem ��� also shows that in a certain sense the MDL principle can be viewed as
a generalization of the previous work of Chow and Liu �as well as that of Rebane and
Pearl �����

� If we were to ignore the complexity �encoding length
 of the model and
were to restrict the class of models being examined� the MDL principle would duplicate
these methods� The advantage of considering both the data and the model �i�e�� the sum of
Equations � and �
 is that we can tradeo� accuracy and complexity when learning a suitable
model of the underlying distribution�
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� Applying the MDL Principle

In theory the MDL principle can be applied by simply examining every possible Bayesian
network that can be constructed over our set of random variables �X� For each of these
networks we could evaluate the encoding length of the data and of the network searching for
the network that minimized the sum of these encodings�

However� this approach is impractical as there are an exponential number of networks
over n variables�� Furthermore� evaluating the encoding length� or equivalently the cross

entropy� directly also involves an exponential amount of work� Hence� we must resort to
a heuristic search through the space of possible networks trying to �nd one that yields a
low� albeit not necessarily minimal� sum of Equations � and �� and we must develop a more
e�cient method for evaluating the cross
entropy of a candidate network�

We accomplish the heuristic search by dividing the problem into two� There can be
between � and n�n��
�� arcs in a dag� For each possible number of di�erent arcs we search
heuristically for networks with that many arcs and low cross
entropy� By Theorem ��� we
know that these networks will yield relatively low encoding lengths for the data� We then
examine these di�erent networks� with di�erent numbers of arcs� and �nd the one that
minimizes the sum of Equations � and �� That is� from these low cross
entropy networks we
select the one that is best according to the MDL principle�

To perform the �rst part of the search� i�e�� to �nd networks with low cross
entropy� we
develop some additional results based on the work of Chow and Liu ���	�
� These results
allow us to develop a more e�cient method for evaluating cross
entropy� rather than using
Equation � which involves a sum over an exponential number of items�

��� Evaluating Cross�Entropy

The underlying distribution P is a joint distribution over the variables �X � fX�� � � � �Xng�
and any Bayesian network model will also de�ne a joint distribution Q over these variables�
If the atomic events in this joint distribution� i�e�� each distinct instantiation of the variables
X�� � � � �Xn� are numbered e�� � � � � et� and each ei is assigned probability pi by distribution
P � and probability qi by Q� then the cross
entropy between P and Q becomes

C�P�Q
 �
tX

i��

pi log�
pi
qi
�

where the sum extends over all atomic events�
To develop a method for evaluating the cross
entropy of the distribution Q speci�ed by

the Bayesian network that avoids summing over the exponentially many atomic events� we
follow Chow and Liu ���	�
 and take advantage of the fact that Q has a special form� In

�Robinson �����	 gives a recurrence that can be used to calculate this number�
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particular� since Q is speci�ed by a Bayesian network it can be decomposed into a product
of lower
order marginals�

In an arbitrary Bayesian network Q� �X
 will take the form �Pearl� ����
�

Q� �X
 � Q�X� j FX�

Q�X� j FX�


 � � � Q�Xn j FXn
�

� P �X� j FX�

P �X� j FX�


 � � � P �Xn j FXn
� ��


where FXi
is the� possibly empty� set of parents of Xi�

Every variable Xi corresponds to a node in our network� This node will have some set of
parents� FXi

� determined by the network�s topology� To parameterize the network we need
to know the probability of Xi taking on a value v given that its parents take on the values
�u� for every possible v and �u� An unbiased estimator for this probability is Nv��u�N�u� where
Nv��u is the number of data points in which Xi has value v and its parents have the values
�u� and N�u is the number of data points in which Xi�s parents have the values �u� We use
these frequency counts as estimates for the low
order marginals Q�XijFXi


 that appear in
Q�s product decomposition� However� since the raw data was generated by the underlying
distribution P � by the law of large numbers we would expect that the raw data frequency
counts will be close to the low
order marginals over P � That is� we could expect Nv��u�N�u to
be close to P �Xi � vjFXi

� �u
� Hence� the values we use for Q�XijFXi

 should be close to

the values for P �XijFXi

� and we can make the substitution above�	

Note� however� that just because these low
order marginals for Q and P are close does not
mean that the joint probabilities Q� �X
 and P � �X
 are also close� That is� as distributions�

Q and P need not be close� In particular� although Q� �X
 is equal to a product of low
order

marginals involving P � it might not be the case that P � �X
 is also equal to this product�

Q� �X
 is an estimate of P � �X
 precisely because it is assuming that the joint distribution can
be written as a product of lower
order terms� and the accuracy of our estimate will depend
on how well we chose the lower
order terms�

Chow and Liu ���	�
 proved the following theorem�

Theorem 
�� �Chow and Liu� If the mutual information between any two nodes Xi and Xj

is de�ned as

W �Xi�Xj
 �
X

Xi�Xj

P �Xi�Xj
 log�
P �Xi�Xj


P �Xi
P �Xj

�	


where we are summing over all possible values of Xi and Xj� then by assigning to every
arc between two nodes Xi and Xj a weight equal to W �Xi�Xj
� cross�entropy C�P�Q
 over

all tree structured distributions Q is minimized when the structure representing Q� �X
 is a
maximum weight spanning tree�

�Lower�order marginals like P �XijXj	 can be estimated fairly accurately from a reasonably sized database�
Such marginal include an exponential number of atomic events� Hence� we would expect that a statistically
useful sample could be accumulated from a reasonably sized database�
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Using this theorem they developed an algorithm for learning the best tree model by con

structing the maximum weight spanning tree� Note that by using low cost local computation
they can evaluate the mutual information weight and use it to �nd a network of minimal
cross
entropy without ever computing the actual cross
entropy� As we pointed out above it
is very expensive to compute cross
entropy directly� Hence� we want to deal with arbitrary
Bayesian networks using a similar technique� and we accomplish this by extending Chow and
Liu�s method�

We can extend Chow and Liu�s approach to the general case by de�ning a new weight
measure for a node� Xi� with respect to an arbitrary set of parents as follows�

W �Xi� FXi

 �

X

Xi�FXi

P �Xi� FXi

 log�

P �Xi� FXi



P �Xi
P �FXi



��


where we are summing over all possible values that Xi and its parents FXi
can take�
 Note

that if the network is a tree each FXi
will either be empty of a singleton� and our formula

will reduce to that of Chow and Liu�s�
The following theorem holds�

Theorem 
�� C�P�Q
 is a monotonically decreasing function of

nX

i���FXi ���

W �Xi� FXi

� ��


Hence� it will be minimized if and only if the sum is maximized�

The proof is given in the Appendix� The summation gives the total weight of the directed
acyclic graph according to the node by node weight measure de�ned in Equation ��

In conclusion� given probabilities computed from the raw data� we can calculate the
weight of various candidate network structures using local computation at each node� Our
theorem shows that structures with greater weight are closer� in terms of cross
entropy� to the
underlying distribution� If we can �nd a directed acyclic graph with maximum total weight�
then the probability distribution of this structure will be closest to the underlying distribution
of the raw data with respect to the cross
entropy measure� Hence� by Theorem ��� it will
yield the shortest encoding of the data�

It should be noted that we cannot simply use the encoding length of the data without
considering the encoding length of the network� In fact� for every probability distribution
P � if we let

Q� �X
 � P �X� j X�� � � � �Xn
P �X� j X�� � � � �Xn
 � � � P �Xn
� ��


	Note that as the number of Xi�s parents increase the number of terms in this summation still su�ers
from an exponential growth� Hence� when we use this measure to search through the space of candidate
networks we are still limited to networks of �tractable
 connectivity� Nevertheless� this measure is still a
signi�cant improvement over the direct computation of cross�entropy� which is exponential regardless of the
network�s topology�
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then Q � P � In other words� if we construct the multiply
connected network corresponding
to the structure on the right side of the above expression� the probability distribution de�ned
by this structure will absolutely coincide with the underlying distribution of the raw data�
and hence it will have lowest possible cross
entropy and highest possible weight� However�
this structure is a complete graph� and worse still� it does not convey any information since
it can represent any distribution� This indicates that when we allow structures of arbitrarily
complex topology� we can obtain a trivial match with the underlying distribution�

The MDL principle� however� allows us to avoid this di�culty� It considers not only the
accuracy of the network but also its complexity� The totally connected network given in
this equation will require a very large encoding� For example� to encode node X� we will
need to store an exponential number of probability parameters� Hence� there will probably
be a less complex network with a shorter encoding that is still able to produce a reasonably
short encoding of the data� i�e�� that is still reasonably accurate� When we evaluate the total
description length� the sum of the encoding lengths for the model and the data� this less
complex network will be preferred�

The next theorem provides some additional information about the relationship between
accuracy and complexity of the networks�

Theorem 
�� Let Mi be the maximum weight of all networks that have i arcs� then

i � j 	Mi 
Mj �

For the proof of this theorem see the Appendix� That is� we can always increase the quality
of the learned network� i�e�� decrease the error in the sense of decreasing the cross
entropy�
by increasing the topological complexity� i�e�� by learning networks with more arcs� Again� it
is only through our use of the MDL principle that we avoid the di�culty of always preferring
more complex networks�

��� Searching for Low Cross�Entropy Networks

Given our ability to evaluate the cross
entropy of a network through an evaluation of its
weight� we proceed to describe a heuristic search routine that searches for a good network
model�

Many di�erent heuristic search procedures are possible� but we have developed one that
is based on the notion of ensuring that we spend an equal amount of time searching among
the simpler networks� i�e�� ones with fewer arcs� as we do searching among the more complex
ones� i�e�� ones with more arcs� To do this we maintain separate sets of candidate graphs�
one set for each possible number of arcs� and we time
share the search between these sets�

Say that we are searching for a network de�ned over the variables �X � fX�� � � � �Xng�
These variables become the nodes in the network� For directed acyclic networks we can have
between � and n�n � �
�� arcs between these nodes� Hence� we maintain n�n � �
�� � �
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separate search sets which we denote as the sets Si� for � � i � n�n� �
��� Each search sets
Si contains candidate i
arc networks���

Before we start the search� however� we calculate the mutual information W �Xi�Xj
�

Equation 	� between every pair of distinct nodes Xi� Xj � �X� i �� j� These weights give us
a rough idea of the interdependency between every pair of nodes� Using these weights we
generate a list of all pairs of distinct nodes� Pairs� in which the pairs are sorted by their
mutual information weight� That is� the �rst pair of nodes on Pairs has highest mutual
information�

Within each search set Si we perform best
�rst search� The individual elements of Si
have two components� a candidate network with i arcs� and a pair of nodes between which a
new arc could be added in the candidate network without causing a cycle� The elements of Si
are separated into an Open and a Closed list� and we perform best
�rst search using these
lists� The elements on the Open list are ordered by heuristic value� which is calculated as the
weight of the element�s network� calculated using Equation �� plus the mutual information
weight between the element�s pair of nodes� calculated using Equation 	� When we run the
search procedure on the set Si we choose the element on Open with highest heuristic value
and expand it via the following procedure�

�� Remove the element with greatest heuristic value from the Si�s Open list and copy
it onto the Closed list� Let the element�s network be Gold and the element�s pair of
nodes be �Xi�Xj
�

�� Invoke the PD
procedure on Gold and �Xi�Xj
 to get a new network Gnew� The PD

procedure� described in detail below� adds an arc between the nodes Xi and Xj creating
a new network Gnew� It decides on the direction of this new arc� i�e�� if it should be
Xi 	 Xj or Xj 	 Xi� picking the direction that most increases the network�s accuracy�
In the process it might also reverse the direction of other arcs in Gold� Note that Gnew

is a network with i � � arcs� so it must be placed inside the search set Si�� not back
into Si�

�� If Gnew is fully connected� we place a copy of it into a list of �nal candidate networks�
Final�

�� Next we make a new search element consisting of Gnew and the �rst pair of nodes from
Pairs that appear after the old pair �Xi�Xj
 and between which an arc could be added
without generating a cycle in Gnew� Then� we insert this element into the Open list of
the search set Si��� placed in correct order according to the heuristic function�

�� Finally� we make a new search element consisting of Gold and the �rst pair of nodes
from Pairs that appear after the old pair �Xi�Xj
 and between which an arc could be

�
These search sets are dynamically generated as search progresses� so search may stop before all n�n��	��
search sets are generated�
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added without generating a cycle in Gold� This element is inserted into the Open list
of search set Si� placed in the correct order according to the heuristic function�

Note that the expansion of an element in Si generates two new elements� one placed on
the Open list of Si and the other placed on the Open list of Si��� This means that we can
start the search by creating just the list S� containing one element on its Open list� the
unique network with no arcs and the �rst pair of nodes on Pairs�

Example � Say that we have the nodes X�� X�� and X�� and say that Pairs is in the
order f�X��X�
� �X��X�
� �X��X�
g� Initially� we would create the search set S� containing
a single element on its Open list� �fg � �X��X�

� where fg indicates that this element�s
network has no arcs�

This element would be expanded when we run the search procedure on S�� It would be
removed from Open and the new element �fg � �X��X�

 would be placed on S��s Open list�
Also� the new search set S� would be created and the element �fX� 	 X�g � �X��X�

 would
be placed on its Open list �for now we ignore how the direction of the arcs is determined�
these details are given below
�

Now we have two search sets to run our search on� There are various schedules for
timesharing the search between these sets� but say that we once again search inside S�� This
would convert S��s Open list to ��fg � �X��X�

 and the element �fX� 	 X�g � �X��X�


would be added to S��s Open list� Now search would be performed in S�� Assuming that
higher heuristic value was given to the element �fX� 	 X�g � �X��X�

� this would result in
the new element �fX� 	 X�g � �X��X�

 being added to S��s Open list� Also a new search
set S� would be created containing the element �fX� 	 X��X� 	 X�g � �X��X�

� Since�
the network in this new element is connected it would also be added to Final�

To control the search as a whole we allocate a �xed amount of resources for searching
within each search set� Once those resources have been consumed in all the search sets�
search is terminated� At termination there will be some collection of connected networks in
Final� These networks are then evaluated to �nd the one that is best according to the MDL
principle� i�e�� the one that minimizes the sum of the description length of the model and
of the data given the model� Since our heuristics tries to grow networks by adding higher
weight arcs� the completed networks that are found �rst� i�e�� that are placed on Final

before search terminates� tend to be of high weight� That is� they tend to be fairly accurate
models� The more complex networks will generally be more accurate� as demonstrated by
Theorem ���� but the MDL principle will trade this o� against their complexity� Thus� our
selection from Final will be the simplest possible model of reasonable accuracy�

There are O�n�
 search sets� since there are at most n�n � �
�� directed arcs in any
acyclic network� Furthermore� the most complex task each time an element is expanded
is the PD
procedure �described below
� In practice complexity of this procedure is O�N
�
where N is the number of raw data points� In practice we have found that a resource
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limit of O�n�
 node expansions within each search set yields very satisfactory performance�
Hence� the complexity of the overall searching algorithm is O�Nn�
� Various re�nements are
possible for dealing with networks containing a larger number of nodes� i�e�� when n is very
large� However� the aim of our current work has been to demonstrate the viability of our
method� For this we have found our current approach to be successful� and hence have left
such re�nements for future work�

The only thing left to describe is the PD� or parents
detection� procedure� When we
expand an element on one of the search lists we grow the element�s network by adding an
arc between the pair of nodes speci�ed in the element�s second component� Since the arcs
are directed� we have to decide upon a direction for the new arc� The PD procedure decides
upon a locally optimal way of placing a new arc into an existing network so as to maximize
the weight of the resulting network� It considers the direction the new arc should have�
and it also searches the parents of the nodes connected by the new arc to determine if the
direction of other arcs already in the network should be reversed�

Input � A network Gold�
� An pair of nodes �Xi�Xj
 between which an arc is to be added�

Output � A new network Gnew with the arc added and some other arcs possibly reversed�

�� Create a new network by adding the arc �Xi 	 Xj
 to Gold� In this new network we
then search locally to determine if we can increase its weight by reversing the direction
of some of its arcs� This is accomplished via the following steps�

�a
 Determine the optimal directionality of the arcs attached directly to Xj by exam

ining which directions maximize the weight measure� Some of these arcs may be
reversed by this process�

�b
 If the direction of an existing arc is reversed then perform the above directionality
determination step on the other node a�ected�

�� Repeat the above steps except this time with the new network formed by adding the
arc �Xj 	 Xi
 to Gold�

�� Select the network of greatest weight from the two networks found in the above steps�
This network is the output�

The complexity of the PD
procedure will depend on how many arcs are attached to Xi

and Xj �step ��a
 above
� and in the worst case if the directions of a number of these arcs
are reversed� it will depend on the size of the set of arcs reachable from Xi and Xj �step ��b

above
� However� in practice we have never found more than a small number of arcs being
examined by the procedure� Generally� changes in arc direction do not propagate very far�
Hence� we can treat this factor as a constant� Each time an arc�s direction is examined in
step �� we must evaluate the weight measure for each direction� Equation �� This involves
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the computation of marginal probabilities estimated from the raw data� In practice� we
have found that this computation has complexity O�N
� where N is the number of cases in
the database� Equation � involves a summation over all instantiations of the parent nodes
of every node� and the number of instantiations is exponential in the number of parents�
However� in the networks examined by our search algorithm the number of parents any node
possesses never exceeds a constant bound� Hence� the complexity of evaluating Equation �
is dominated by the number of data points� N � We have also found that the PD
procedure
is drastically speeded up by hashing some of the probabilities computed from the raw data�
some of these probabilities are used repeatedly in di�erent weight computations�

� Evaluating The Experimental Results

A common approach to evaluating various learning algorithms has been to generate raw data
from a predetermined network and then to compare the network learned from that data with
the original� the aim being to recapture the original� For example� this is the technique used
by Cooper and Herskovits �����
� An implicit assumption of this approach is that the aim
of learning is to reconstruct the true distribution� However� if one takes the aim of learning
to be the construction of a useful model� i�e�� one that is a good tradeo� between accuracy
and complexity� as we have argued for� then this approach is not suitable� In particular� the
aim of our approach is not to recapture the original distribution�

Hence� to evaluate our experimental results we use a di�erent approach� Since Bayesian
networks are commonly used to manage belief update� two networks can be regarded as
being approximately equivalent� in a practical sense� if they exhibit close results after belief
update� Belief update occurs when one of the nodes in the network is instantiated to a
particular value� and all of the other nodes have their probabilities updated to the posterior
probabilities that arise from this instantiation� Each node�s new probability is determined by
the probabilistic in�uences of the nodes in its local neighborhood� This local neighborhood
shields the node from the rest of the nodes in the network�

When two di�erent networks are de�ned over the same set of nodes� i�e�� they di�er only
in terms of the connections between the nodes� a node� say X�� can have a di�erent local
neighborhood in each of the networks� Since it is this local neighborhood that determines
X��s posterior probabilities after update� we can compare the �closeness after update� of
these two networks by comparing X��s local neighborhood in these two networks� If we
do this for every node we will obtain a point
to
point measure of the closeness of the two
networks� That is� we will obtain for each node a measure of how belief update will di�er
between the two networks at that node� Taking the average of this node
to
node distance we
obtain an estimate of how close the two networks are in terms of their total belief updating
behavior�

In a Bayesian network the neighborhood of a node has the property that given an instan

tiation of the nodes in the neighborhood� the node is independent of the rest of the network�
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The neighborhood of a node X� consists of three types of nodes� the direct parents of X��
the direct successors of X�� and the direct parents of X��s direct successors� Let F� and
F� be the set of neighborhood nodes of X� in two di�erent Bayesian networks G� and G�

respectively� Furthermore� let P� and P� be the probability distributions de�ned by G� and
G�� respectively� We evaluate the distance between X� in G� and X� in G� by the formula

�

kF�k

X

F�

D�P��X
� j F�
� P��X

� j F�

 �
�

kF�k

X

F�

D�P��X
� j F�
� P��X

� j F�

 ���


where kFik is the total number of all possible instantiations of the neighborhood nodes Fi�
we are summing over all instantiations of Fi� and D is a function measuring the �distance�
between two probability distributions� Note that once we have chosen a particular instanti

ation for Fi the probabilities Pj�X�jFi
 de�ne a distribution over the possible values of X��
That is� we are in fact applying D to two distributions�

Since in network G� instantiating F� renders X� independent of all other nodes in G��
we can examine the behavior of node X� in G� without considering nodes not in F�� Every
distinct instantiation of F� will yield a particular distribution over the values of X�� In
G� however� F� will not be X��s neighborhood� Nevertheless� we can still examine the
distribution over X��s values when the nodes in F� are instantiated in G� using various
belief updating algorithms� The distance between these two distributions� over X��s values
in G� and over X��s values in G�� gives a measure of how divergent belief update will be
in these two networks for this particular instantiation of F�� The formula above simply
takes the average of this distance over all possible instantiations of X��s neighborhood F��
Finally� we can apply the same reasoning with X��s neighborhood in G�� F�� Hence� the
second summation measures the distance �in the other direction�� This makes our formula
symmetric in its arguments�

To apply Equation �� we simply have to compute the probability distributions Pj�X�jFi
�
This can be done� given the networks G� and G�� with well known belief updating algorithms
like �Jensen� Lauritzen and Olesen� ����
� Then we have to determine a suitable distance
function between distributions� D� We have used two implementations of D� For the �rst
we simply take the average of the absolute di�erence in the probabilities at each point in the
distribution� For example� if we have two distributions over a coin toss� with P� � fp� � � pg�
and P� � fq� �� qg� then this distance function would yield jp � qj as the distance between
P� and P�� For the second we use the Kullback
Leibler cross
entropy measure given in
Equation ��

Finally� to calculate the total distance between the two networks we simply average the
node to node distance �Equation ��
 over all of the nodes� We use this method� with the
two distribution distance functions D described� to evaluate our learning mechanism� In
particular� following Cooper and Herskovits �����
� we construct sample original networks�
Then we generate raw data using Henrion�s logic sampling technique �����
� and apply
our learning mechanism to the data to generate a learned network� We can then compare
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Figure �� Small Bayesian Belief Networks

the learned network with the original by examining any structural di�erences and by also
evaluating the distance between them�

� Experimental Results

We have done three sets of experiments to demonstrate the feasibility of our approach� The
�rst set of experiments consisted of a number of Bayesian networks that were composed of
small number of variables ��
 as shown in Figure �� Some of these structures are multiply

connected networks�

The second experiment consisted of learning a Bayesian network with a fairly large num

ber of variables ��� nodes and �	 arcs
� This network was derived from a real
world ap

plication in medical diagnosis �Beinlich et al�� ����
 and is known as the ALARM network
�Figure �
�
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The third experiment consisted of learning a small Bayesian network� as shown in Fig

ure �� We experimented by varying the conditional probability parameters of this network�
Here the aim was to demonstrate that our procedure could often learn a simpler network
that was very close to the original�

In the �rst set of experiments� since the networks are small we were able to perform an
exhaustive search of the possible acyclic networks with di�erent numbers of arcs� That is� we
did not need the heuristic search approximation� Thus� the maximum weight network struc

ture for each di�erent number of arcs was found� In all cases� we observed that the weight
was non
decreasing as the number of arcs becomes higher� as predicted by Theorem ����
After applying the MDL principle by calculating the description lengths of the networks� the
network with the minimum description length was selected� In all these cases we found that
the learned network was exactly the same as the one used to generate the raw data�

In the second experiment� we used the described heuristic search algorithm to �nd the
network structure� The Bayesian network recovered by the algorithm was found to be close
to the original network structure� Two di�erent arcs and three missing arcs were found�
The �distance� between this learned structure and the original structure was small� They
were ���� and ����	 obtained by the average di�erence and the Kullback
Leibler measure
for the function D respectively� One additional feature of our approach� in particular a
feature of our heuristic search algorithm� is that we did not require a user supplied ordering
of variables� cf� �Cooper and Herskovits� ����
� We feel that this experiment demonstrates
that our approach is feasible for recovering Bayesian networks of practical size�

In the third set of experiments� the original Bayesian network G	 consisted of � nodes and
� arcs� We varied the conditional probability parameters during the process of generating
the raw data obtaining four di�erent sets of raw data� Exhaustive searching was then carried
out and the MDL learning algorithm was applied to each of these sets of raw data� Di�erent
learned structures were obtained� all of which were extremely close to the original network as
measured by both of our distance formulas� In one case the original network was recovered�

This experiment demonstrates that our algorithm yields a tradeo� between accuracy and
complexity of the learned structures� in all cases where the original network was not recovered
a simpler network was learned� The type of structure learned depends on the parameters�
as each set of parameters� in conjunction with the structure� de�nes a di�erent probability
distribution� Some of these distributions can be accurately modeled with simpler structures�
In the �rst case� the distribution de�ned by the parameters did not have a simpler model of
su�cient accuracy� but in the other cases it did�

� Conclusions

We have argued in this paper that the purpose of learning a Bayesian network from raw data
is not to recover the underlying distribution� as this distribution might be too complex to
use� Rather� we should attempt to learn a useful model of the underlying phenomena� Hence�
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there should be some tradeo� between accuracy and complexity� The MDL principle has as
its rational this same tradeo�� and it can be naturally applied to this particular problem�
We have discussed in detail how the MDL principle can be applied and have pointed out
its relationship to the method of minimizing cross
entropy� Using this relationship we have
extended the results of Chow and Liu relating cross
entropy to a weighing function on the
nodes� This has allowed us to develop a heuristic search algorithm for networks that minimize
cross
entropy� These networks minimize the encoding length of the data� and when we also
consider the complexity of the network we can obtain models that are good under the MDL
metric� Our experimental results demonstrate that our algorithm does in fact perform this
tradeo�� and further that it can be applied to networks of reasonable size�

There are a number of issues that arise which require future research� One issue is the
search mechanism� We are currently dividing the task into �rst searching for a network that
minimizes the encoding length of the data and then searching through the resulting networks
for one that minimizes the total description length� This method has been successful in
practice� but we are also investigating other mechanisms� In particular� it seems reasonable
to combine both phases into one search� Another important component that has not yet
been addressed is the accuracy of the raw data� In general� there will be a limited quantity
of raw data� and certain parameters can only be estimated with limited accuracy� We are
investigating methods for taking into account the accuracy of the data in the construction�
For example� nodes with many parents will require higher
order marginal probabilities as
parameters� Estimates of such parameters from the raw data will in general be less accurate�
Hence� there might be additional reasons to discourage the learning of complex networks�
Finally� there might be partial information about the domain� For example� we might know
of causal relationships in the domain that bias us towards making certain nodes parents of
other nodes� The issue that arises is how can this information be used during learning� We
are investigating some approaches to this problem�
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Appendix

Proof of Theorem 
�� C�P�Q
 is a monotonically decreasing function of
Pn

i���FXi ���
W �Xi� FXi


�

Hence� it will be minimized if and only if the sum is maximized� �All logarithms are to the
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Since Xi is a component of �X � we have
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If we de�ne H� �X
 � �
P

�X P � �X
 log P � �X
� the �rst term and the third term in Equation ��

can be expressed as �H� �X
 and
Pn

i��H�Xi
 respectively� And since P �Xi� FXi
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ponent of P � �X
� we have�
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As a result� the closeness measure becomes�
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� Q� �X
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Since the last two terms in Equation �� are independent of the structure of the network and
the closeness measure C�P � �X
� Q� �X

 is non
negative� C�P � �X
� Q� �X

 decreases monoton

ically as the total weight �i�e�� the �rst term
 of the graph increases� Hence� it will be
minimized if and only if the total weight is maximized�

Proof of Theorem 
�� Let Mi be the maximum weight of all learned networks that have
i arcs� then

i � j 	Mi 
Mj �

Proof� It is su�cient to prove the following inequality �All logarithms are to the base �
�
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where Xi is an arbitrary node� and �A and �B are two arbitrary disjoint sets of nodes in a
graph� Given the graph that has maximum weight Mi among all graphs with i arcs� we can
�nd a nodeXi such that we can add one more parent toXi without creating cycle� Obviously�
this Xi must exist for all acyclic graphs �except for complete graphs
� This inequality shows
that by increasing the number of parents of a node� its weight will not decrease� Hence� we
can construct a graph with i � � arcs that has weight greater or equal to Mi� By simple
induction� the theorem holds�

To prove this inequality� consider�
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