
Symmetric Component Caching

Matthew Kitching and Fahiem Bacchus
Department of Computer Science,

University of Toronto, Canada.
[kitching

�
fbacchus]@cs.toronto.edu

Abstract

Caching, symmetries, and search with decomposi-
tion are powerful techniques for pruning the search
space of constraint problems. In this paper we
present an innovative way of efficiently combining
these techniques with branch and bound for solv-
ing certain types of constraint optimization prob-
lems (COPs). Our new method significantly re-
duces the overhead of performing decomposition
during search when dynamic variable orderings are
employed. In addition, it supports the exploita-
tion of dynamic symmetries that appear only during
search. Symmetries have not previously been com-
bined with decomposition. Finally, we achieve a
superior integration of decomposition and caching
with branch and bound than previous approaches.
We test our methods on the Maximum Density Still
Life problem and show that each of our ideas yields
a significant gain in search performance.

1 Introduction
As the variables of a constraint satisfaction problem (CSP)
are assigned during backtracking search the problem can
break into disjoint parts. Consider a CSP consisting of the
variables ��� , � , � , � , �	� and two constraints 
���������������
and 
��������������� . If we make the assignment �! #" , then
the resulting reduced CSP will consist of two disjoint sub-
problems that share no variables. One subproblem is over
the variables � and � with the constraint 
%$	&('� ��%�����) 
*�+,�- �".�������	� while the other subproblem is over � and� with the constraint 
�$�&/'� ��0�����0 1
 � ,�- 2".���0���%� .
We call these disjoint subproblems created by variable assign-
ments components. The two components created by the as-
signment �! 3" can be solved independently: any solution4 �5 768���9 7:<; to the first, and solution

4 �= ?>/���9 ?@A;
to the second, can be combined with �B �" to obtain a so-
lution to the original CSP

4 �C D68���E 9:F���  G"H���I >/���J K@A; . Since the worst case complexity of solving a CSP
is exponential in the number of variables, decomposition into
components can yield significant computational gains.

This insight has been exploited to perform search where
decomposition is applied recursively, e.g., [Bayardo & Pe-
houshek, 2000; Darwiche, 2001; Park & Gelder, 2000; Sang
et al., 2004; Dechter, 2004; Amir & McIlraith, 2000]. This
can yield a reduction in the worst case complexity of search
from L�MONQP�R to S(MONQTUR , where S is the number of variables of

the problem and V is the tree width of the CSP-graph (the
graph determined by the constraint scopes) [Darwiche, 2001].

A component produced by decomposition at one point of
the search tree might appear at many other nodes of the search
tree. Caching allows us to solve each component once and
then reuse that solution in the rest of the search. When
caching is added to decomposition the worst case complexity
of search can be further reduced, from SWMXNQTUR to L+MXNQTUR [Dar-
wiche, 2001; Bacchus, Dalmao, & Pitassi, 2003]. This can be
a significant speedup in practice (e.g., see the results in [Sang
et al., 2004]). Of course caching requires space, but in this
case the space requirements are completely flexible. In partic-
ular, caching is used only to speedup the algorithm—it is not
required for correctness. Thus we can cache as many solved
components as we have space for—within certain practical
limits the more space we have for caching the faster the search
will proceed. Furthermore, we can always prune the cache of
less useful items if available space is exhausted.

Decomposition and caching impose a significant overhead
during search, but these techniques are still very effective for
more complex constraint problems, e.g., finding the best solu-
tion (optimization) [Marinescu & Dechter, 2005] or counting
the number of solutions [Sang et al., 2004]. When a static
variable ordering is used much of this overhead can be elim-
inated using data structures computed prior to search [Dar-
wiche, 2001]. However, dynamic variable orderings can yield
significant reductions in the size of the search tree, enough to
pay off their added overhead (e.g., [Marinescu & Dechter,
2006]). Nevertheless, methods for reducing this overhead
and for making these techniques even more effective are still
needed to increase the practical benefits of dynamic decom-
position.

In this paper we present a method for making search with
decomposition and caching more effective in the context of
dynamic variable orderings. Our key contribution involves a
method for representing the common structure of an entire set
of components in a single data structure we call a component
template. The individual components that are instances of the
template can thus share a single representation of their com-
mon information, making caching considerable more space
efficient. With templates we can also increase the efficiency
of cache lookup—we can access any of the template’s in-
stances by simple array indexing. Templates also allow us to
perform component detection during search more efficiently.

Another final key contribution of this paper is a method for
automatically detecting symmetries between templates. Once
we have detected that two templates YW� and YU� are symmet-



ric we can use the discovered symmetry mapping to map all
instances of Y/� to a symmetric instance of Y(� . Thus the tem-
plate symmetry encodes an entire set of individual compo-
nent symmetries. This makes computing template symme-
tries much more cost effective than computing symmetries
between individual components. Template symmetries allow
us to make more effective use of cached information—cached
component bounds can now be used to provide bounds for all
symmetric components as well. This can yield significant re-
ductions in the size of the explored search space.

Finally, we show how to achieve a better integration be-
tween branch and bound and component caching by caching
bounds on components rather than requiring that the compo-
nents be completely solved prior to being stored in the cache
(as done, e.g., in [Marinescu & Dechter, 2005]).

In the sequel we first expand on the background behind
our approach. Then we present our new technique of compo-
nent templates and show how they can be exploited so as to
achieved the benefits just described. Then we present some
initial empirical results on the test problem of Maximum Den-
sity Still Life.

2 Background
In this paper, we concentrate on solving Constraint Opti-
mization Problems (COPs) that have decomposable objective
functions. However, our template technique could be used in
other applications of component caching (search with decom-
position and caching), e.g., counting solutions.

A Constraint Optimization Problem (COP), Z , is specified
by a tuple

4�[ ��\	]_^`��ab��cd; , where
[

is a set of variables, for
each eIf [ , \�]+^`g eih is its domain of values, a is a set
of constraints, and c is an objective function that assigns a
value to all complete assignments of values to the variables.
The typical goal in solving a COP is to find an assignment of
values to the variables that maximizes c and at the same time
satisfies all of the constraints in a .

Our techniques are effective on COPs that have decompos-
able objective functions and constraints. In particular, we re-
quire that c be decomposed into the sum of objective sub-
functions j+k , cI ml k j_k , such that each j+k is dependent
on only a subset of the variables n<o�]�pAqr�j k �Hs [ , and that
each constraint 
tf�a also be dependent on only a subset of
the variables n<o�]�puqr�
d�ds [ .1 The constraints and objective
sub-functions can be unified by treating each constraint as an
additional objective sub-function mapping satisfying assign-
ments to 0 and violating assignments to v2w . Thus the overall
(unified) objective function becomes xy l k j_kWz l|{ 
 { ,
and the problem is simply to maximize this augmented ob-
jective function. (This formulation is like a soft-constraint
problem). Hence, in this paper we regard a COP as being the
tuple

4�[ ��\	]_^`��x�; where x includes both the original objec-
tive sub-functions and the hard constraints encoded as addi-
tional objective sub-functions. We use the term objectives to
denote the sub-functions in x .

1If the objective function or constraints cannot be decomposed,
our method will still be correct but no decompositions will be gen-
erated during search. Often, however, the objective and global con-
straints can be reformulated in a decomposed form.

Note that we could equally use an objective function that
is decomposed into a product rather than a sum of objectives;
similarly we could cast the problem as a minimization task
rather than a maximization task.

Components. In backtracking search each node of the search
tree S corresponds to a set of variable assignments, and these
assignments might cause the problem to be broken up into
disjoint components. A component is a subset of the origi-
nal problem that has been isolated by a set of assignments.
Here we present a formalization of this idea tailored to our
subsequent developments.

A component, } , of a COP Z~ 4�[ ��\�]+^`��x�; is a tuple4 }8� [ ��}���x���}�� �%; where }8� [��1[
, }���x � x and }8� � is a

set of assignments �_e k  y6 k ���<����� , subject to the following
conditions. Let �r6��_���}�� �%� be the set of variables assigned
values in }�� � .

1. }8��x- ��)�X����� �b��jA� e�f�����j��8�r�j+���
2. �r6��+���}8� �%�/��}8� [  �	� ����� ������j����r�j+�
3. �r6��+���}8� �%�/��}8� [  # 
4. p is minimal. That is, there is no other tuple �U¡. 4 }�¡,� [ ��}�¡���x���}r¡,� �%; that satisfies conditions 1-3 with}r¡�� [�� }���e , }r¡���x � }���x , }r¡¢� � }8� � and with at least

one of these sets being a strict subset.

That is, a component contains a set of variables and all of
the objectives over these variables. Furthermore, these ob-
jectives are isolated from the rest of the problem by a set of
assignments }8� � : all of the variables they mention are ei-
ther variables in the component or are instantiated in }8� � .
Furthermore none of the variables of the component, i.e., the
variables in }8� [ , are assigned in }8� � .

The Components at a node. At each node S some set of
assignments � have been made, and some set of variables£

remain unassigned. The components at S , } � �<�¤�Q� }r¥ , are
those components such that (a) } k � [¦� £ (the variables of
the components are unassigned), (b) } k � � � � (the current
assignments isolate the variables of the component).

Example 1 Consider a COP with variables �F� , � , � , § ,� , �)� and constraints 
*����%��������� , 
¨��������¨��§�� , and
�©�,����§�� . At a node n where just the assignment M=a
has been made, there will be two components: }uª�« with}¬ª�«�� [  y��� , ��� , }rª<«���x~ y�F
 � � , and }¬ª�«<� �C y�_�  G6��
and }��® P with }r�® P � [  ¯��� , � , §°� , }r�® P ��x± ¯�_
¨����
�©�� ,
and }r�® P � �J ��_�² #6�� .
Computing the components at a node S is easily accom-
plished by standard algorithms for detecting the CONNECTED
COMPONENTS of a graph, e.g., union-find or depth-first
search. In particular, we consider an undirected graph ³ P ,
that contains a node for every objective in x and for every
uninstantiated variable e . There is an edge between two
nodes in ³ P if and only if one of the nodes is a variable nodee , the other is an objective node j , such that e´f.n<o�]�pAqr�j+� .
Observation 1 The CONNECTED COMPONENTS of ³ P cor-
respond to the minimal components of S . In particular, } is a
component at S if and only there exists a connected compo-
nent � of ³ P such }8� [ is the set of variable nodes in � , }8��x is



the set of objective nodes of � , and }8� � are the assignments
made to the instantiated variables of these objectives.

This observation can be verified by realizing that conditions
(1) and (2) in the definition of a component (above) can
be achieved by incrementally adding connected objectives to}8��x and connected variables to }8� [ stopping when there are
no more connections to follow. This is precisely what CON-
NECTED COMPONENTS algorithms do (these algorithms also
compute minimal components). }�� � can then computed after}8� [ and }���x have been finalized. Note also that any objective
that has been fully instantiated at the node S will become an
isolated node in ³ P ; i.e., a single node component. These
fully instantiated objectives form components with no vari-
ables, one objective, and the assignments required to fully
instantiate that objective.

Example 2 Suppose in our example we next assign §± �: ,
so that only the two assignments �  ¦6 and §µ D: have
been made. This will generate 3 components: } ª�« is un-
affected by the new assignment, but } �® P is now split into
two components }r�®¶ 4 �������)����
��+��§B y:<; and } '·P  4 ������
¨©����F§~ �:F���¸ J6��F; . Note the } '·P contains no vari-
ables, just a single fully instantiated objective, and that the
component } �® does not contains �¹ º6 in its assignment
set even though its parent component }A�® P did.

Computation Benefits of Components. If } is a component
then the value of any assignment � to its variables, }�� [ , is
equal to the sum of its objectives }8��x evaluated at the set
of assignments �J�H}8� � . Note that the objectives of } are
functions only of }8� e and the assignments in }8� � , thus any
complete assignment to }8� [ along with }�� � is sufficient to
fully instantiate all of these objectives (yielding a single nu-
meric value for each objective which we can then sum). The
value (maximal value) of } , »F¼+½�¾uqr�}¬� , is the maximum value
that can be achieved by any assignment to its variables }8� [ :

»_¼_½�¾uqr�}r�X ¿�À_ÁÂOÃ Â is an assignment to ��� �5Ä� ����� � j¬��3�Å}8� �%�Æ�
A solution to the component is any assignment to its variables
that achieves its (maximal) value. Note that components cor-
responding to fully instantiated objective have a value equal
to the value of the instantiated objective. Note also that the
value of a component can be computed by examining assign-
ments to the component’s variables only, the rest of the prob-
lem can be ignored.

Proposition 1 Let SO� � be the set of assignments made at a
node S , and let }u�F���<�<����} ¥ be the set of components at S .
The maximal value that can be obtain for any complete set
of assignments � to the variables of the COP Z such that�¸Ç1SO� � (i.e., at any leaf node in the subtree below S ),
is l ¥k & � »_¼_½�¾uqr�}�k,� . Furthermore a complete assignment �
achieves this maximal value if and only if it is equal to SO� �
unioned with a solution for each component } k .
This proposition follows from the fact that the values of the
components are independent of each other. Computationally,
this means that we can solve each component independently,
and that we obtain further computational advantage by ap-

plying decomposition recursively as we solve the individual
components.

3 Templates
Now we introduce our new idea of component templates used
to represent the shared information of a group of components,
each of which then becomes an instance of the template. The
basic idea is quite simple, with most of the innovation arising
from how templates can be exploited algorithmically.

From the definitions above it can be observed that for
any two components } � and } � if } � � [  �} � � [°È H  then}A�F��xÉ �}�����x : both of these sets are all the objectives men-
tioning these variables (and no others due to minimal). Fur-
thermore, the variables assigned in } � � � are identical to the
variables assigned in } � � � : both of these sets must assign
all variables of the } k ��x not in } k � [ . In fact the only dif-
ference between two non-equal components containing the
same (non-empty) set of variables is that the particular val-
ues assigned in }A�+� � and }r��� � differ, and as a consequence»_¼_½�¾uqr�}¬�<� and »F¼+½�¾uqr�}r��� might also differ (since the objec-
tives are being maximized subject to the differing values in} � � � and } � � � ).

We use component templates to represent all the compo-
nents that have an identical set of variables. Formally, a com-
ponent template Êº 4 Ê�� [ ��Ê���x���ÊÅ� ËÅ; is a set of variablesÊ�� [ , objectives Ê���x , and another set of variables Ê�� Ë dis-
joint from ÊÅ� [ called the dependency variables, such that
every set of assignments � to the variables in ÊÅ� Ë (a) gener-
ates an instance of the template Ê 4 �%; and (b) every instanceÊ 4 �%; is a component: Ê 4 �%;* 4 Ê�� [ ��Ê���x�����; . That is, the
instance is a component with the same variables and objec-
tives as the templates and with � being the set of assignments
that disconnects it from the rest of the problem.

Example 3 For instance, consider the component } ª�«  4 �F����������
*�F���  �6¬; seen in the previous example. The
component template Êuª�«0 4 ���%���������_
 � ���<�F���F; includes} ª�« as one of its instances. In particular Ê ª<« 4 �µ #6¬;X Ì} ª�« .
Using Templates During Search. As described above, the
components at each node S of a backtracking search can be
determined by a CONNECTED COMPONENTS algorithm run
on the graph ³ P . Note however that ³ P contains only vari-
ables and objectives, it does not mention the actual values
assigned to the instantiated variables. Hence the algorithm
actually identifies a set of templates. The components at the
node S are the particular instances of these templates de-
termined by the assignments at S .

Once a template is detected for the first time we create a
data structure to represent the template instance and store this
in a template cache. This data structure can then be used to
efficiently detect when any of its instances are components of
future nodes in the search as follows.

Observation 2 Let � be the set of assignments made at nodeS , and let Ê be a component template. If � instantiates all of
the variables in Ê�� Í and none of the variables in Ê�� [ , thenÊ 4 ��Î�Ï � Ð ; is one of the components at S , where ��Î�Ï � Ð  �Fe� Ñ6Ò� e� 26Åf`�°Ó%e´f�Ê�� Í�� is the subset of � that assigns
the variables in Ê�� Í .

We can efficiently detect when all of the variables in ÊÅ� Í are



instantiated at a node using standard lazy watch techniques
[Moskewicz et al., 2001]. Once all of Ê�� Í has been assigned
we test ÊÅ� [ . If all of these variables are unassigned then Ê
has been triggered, and we know that Ê�� [ forms a compo-
nent at the current node. All of the template’s variables and
objectives can then be removed from ³ P , further reducing
its size. CONNECTED COMPONENTS can then be run on this
smaller remaining graph to identify the other components at
the current node. Triggering components and reducing the
size of ³ P in this way can yield a non-trivial improvement in
the total time needed to perform component detection.

Once a template has been triggered, we need to access in-
formation about the particular instance that exists at the cur-
rent search node, Ê 4 ��Î Ï � Ð ; . Associated with each template
is a value cache that is used to store upper and lower bounds
on the values of its instances (solutions can also be stored
for solved instances). If Ê 4 �%; is a template instance, thenÊ 4 �%;Æ�¤½QÔ and Ê 4 �%;��Q¾uÔ will denote the stored lower and up-
per bounds on ��6rÕ�Ö8�r�Ê 4 �%;�� . If the instance has never been
seen before, these bounds are given some default initial val-
ues. The search in the subtree below the current node will
either compute the value of the instance (making Ê 4 ��;Æ�¤½QÔd Ê 4 �%;Æ�¤¾uÔ ), compute better bounds on its value, or backtrack
without updating these bounds. Once we have the template,
accessing an instance’s bounds can be very efficient. In par-
ticular, each variable in Ê�� Í has a finite domain of values,
and each instance Ê 4 �%; is defined by the values in � it assign
to these variables. Thus we can use an instance’s defining se-
quence of values as an index into a multi-dimensional array.
Many instances of the template might, however, never be en-
countered during the search (because of branch and bound
pruning), so if such an array would be too large we can use
the instance’s sequence of values as a hash code to index into
a small hash table more suitable for storing sparse data.

Example 4 In our previous example, when we set �  D6
for the first time, we create a new template Ê ª�« with Ê ª<« � [  ���%�B � , ÊAª�«���xº 7�F
 � � , and ÊAª�«�� Ë9 t�_��� which represent
component } ª�« . An instance of the template Ê ª�« 4 �¸ �6¬; is
immediately created. Search proceeds over the variables A
and B, returning the upper and lower bounds of component}¬ª�« under the instantiation �  �6 . These are bounds on
the maximal value that can be achieved by the objectives inÊ ª�« ��x over all possible values for A and B subject to �m K6 .
These bounds are stored in the template cache as Ê�ª�« 4 �× 6¬;Æ�¤½QÔ and ÊAª�« 4 �  ±6¬;Æ�¤¾uÔ , i.e., as bounds indexed by the
assignment �m 36 .

If we assign �  ÙØ later in search with A and B still
unassigned then Ê ª�« is triggered and the bounds on the new
instance Ê $ 4 �µ �ØA; are retrieved from the template’s value
cache. If Ø) 3" then the cached upper and lower bounds can
be reused at this new search node.

Template Symmetries Another key computational use of
templates is to perform automatic symmetry detection be-
tween components at the abstract level of templates. In par-
ticular, we compute symmetries between templates during
search (templates are only created during search). A sym-
metry between two templates can then be applied to all of
their instances, thus allowing us to amortize a single sym-

metry computation over many different components. This is
key in making automatic symmetry detection cost effective.
To further reduce the cost of symmetry detection we confine
ourselves to variable symmetries rather than finer-grain sym-
metries defined over variable-values.

Formally, we require a symmetry between two templatesÊu� and Ê¬� to be a one-to-one and onto mapping Ú between
the variables Ê � � ÍÛ�ÜÊ � � [ and Ê � � ÍÛ��Ê � � [ such that

1. Ê¬��� Í� #ÚO�Êu�+� Í)� and Ê¬�+� [  #ÚO�Êu�+� [ � , where Ú applied
to a set Ý is ÚO�ÝX�X ���ÚO,e%�<� e´f0Ý�� .

2. for any assignment � to all of the variables in Ê8�F� Í��Ê � � [ , the value of the objectives Ê � ��x evaluated at � is
identical to the value of the objectives of Êu����x evaluated
at ÚO��%� , where Ú applied to a set of assignments � isÚO��%�Þ ���ÚO�e��X 36U� e- 36ÅfÜ��� .

In otherwords, Ú keeps the dependency variables and tem-
plate variables separated, and it preserves the value of the
template objectives. Since the value of a template instanceÊu� 4 �%; is the maximum of the sum of the objectives Ê8�+��x un-
der the fixed assignment � to the dependency variables ÊÒ�_� Í
and any assignment to Ê��F� [ , we have that

Observation 3 If Ê � and Ê � are symmetric under the map-
ping Ú then for any instance of Ê � , Ê � 4 �%; we have»_¼_½�¾uqr�Êu� 4 �%;��Þ �»F¼+½�¾uqr�Ê¬� 4 ÚO��%��; .
This means that any bounds we have computed for the com-
ponent Ê � 4 ÚO��%��; can be reused for the component Ê � 4 �%; .

To automatically detect symmetries between templates
during search we map the problem to a graph isomorphism
problem by constructing a graph representation for each tem-
plate. The graph representation has the property that two tem-
plates’ graph representations are graph isomorphic if and only
if the templates are symmetric in the sense defined above. The
graph isomorphism, which maps the vertices of one graph to
the other, provides the variable to variable symmetry mapping
between the two templates.

We solve the graph isomorphism problem using available
graph automorphism software (in our case NAUTY [McKay,
2004]). As shown in [Puget, 2005] such software can be sur-
prising efficient even though graph isomorphism is not known
to be of polynomial complexity. To utilize symmetries during
search we proceed as follows. When a template Ê is first
created, we construct its graph representation ³ Ï . NAUTY
is then used to compute ß¢n<]u�³ Ï � , a canonical isomorph of³�Ï . Ê is symmetric to some previously cached template Ê	¡
if and only if their graph isomorphs are equal, ß¢n<]��³�Ï��Å ß¢n<]u�³ Ïáà � . By using hashing techniques on ß¢n<]��³ Ï � we can
find any isomorphic template in near constant time. If an iso-
morphic template Ê%¡ is found we utilize the invertible map-
pings ³%Ï à�âã ß¢n<]u�³�Ï à � and ³%Ï âã ß¢n<]8�³�Ï¨� produced by
NAUTY to compute a symmetry map from Ê to Ê�¡ .

To utilize this symmetry, we avoid allocating a value cache
for Ê ’s instances. Instead we mark Ê as being symmetric toÊ�¡ and store the symmetry map Ú . We continue to use Ê to
detect when any of its instances are created, but, transparently
to the rest of the code, whenever we read or store information
about one of Ê ’s instances we instead remap that access to
the symmetric instance of Ê�¡ . Thus, all instances of Ê are



able to utilize bounds computed for instances of Ê)¡ . Fur-
thermore any bound computed for instances of Ê are stored
as information about instances of Ê�¡ . Since we might have
many different templates being symmetric to Ê�¡ (symmetries
always map to the earliest created template), this means that
information computed for an instance of Ê can then be uti-
lized by many other symmetric components.

Example 5 Consider the same COP described earlier. When
we set §B ¯: for the first time, we create a new templateÊ �® with Ê �® � [  1���0�Y � , Ê �® ��x± 1�F
 � � , and Ê �® � Ëä ��§å� which represent component }¬�® . If 
*� is the same type
of constraint as 
·� , then the graph representation of Ê ª<« andÊ �® will be the same, and an isomorphism between the two
templates will be the found, in this case mapping variable
N to M. The cache of template Êu�® will point to the cache
of template Ê ª�« under the mapping § âã � . If we create
an instance Ê �® 4 §Ù ´6r; we can then use the cached resultsÊ ª�« 4 �m K6¬;��Q½QÔ and Ê ª<« 4 �µ #6¬;Æ�¤¾uÔ .

Note that in the original COP (Example 1), if N and M are
not exchangable in 
·©��§������ , then this symmetry does not
exist until both M and N are assigned. That is, our mechanism
can detect dynamic symmetries.

Unfortunately space restrictions prohibit us from present-
ing the details of our template graphical representation. But
we will mention that many choices for this representation
exist. Our representation utilizes NAUTY’s ability to input
coloured graphs to ensure that the computed graph symme-
tries keep the dependency variables and template variables
separated (condition (1) above), it allows exploitation of the
fact that some objectives have exchangeable variables,2 and
it uses colours to ensure that only equivalent objectives can
map to each other.

4 Symmetric Component Caching Search
The search algorithm given in Figure 1 shows how we uti-
lize the above ideas to perform recursive decompositions in-
tegrated with branch and bound. CCS+BB attempts to find
the value for a single component given as a template instanceÊ 4 �%; . It is also provided with a lower bound LB, and can
abort its computation as soon as it discovers that Ê 4 �%; can-
not achieve a value greater than this bound. Even if the com-
putation is aborted, however, the routine still stores the best
bounds it was able to compute before termination, line 14.
Storing the bounds produced by a partial computation of a
component’s value allows a better integration with branch
and bound. As described above, these bounds are stored in
the template’s value cache (or in some symmetric template’s
value cache).

Branch and bound inevitably implies that the search might
attempt to compute the value of a particular template instance
many times, aborting each attempt because of the current
bound. By updating the component’s bounds after each of
these attempts work is saved. In particular, each new at-
tempt can proceed more efficiently by utilizing the stronger
bounds computed in the previous attempt. This approach is in
contrast with that presented in [Marinescu & Dechter, 2005],

2Two variables æiç and æ·è are exchangeable in a objective if
exchanging their assigned values has no effect on the objective.

CCS+BB( éiêìë2í ,LB)
1. if édî ï.ðåñ)òÌó�édêìë2í�î�ô�õ(ö LB ÷·òÌó�é�ê¢ë2í�î�ø�õÞðåédêìëÑí�î�ô�õ<÷
2. return
3. if LB ù-édêìë2í�î�ø�õ LB := é�êìëÑí�î�ø�õ
4. ú := select variable from éiî ï to branch on
5. Ts := Find the templates contained in the graph

consisting of ûXî ü·ý and ûXî ú�þ¨ÿ<ú�� .
6. foreach �������
	�� ú�
7. foreach é�ç�� Ts
8. ë ç := óìë��	ÿ�úÌð�����÷�������� �
9. foreach é ç � Ts while � ç é ç êìë ç í�î�ô�õ�� LB
10. LB ç := LB- � è
� ç é�è�êìë¨è�í�î�ô�õ
11. CCS+BB ó�é�ç êìë�ç�í ,LB ç�÷
12. ( !#"%$ , &'"($ ) = ó � ç é ç êìë ç í�î�ø�õ') � ç é ç êìë ç í�î�ô�õ<÷
13. LB := *,+#- (LB, !#".$ )
14. ó�édêìë2í�îQø�õ#)�é�êìë2í�î�ô�õ�÷ = ó/*,+#- $ ó0!#".$�÷�)�*,+1- $ ó2&%"($�÷ ÷
Figure 1: Template Component Caching Search with Branch and
Bound and Templates. Try to compute 3#4�ø ô65Fó�édêìë2í ÷ , but give up as
soon as we discover that 3#4�ø ô75Fó�édêìë2í ÷bö LB.

where the cache is used only to store the values of fully solved
components. Hence, default initial bounds are always used
when trying to solve an unsolved component, even when the
search had computed better bounds in a previous attempt.

The first thing the algorithm does (line 1) is to check if
(a) the template contains no variables (in which case it con-
tains only a single objective function that is fully instantiated
by the assignments � , hence Ê 4 �%;<�Q½QÔ and Ê 4 �%;��Q¾uÔ are both
equal to the value of the objective on � ); (b) Ê 4 �%;��¤¾uÔ�8 LB
(in which case the required bound cannot be achieved); or (c)Ê 4 �%;Æ�¤½QÔ� Ê 4 �%;��¤¾uÔ (in which case the component has al-
ready been fully solved, which actually captures case (a) as
well); in any of these cases the procedure can immediately
return.

Otherwise we check if it is already known that the com-
ponent can achieve a higher value than required (LB), line
3. In this case the algorithm is going to compute the com-
ponent’s maximum value (the computation cannot be aborted
by bounding), and we can make it more efficient by reset-
ting the lower bound to the higher value. A variable e to
split on is then selected, and we determine how the compo-
nent will decompose when this variable is assigned, line 5.
This is done by a combination of template triggering and con-
nected component analysis. Once the triggered templates are
removed from the constraint graph each remaining connected
component forms a new template. Any objective of the input
template jKf´Ê���x whose only uninstantiated variable wase forms a template Ê%¡ with Ê�¡�� [  1  and Ê�¡���x  ±�Fj�� .
Any instance of this template, Y2¡ 4 �%; , will have upper and
lower bounds equal to j evaluated at � . The other compo-
nents, containing variables, will generate new templates upon
which automatic symmetry detection is performed. As e is
assigned different values, different instances of the templates
in Ts will be created and solved.

Lines 7 and 8, identify the new template instances (compo-
nents) created by the current value of e . These components
are solved in lines 9–11. We can abandon the assignmente� :9 (line 9) if at any time the sum of the upper bounds of
these components fails to reach the required lower bound (this



sum changes as we compute the component values). We need
from each component a value large enough so that if the other
components reach their upper bound, the sum will exceed the
lower bound required for the input component. This is the
value LB k computed at line 10. When we have finished withe� :9 we compute bounds that can be achieved for the input
component under this setting of e , line 12. It could be that
these bounds exceed the inputed lower bound, i.e., ;.<>=�? LB.
In that case, the algorithm will continue to compute the in-
put component’s maximum value, by trying the remaining as-
signments to e . However, since e- @9 achieves at least ;(<>= ,
any new value for e needs to achieve an even higher value,
hence we can reset the lower bound (line 13) before attempt-
ing the next assignment to e . Finally, after all values for e
have been tried, we can update the bounds for the input com-
ponent. Note that if the computation succeeded in solving the
component, then for some value 9 of e achieving the maxi-
mum we will have ;(<A=2 CB6<D= and B6<A= à 8C;(<A= for all 9�¡ È @9 .
Hence line 14 will set Ê 4 �%;�� Õ,:� �Ê 4 �%;��¤¾uÔi �»F¼+½�¾uqr�Ê 4 �%;��
as required.

Constraint Propagation. The algorithm can also employ
constraint propagation over the hard objectives (the original
constraints) to prune domain values that would necessarily
lead to values of v2w . In particular, domain pruning will
simply reduce the iterations we have to perform at line 6, the
algorithm requires no other changes. It can be proved that
this simple change is all that is needed, but here we provide
only the intuition behind the proof.

Since the values pruned by constraint propagation violate
hard constraints and thus make the sum of the objectivesv2w , it can be seen that the parts of the search space that are
avoided by not branching on the pruned values cannot con-
tain an optimal solution to the COP. Thus these pruned parts
of the space cannot cause the algorithm to miss an optimal
solution.

The other part of the proof is to ensure that the parts of
the space that are explored continue to compute the same val-
ues when propagation is used, so that overall the search still
computes the optimal value. Here the key element is showing
that cached template values remain correct even when some
the domains of its unassigned variables ÊÅ� [ have been re-
duced by constraint propagation. This can be seen by re-
alizing that the template values correspond to a maximiza-
tion over all possible assignments of the unassigned variables
(subject to some fixed setting of the dependency variables).
Since pruned values violate hard constraints, the maximum
cannot have arisen from any of the pruned values. That is, the
maximization over all possible values of the template vari-
ables is equal to the maximization over all unpruned values
of the template variables, and the cached template values re-
main correct.

This highlights a subtely in the template algorithm. A tem-
plate Ê cannot be triggered if any variable E�¼(F�f0ÊÅ� [ is as-
signed a value. This is because the maximum value stored inÊ ’s value cache might require that E�¼.F be assigned a differ-
ent value. That is, Ê ’s cached values will might not be valid
when E�¼(F%f`Ê�� [ has been assigned. In contrast, if E�¼.F ’s do-
main has been reduced to a singleton by propagation, its value

is forced and as we just explained Ê ’s cached values are still
valid. In this case Ê can be triggered. Hence, our algorithm
must treat variables with singleton domains (after propaga-
tion) differently from variables that have been assigned.

5 Empirical Results
We have implemented our approach and tried it on the Maxi-
mum Density Still Life problem (MDSL) [Larrosa, Morancho,
& Niso, 2005]. This problem involves finding maximum den-
sity stable configurations in Conway’s game of Life. In par-
ticular, we have a §CGX§ grid of cells that can be either dead
or alive, implicitly surrounded by a boundary of dead cells.
A cell is live and stable if it is surrounded by 2 or 3 live cells,
it is dead and stable if it is surrounded by any other number
of live cells. The goal is to find a stable configuration of the
cells that has a maximum number of live cells.

State of the art solvers for this problem [Larrosa, Moran-
cho, & Niso, 2005] employ an extensive amount of prob-
lem specific information. However, our solution is entirely
generic; our aim is to use the problem to evaluate the effec-
tiveness of our techniques. We use the most basic represen-
tation of the problem with § � boolean variables, each one
representing the alive/dead status of a single cell, § � unary
objective functions, one for each cell, assigning 1 to live cells
and 0 to dead cells, and § � hard objective functions, one for
each cell, that assigns 0 to stable settings of the cell given its
neighbour’s values and v2w to unstable settings.

We solved MDSL using six different algorithms always
performing GAC constraint propagation on the hard objec-
tives to prune domain values. All experiments were run on a
2.2 GHz Pentium IV with 6GB of memory. The time limit for
each run was set to 10,000 seconds.

The algorithms we tested were. (1) a standard Branch
and Bound algorithm (BB) which uses the variable ordering
heuristic of domain size plus degree (both computed dynam-
ically). The remaining algorithms use a heuristic that is bi-
ased toward completing rows or columns that have already
been started in the grid; this tends to encourage the genera-
tion of components. We chose domain plus degree for BB
because it performs better with this heuristic. (2) Component
Branch and Bound (C+BB). This version searches for com-
ponents and solves them separately, i.e., it performs search
with decomposition. However, it does not use templates,
nor does it cache already solved components. (3) Template
Branch and Bound (T+BB) is a template version of C+BB.
Its only improvement over C+BB is the use of templates to
improve component detection. There is no template cache
to store bounds for the instances. (4) Component Caching
Search + Branch and Bound (CCS+BB) extends T+BB by
activating the template cache to store computed bounds for
the instances. (5) Symmetric Component Caching Search +
Branch and Bound (SCCS+BB) extends CCS+BB by per-
forming automated symmetric detection between templates.
(6) ASCCS+BB which extends SCCS+BB to exploit auto-
morphisms as well as symmetries. In particular, automor-
phisms (also computed by NAUTY) tell us that different in-
stances of the same template are equivalent, so we can utilize
cached instance bounds for all automorphic instances (as well
as for instances of symmetric templates).



Size ASCCS+BB SCCS+BB CCS+BB T+BB C+BB BB
nodes time nodes time nodes time nodes time nodes time nodes time

4 486 0 1076 0 1646 0 1646 0 1646 0 767 0

5 3991 0 7744 0 7744 0.1 8146 0.1 8146 0.24 5364 0

6 18299 0.2 41346 0.5 93335 1.1 206141 2.0 177540 2.4 177522 2.0

7 251522 3.4 492939 6.5 644175 8.5 1.5* HJI
K 19.8 2.1* HJI�K 41.8 4.7* HJI1K 55.1

8 9.7* HJI K 13.8 2.0* HJI K 29.3 6.1* HJI K 82.3 2.4* HJI#L 316.6 2.3* HJI1L 408.8 3.1* HJI1M 2207

9 1.5* HJI L 408.7 3.1* HJI L 704.8 9.7* HJI L 4662.4 NA NOHJI�I�I�I NA NOHJI�I�I�I NA NPHJI�I�I�I
10 5.8* HJI L 1540.5 1.2* HJI M 3003 5.6* HJI M 7845.4 NA NOHJI�I�I�I NA NOHJI�I�I�I NA NPHJI�I�I�I

Table 1: Nodes Searched and Time taken in CPU secs.

Table 1 shows the relative performance of the six algo-
rithms in terms of nodes searched and time taken. We see
that decomposition (C+BB) yields significant improvements
over standard branch and bound (BB) decreasing the size of
the search tree. For the smaller problems C+BB takes more
time, due to its larger overhead, but this overhead is quickly
recouped as the problems get large and the reduction in the
search tree achieved by decomposition becomes more sig-
nificant. Since T+BB does not employ caching, it does not
reduce the size of C+BB’s search tree (except for heuristic
reasons). But it does provide a non-trivial improvement in ef-
ficiency. In particular, T+BB shows that template triggering
does improve the efficiency of detecting components. The
times in the table show that the overhead of detecting compo-
nents is non-trivial. CCS+BB makes a further improvement
by activating storage of bounds in the template, which results
in a significant decrease in the size of the search space over
T+BB. There is a corresponding decrease in time. SCCS+BB
makes an improvement by performing symmetric detection
between templates providing another significant decrease in
the size of the search space. ASCCS+BB performs automor-
phism detection within a single template in addition to sym-
metries between template and provides another useful per-
formance gain. We also see that on this problem automated
symmetry detection is not adding a significant overhead. That
is, the nodes/second search rate with symmetry detection is
only 5% less than the search rate without symmetry detection
on the largest problem. In all of these cases, the size of the
cached information was never a problem. So we did not have
to implement any strategy for pruning the cache.

6 Conclusions
We have presented an algorithm which incorporates search
with decomposition, caching, and symmetric use of the ca-
che, while mitigating much of the computational cost associ-
ated with such techniques. Component templates reduce the
costs associated with dynamically finding components, and
also offer effective and efficient caching during search. Tem-
plates also allow us to use symmetries detected during search
to make more effective use of previous computations.

References
[Amir & McIlraith, 2000] Amir, E., and McIlraith, S. 2000.

Partition-based logical reasoning. In Proceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning, 389–400.

[Bacchus, Dalmao, & Pitassi, 2003] Bacchus, F.; Dalmao, S.; and
Pitassi, T. 2003. Algothims and complexity results for sat and
bayesian inference. FOCS 2003 340–351.

[Bayardo & Pehoushek, 2000] Bayardo, R. J., and Pehoushek, J. D.
2000. Counting models using connected components. In Pro-
ceedings of the AAAI National Conference (AAAI), 157–162.

[Darwiche, 2001] Darwiche, A. 2001. Recursive conditioning. Ar-
tificial Intelligence 126:5–41.

[Dechter, 2004] Dechter, R. 2004. And/or search spaces for graph-
ical models. Technical report, School of Information and Com-
puter Science, University of California, Irvine.

[Larrosa, Morancho, & Niso, 2005] Larrosa, J.; Morancho, E.; and
Niso, D. 2005. On the practical applicability of bucket elimina-
tion: Still-life as a case study. Journal of Artificial Intelligence
Research 23:412–440.

[Marinescu & Dechter, 2005] Marinescu, R., and Dechter, R. 2005.
Advances in and/or branch-and-bound search for constraint opti-
mization. In Workshop on Preferences and Soft Constraints.

[Marinescu & Dechter, 2006] Marinescu, R., and Dechter, R. 2006.
Dynamic orderings for and/or branch-and-bound search in graph-
ical models. In Proceedings of the European Conference on Ar-
tificial Intelligence (ECAI).

[McKay, 2004] McKay, B. D. 2004. Nauty. available at http:
//cs.anu.edu.au/people/bdm/nauty.

[Moskewicz et al., 2001] Moskewicz, M.; Madigan, C.; Zhao, Y.;
Zhang, L.; and Malik, S. 2001. Chaff: Engineering an efficient
sat solver. In Proc. of the Design Automation Conference (DAC).

[Park & Gelder, 2000] Park, T. J., and Gelder, A. V. 2000. Parti-
tioning methods for satisfiability testing on large formulas. Infor-
mation and Computation 162:179–184.

[Puget, 2005] Puget, J.-F. 2005. Automatic detection of variable
and value symmetries. In International Conference on Principles
and Practice of Constraint Programming, 475–489.

[Sang et al., 2004] Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.; and
Pitassi, T. 2004. Combining component caching and clause learn-
ing for effective model counting. In Theory and Applications of
Satisfiability Testing (SAT-2004).


