
GAC on Conjunctions of Constraints

George Katsirelos1 and Fahiem Bacchus1

Department of Computer Science, University Of Toronto,?

Toronto, Ontario, Canada
[gkatsi|fbacchus]@cs.toronto.edu

Abstract. Applying GAC on conjunctions of constraints can lead to more pow-
erful pruning [1]. We show that there exists a simple heuristic for deciding which
constraints might be useful to conjoin. The result is a useful automatic way of
improving a CSP model for GAC solving.

1 Introduction

Generalized arc consistency (GAC) [2] is arc consistency generalized to the non-binary
case. GAC can be used as a mechanism for constraint propagation to reduce the com-
plexity of a CSP. GAC can also be embedded in a backtracking search algorithm to
provide constraint propagation dynamically (cf. the binary MAC algorithm [3, 4]).

Bessière and Régin have pointed out that GAC can also be applied to conjunctions
of constraints [1], and they provide an algorithm for enforcing GAC on conjunctions.
In this paper we make some further observations on this idea. Specifically, we show
that there is a simple heuristic that can be used to determine whether or not it might
be worthwhile grouping a collection of constraints into a conjunction and performing
GAC on this conjunction.

This provides a method for achieving a potential improvement of any given CSP
model automatically: using the heuristic we simply group together collections of con-
straints and then perform GAC on these conjunctions instead of on the individual con-
straints. The model with conjoined constraints can then be tested to determine if in fact
an improvement has been achieved. Importantly, performing GAC on a conjunction of
constraints does not require modifying the original model: the original representation of
the constraints in each conjunction can be used directly by the GAC algorithm. It simply
requires identifying the sets of constraints that might be worth conjoining. Since CSP
modeling is a complex and potentially costly task, any improvements to a model that
can be achieved automatically can help reduce the cost of finding a sufficiently efficient
model. We demonstrate that this idea can be effective in two different CSP models.

2 Background and Notation

A CSP (V ; C) consists of a set of variables V = fV1; : : : ; Vng and a set of constraints
C = fC1; : : : ; Cmg. Each variable V has a finite domain of values Dom[V], and can
be assigned a value v, indicated by V v, if and only if v 2 Dom[V]. Let A be any
set of assignments. No variable can be assigned more than one value, so kAk � n (i.e.,
the cardinality of this set is at most n). When kAk = n we call A a complete set of
assignments. Associated with A is a set of variables VarsOf (A): the set of variables
assigned values in A.
? This research was supported by the Canadian Government through their NSERC program.

2 George Katsirelos and Fahiem Bacchus

Each constraint C is over some set of variables VarsOf (C), and has an arity equal
to kVarsOf (C)k. A constraint is a set of sets of assignments: if the arity of C is k, then
each element ofC is a set of k assignments, one for each of the variables inVarsOf (C).
We say that a set of assignmentsA satisfies a constraintC ifVarsOf (C) � VarsOf (A)
and there exists an element of C that is a subset of A.
A is said to be consistent if it satisfies all constraints C such that VarsOf (C) �

VarsOf (A), i.e., it satisfies all constraints it fully instantiates. Otherwise it is inconsis-
tent. A solution to a CSP is a complete and consistent set of assignments.

Definition 1 (Generalized Arc Consistency). Given a constraint C and a variable
V 2 VarsOf (C), a value a 2 Dom[V] is supported in C if there is a set of assign-
ments A 2 C, such that V a 2 A. A is called a support for fV ag in C. C is
(generalized) arc consistent iff each value a of each variable V 2 VarsOf (C) is sup-
ported in C. The entire CSP is arc consistent iff each of its constraints is arc consistent.

Definition 2 (Conjunctive Consistency (Bessière and Régin)). Let C = fC1; : : : ; Ckg

be a set of constraints and VarsOf (C) = [iVarsOf (Ci) be the set of variables these
constraints are over. C is conjunctively GAC iff for each value a of each variable
V 2 VarsOf (C) there exists a set of assignments A such that (1) V a 2 A, (2)
VarsOf (A) � VarsOf (C), and (3)A satisfies each constraint C 2 C. We call such an
A a support for fV ag on the conjunction C.

This definition says that there exists an assignment extending V a that simultane-
ously satisfies all of the constraints in C. This is equivalent to asserting that the (natural)
join of all of the constraints in C is arc consistent (when viewed as being a new con-
straint relation).

As shown in [1], conjunctive GAC can be achieved in time upper bounded by
O(dk[iVarsOf (Ci)k) where d is the maximum domain size of any of the variables in
VarsOf (C). Furthermore, their method does not require computing an explicit repre-
sentation of the conjunction. That is, the representation of the individual constraints
contained in the original model can be used directly.

Consider a CSP model containing the two constraints C1 and C2. If GAC is go-
ing to be used to solve the CSP, we would have to perform GAC(C 1) and GAC(C2),
a task that would require time O(dkVarsOf (C1)k) plus O(dkVarsOf (C2)k) [5]. If we
choose to perform GAC on their conjunction instead, GAC(C 1 ^ C2), we would need
time O(dkVarsOf (C1)[VarsOf (C2)k). That is, the increased time required decreases as
the number of variables shared by C1 and C2 increases. In the extreme case where
VarsOf (C1) � VarsOf (C2) performing GAC on the conjunction instead of over each
constraint individually has the same order of complexity. In fact, for the GAC-schema
algorithm of [1] it would be faster to compute GAC(C1 ^ C2) than computing both
GAC(C1) and GAC(C2) in this case—each of these computations would require ap-
proximately the same amount of time, so we reduce the number of separate GAC com-
putations by doing GAC on the conjunction.

From the definition it can be seen that GAC(C1^C2) is a stronger consistency con-
dition than individually enforcing GAC(C1) and GAC(C2). For the separate application
of GAC to the two constraints, we would require only that there exists two sets of as-
signmentsA1 and A2 both extending V a, with A1 satisfying C1 andA2 satisfying

GAC on Conjunctions of Constraints 3

C2. GAC on the conjunction requires that there exist a set of assignmentsA^ extending
V a that satisfies C1 andC2 simultaneously. Hence, GAC(C1^C2) has the potential
to prune more values.

What is also interesting, but was not as well highlighted in [1], is that the relative
strength of GAC on the conjunction increases as the number of shared variables be-
tween C1 and C2 increases. If these two constraints share no variables, then we can
find the required set of assignments A^ satisfying the conjunction, by simply unioning
the two sets of assignments A1 and A2. That is, in this case GAC on the conjunction
is identical to GAC on each constraint separately. On the other hand if these two con-
straints share i variables, then the required set of assignments A^ only exists if we can
find an A1 satisfying C1 and A2 satisfying C2 that agree on their assignments to all i
shared variables (and thenA^ can again beA1 [A2). Clearly, this constraint on the in-
dividually satisfying assignments becomes stronger as the number of shared variables,
i, grows.

Hence, the optimal case is when VarsOf (C1) � VarsOf (C2): GAC(C1 ^ C2) is
faster and it yields the maximal improved strength over doing GAC on each constraint
separately.

In general, a simple heuristic for grouping constraints into conjunctive sets is as
follows.

1. Initialize CS, the set of conjunctive sets, to contain m conjunctive sets each con-
taining the single constraint Ci.

2. If there exist two conjunctive sets C1; C2 2 CS such that (1) C1 and C2 share
some variables, (2) the number of variables constrained by C 1 [C2 is less than
max(kVarsOf (C1)k; kVarsOf (C2)k) +M , and (3) also less than N , then remove
C1 and C2 from CS and add C1 [C2.

3. Repeat 2 until no more such pairs exist.

In this algorithmM places a limit on the increase in arity we are willing to allow, while
N places an absolute limit on the arity of the conjoined constraints we are willing to
allow. An optimal value for M will be problem dependent. For example, if M = 0 the
algorithm will only conjoin constraints satisfying VarsOf (C1) � VarsOf (C2).

3 Empirical Results

We report on experiments we performed with two different CSP models. The first is
a model for the Golomb ruler problem containing quaternary constraints developed
in [6]. In this model, there is a quaternary constraint jx i � xj j 6= jxk � xlj for all
marks x1; : : : ; xm; j < i; l < k. Hence, over every set of four marks there will be 7
different constraints posted over these variables, 4 quaternary constraints and 3 ternary
constraints. We consider finding optimal solutions and proving them to be optimal using
a backtracking search that maintains GAC. For this model we set M = 0, thus we only
conjoin constraints whose variables are a subset of another.

The results are shown in Table 1. We used a 500MHz PIII machine, and the same
underlying implementation for GAC on all of our tests. The first column shows the
number of branches explored (and time required in CPU seconds) using the constraints
without any conjunctions. The second column shows what happens when we conjoin

4 George Katsirelos and Fahiem Bacchus

Fig. 1 Backtracks and cpu time to find (F) a golomb ruler of a given size or prove (P)
its optimality. “-” indicates that the solver was unable to find a solution after reaching
105 backtracks.

Problem Quat [Tern (^ Quat) [Tern ^ (Quat [Tern)
size goal

7 F 95 0.14 95 0.07 90 0.06
7 P 988 1.62 988 0.81 894 0.51
8 F 574 1.33 574 0.64 492 0.45
8 P 7791 27.51 7791 13.35 7131 7.99
9 F 5581 26.51 5581 12.53 4920 7.75
9 P 57545 403.28 57545 190.16 52868 117.16
10 F 40141 360.64 40141 167.45 36666 107.24
10 P - - - - - -

together only the 3 quaternary constraints, and the final column show what happens
when we conjoin all 7 constraints (for each set of 4 variables). The results show that
a useful improvement in speed is obtained and a moderate improvement in the num-
ber of branches explored. The improvement in speed is greater than the improvement
in branches due to the efficiency gained by performing GAC over conjunctions (see
Section 2 for a discussion of this point). The middle column demonstrates that our
technique is heuristic—improved pruning is not always obtained through conjunctions.
In particular, it turns out that the three quaternary constraints all logically entail each
other, so enforcing one is as powerful as enforcing all three or as enforcing the conjunc-
tion. Thus, we see no improvement in number of branches. The improvement in speed
arises from the fact that with conjunctions we have fewer constraints over which GAC
has to be enforced.

In the second model we experiment with random 3-sat problems. These problems
are converted from a set of clauses into a CSP containing a set of binary variables and
a ternary constraint for each clause. In this case, we set M = 1 and N = 4, thus
generating conjunctions over 4 variables. The results are shown in Table 2.

Fig. 2 Average number of backtracks and cpu time to prove whether a problem is sat-
isfiable or not. The last column indicates the percentage of instances where the solver
performed better if constraints were conjoined.

avg leafs avg time
Variables # Instances original w/conjunctions original w/conjunctions perc

60 100 674.33 522.71 0.9951 0.8485 71
70 100 1637.36 1300.21 2.8882 2.4676 74
80 100 3504.36 2888.33 7.204 6.3182 74
90 100 9204.49 7085.21 21.7589 17.8116 75

100 100 19573.2 14434.2 52.5704 40.7247 83

GAC on Conjunctions of Constraints 5

It is worthwhile noting in this case that there were instances where the solver ac-
tually performed more backtracks when using conjoined constraints than it did in the
original problem. This anomaly can be attributed to the fact that 3-SAT has a special
structure, which is not accounted for by the minimal remaining values-break ties by
degree heuristic used. Therefore, even though the conjunctive constraints cause more
pruning, they end up making the search slower by fooling the heuristic. This anomaly
could probably be eliminated by using one of the heuristics that have been developed
specifically for SAT problems.

If we factor out these instances, and look only at those instances where the solver
performed fewer backtracks with conjunctive constraints, we find that the cpu time
used is at worst only 10% more than the time used to solve the problem using the
original model. This shows that despite the fact that we are generating constraints of
higher arity in this case (and hence the complexity of enforcing GAC on the conjunction
is higher than enforcing GAC on the individual constraints separately) the overhead
of performing GAC on the conjoined constraints is alleviated by the extra pruning it
generates. More specifically, Table 3 show the same results as Table 2 except that the
instances where the heuristic performed poorly have been removed. The results show a
useful improvement is achieved by using conjunctions.

Fig. 3 The same data Table 2 but only instances for which conjoining constraints did
not interfere with the behavior of the DVO heuristic are counted.

avg leafs avg time
Variables # Instances original w/conjunctions original w/conjunctions perc

60 79 1602.62 540.81 2.35886 0.879747 88.6076
70 78 3890.79 1322.47 6.84756 2.50756 93.5897
80 82 7829.66 2706.33 16.0824 5.94561 90.2439
90 79 21926.1 7214.34 51.7696 18.1687 94.9367

100 85 44843.2 15398.1 120.359 43.482 97.6471

References

1. C. Bessière and J.-C. Régin. Local consistency on conjunctions of constraints. In Proceedings
of the ECAI’98 Workshop on Non-binary constraints, pages 53–59, Brighton, UK, 1998.

2. A. K. Mackworth. On reading sketch maps. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pages 598–606, Cambridge, Mass., 1977.

3. J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algorithms for
satisficing assignment problems. In Proceedings of the Second Canadian Conference on Ar-
tificial Intelligence, pages 268–277, Toronto, Ont., 1978.

4. D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint satisfaction.
In Proceedings of the 11th European Conference on Artificial Intelligence, pages 125–129,
Amsterdam, 1994.

5. C. Bessière and J.-C. Régin. Arc consistency for general constraint networks: Preliminary re-
sults. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 398–404, Nagoya, Japan, 1997.

6. B. Smith, K. Stergiou, and T. Walsh. Using auxilliary variables and implied constraints to
model non-binary problems. In Proceedings of the Seventeenth National Conference on Arti-
ficial Intelligence, Austin, Texas, 2000.

