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Abstract

Although nogood learning in CSPs and clause learning in
SAT are formally equivalent, nogood learning has not been
as successful a technique in CSP solvers as clause learning
has been for SAT solvers. We show that part of the reason
for this discrepancy is that nogoods in CSPs (as standardly
defined) are too restrictive. In this paper we demonstrate that
these restrictions can be lifted so that a CSP solver can learn
more general and powerful nogoods. Nogoods generalized in
this manner yield a provably more powerful CSP solver. We
also demonstrate how generalized nogoods facilitate learning
useful nogoods from global constraints. Finally, we demon-
strate empirically that generalized nogoods can yield signifi-
cant improvements in performance.

Introduction
Backtracking search is one of the main algorithms for solv-
ing constraint satisfaction problems (CSPs), and nogood
(or conflict) learning is a standard technique for improving
backtracking search (Dechter 1990). The technique of learn-
ing nogoods was imported into SAT solvers by (Bayardo
& Schrag 1997). In the SAT context nogoods correspond
to clauses, and better ways of learning and exploiting large
numbers of clauses during search (Moskewicz et al. 2001)
have proved to be revolutionary to SAT solving technology.

In contrast, nogoods have not had as large an impact on
CSP solvers. For example, most commercial CSP solvers
do not use nogood learning. Part of the reason for this is
that these solvers make heavy use of special purpose algo-
rithms (propagators) for achieving generalized arc consis-
tency (GAC) on constraints of large arity. To date it has been
difficult to learn useful nogoods from such propagators. As
a result nogoods have not yielded sufficient performance im-
provements on practical problems to justify their overhead.

In this paper we show that part of the reason for these
lackluster performance improvements arises from the man-
ner in which nogoods have standardly been defined. In
particular, we show that the standard definition of nogoods
is unnecessarily restricted, and that this restriction can be
lifted. The resulting generalized notion of a nogood prov-
ably increases the power of backtrack search. Furthermore,
we show how generalized nogood allow us to learn more
useful nogoods from global constraints, thus helping to ad-
dress the main stumbling block for employing nogoods in
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modern “propagator-heavy” CSP solvers. Finally, we verify
empirically that generalized nogoods can in practice often
yield a significant improvements (orders of magnitude) in
CSP solving times.

Background
A CSP consists of a set of variables {V1, . . . , Vn}, a domain
of values for each variable Dom[Vi], and a set of constraints
{C1, . . . , Cm}. A variable V can be assigned any value
a from its domain, denoted by V←a. An assignment set
is a set of assignments A = {X1←a1, . . . , Xk←ak} such
that no variable is assigned more than one value. We use
VarsOf (A) to denote the set of variables assigned values in
A. Each constraint Ci consists of a set of variables called
its scope, scope(Ci), and a set of assignment sets. Each of
these assignments sets specifies an assignment to the vari-
ables of scope(C) that satisfies C. We say that an assign-
ment set A is consistent if it satisfies all constraints it cov-
ers: ∀C.scope(C) ⊆ VarsOf (A) ⇒ ∃A′.A′ ∈ C ∧ A′ ⊆
A. A solution to the CSP is a consistent assignment set con-
taining all of the variables of the CSP.

The standard definition of a nogood or conflict set
(Dechter 1990) is an assignment set that is not contained
in any solution: a nogood cannot be extended to a solution.
For example, any assignment set that violates a constraint is
a nogood. Similarly, a CSP has no solution if and only if the
empty set of assignments is a nogood.

Nogoods can be learned during search, used for non-
chronological backtracking, and also stored and used to
prune future parts of the search tree. To make this precise we
consider nogood learning within the forward checking algo-
rithm (FCCBJ+S) shown in Table 1. This algorithm uses
nogoods to perform conflict directed backjumping (FCCBJ)
(Prosser 1993) as well as storing nogoods for future use (+S
to denote with storing of standard nogoods).

As in ordinary FC, forwardCheck detects and prunes
all values of the unassigned variables that in conjunc-
tion with the current prefix of assignments violate a con-
straint. We also record, in the set NG[d, V ], the nogood that
caused the value d ∈ Dom [V ] to be pruned. That is, if
V ← d is pruned because it violates a constraint C, then
we set NG[d, v] = {V←d, X1←x1, ..., Xk←xk}, where
scope(C) = {V, X1, . . . , Xk} and xi is the currently as-
signed value of Xi. That is, NG[d, V ] is set to be the assign-
ment set that violates C.
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int FCCBJ+S(L)
1. If all variables assigned, report solution and exit.
2. choose next variable V .
3. If V has had all of its values pruned, choose V .
4. foreach d∈Dom(V ) s.t. d is not pruned
5. V← d
6. forwardCheck() and NoGoodProp()
7. if ((btL = FCCBJ+S(L+1)) < L)
8. undo(V← d) and return(btL)
9. else undo(V← d)
10. NewNG =

⋃
d∈Dom(V )(NG[d, V ] − {V← d})

11. storeNoGood(NewNg)
12. X← a = deepest assignment in NewNG
13. NG[X, a] = NewNG
14. btL = level X← a was made.
15. return(btL)

Table 1: Forward checking with conflict directed backjump-
ing and standard nogoods.

The additional function NoGoodProp is used to unit
propagate the previously stored nogoods. In particular, if
N = {V←d, X1←x1, . . . , Xk←xk} is among the stored
nogoods and the assignments X1←x1, . . .Xk←xk have all
been made in the current prefix, then NoGoodPropwill use
this nogood to prune V←d and will set NG[V, d] = N .

After propagation, FCCBJ+S is recursively invoked at the
next level. If propagation resulted in a domain wipeout (a
variable having all of its values pruned), that variable will
necessarily be chosen in the next recursive invocation (line
3).1. If the recursive invocation indicates backtracking to a
higher level (via its returned value btL), FCCBJ+S contin-
ues to return until it reaches that level.

Finally, if all values of V are tried (line 10), we have for
every value d ∈ Dom [V ] that either (a) d was pruned by
forwardCheck at a higher level, in which case NG[d, V ]
has been set, or (b) V←d was attempted and the recursive
call to FCCBJ+S (line 7) failed back to this level, in which
case NG[d, V ] has been set at a deeper level (line 13). So at
line 10 all values of V have NG[d, V ] set.

All of these nogoods (minus their assignments to V ) can
then be combined (line 10). The result must be a new no-
good since if any solution S extends NewNG, S must nec-
essarily extend one of NG[d, V ] since S must include some
assignment to V . We can then store this new nogood for use
along future paths, and use it to perform non-chronological
backtracking. In particular, we can backtrack to undo its
deepest assignment X←a and set the reason that X←a
failed as being this new nogood (lines 12-15).

Generalized Nogoods
Consider the constraint X + Y < Z with Dom[X ] =
Dom[Y ] = {0, 1, 2}, and Dom [Z] = {1, 2, 3}.
This constraint is violated by the assignment set A =

1If there is more than one wiped out variable correctness is not
affected by which one is chosen.

{X←0, Y←1, Z←1}, thus A is a nogood. It is also im-
possible to satisfy C if we assign Z←1 and at the same time
prune 0 from the domain of X . However, this condition
cannot be expressed as a standard nogood, as we haven’t ac-
tually assigned a value to X .

We can generalize nogoods so that they can express such
conditions by allowing nogoods to contain either assign-
ments or non-assignments. Non-assignments correspond to
pruned values—once the a is pruned from the domain of V
we can no longer make the assignment V←a. With gen-
eralized nogoods we can then express the above condition
with the set {X �←0, Z←1}. It turns out that although syn-
tactically distinct, this generalization is equivalent to the one
proposed in (Focacci and Milano 2001). However, the au-
thors of that paper investigated generalized nogoods only in
the context of symmetry breaking. The results we obtain in
this paper are disjoint from their previous results.

In the next section we prove that generalized nogoods in-
creases the power of backtracking search over standard no-
goods. For now however, we note two things about gener-
alized nogoods. First they can compactly represent a pos-
sibly exponentially sized set of standard nogoods. For ex-
ample, the above generalized nogood compactly captures
the nogoods {X←1, Z←1} and {X←2, Z←1}. When
the generalized nogood contains multiple non-assignments
the set of standard nogoods it covers grows exponen-
tially. For example, if all of the variables V1, . . . , V10

have domain {0, 1, 2, 3, 4, 5}, then the generalized nogood
{X←1, V1 �←0, . . . V10 �←0} captures 610 − 1 different stan-
dard nogoods. Second, a generalized nogood can prune
paths in the search tree that the set of standard nogoods it
captures cannot. For example, {X←1, V1 �←0, . . . V10 �←0}
can prune paths where none of the V i have yet been assigned,
while none of the 106 − 1 standard nogoods it captures can
be activated without instantiating all but one of its elements
and then performing nogood propagation. We now proceed
to a formalization of generalized nogoods.

A solution to a CSP assigns a unique value to every vari-
able, and thus implicitly prunes every other value in the vari-
able’s domain. An expanded solution to a CSP is a solu-
tion to which all true non-assignments (prunings) have been
added. For example, if the CSP contains only the variables
X and Y each with the domain of values {1, 2, 3}, then
the solution {X←1, Y←2} corresponds to the expanded so-
lution {X←1, X �←2, X �←3, Y �←1, Y←2, Y �←3}. We can
now define a generalized nogood to be any set of assign-
ments and/or non-assignments that is not contained in any
expanded solution. Standard nogoods are a subset of the
generalized nogoods under this definition.

Backtracking search can be adapted so that it learns new
generalized nogoods (g-nogoods) during search. To make
this precise we first make a few observations. (a) Any ex-
tended solution must contain one of X←a or X �←a: if
the extended solution does not contain X←a it must con-
tain some other assignment to X and thus must contain
X �←a. (b) If NG1 and NG2 are two g-nogoods containing
X←a ∈ NG1 and X �←a ∈ NG2, then NG3 = (NG1 ∪
NG2) − {X←a, X �←a} is a new g-nogood: if S is an ex-
panded solution extending NG3 then since S must contain
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one of X←a or X �←a it must also extend one of NG1 or
NG2 contradicting the fact that these sets are g-nogoods.

Next, when we have a store of g-nogoods, NoGoodProp
might force assignments as well as non-assignments, and
that there might be chains of such forced (non) assignments.
For example, if (1) {Y←a, Y←b}, (2) {X �←a, Y �←b}, and
(3) {Z←b, X←a} are g-nogoods in the store, and we make
the assignment Y←a, NoGoodProp will force the prun-
ing Y �←b (Y←b must be false) using nogood 1, then the as-
signment X←a using nogood 2, and then the pruning Z �←b
using nogood 3.2

We say that the depth of the assignment V←d that oc-
curs at line 5 of FCCBJ+S is L.0 (where L is the in-
put to FCCBJ+S). The other (non)-assignments forced by
forwardCheck and NoGoodProp occur in a sequence
after this assignment, and the depth of each of these is L.j
where j is the order in which they occur. In the previous ex-
ample, depth(Y←a) = L.0 (for some L), depth(Y �←b) =
L.1, depth(X←a) = L.2, and depth(Z �←b) = L.3.

We say that (non)-assignment A with depth(A) = H.i
is deeper than (non)-assignment B with depth(B) = L.j,
if H > L or if H = L ∧ i > j. Also all assignments with
depth H.0 for some H are called decision assignments, and
all other (non)-assignments are called forced. All forced
(non)-assignments are labeled by an associated g-nogood
containing their complement. For instance, in our previous
example for X←a we have NG[a, X ] = {X �←a, Y �←b}.
The labeling g-nogood for forced (non)-assignments is set
by forwardCheck or by NoGoodProp.

FCCBJ+S can now be modified to learn generalized no-
goods. Using � to denote ← or �← we replace line 10 by
the new lines

10.1 NewNG = {V �← d | d ∈ Dom [V ]}
10.2 do
10.3 X�a = deepest (non)-assignment in NewNG
10.4 if X�a is not a decision assignment
10.5 NewNG = NewNG ∪ (NG[a, X ]−{X�a})
10.6 until X�a is a decision assignment

We call this scheme for learning a new g-nogood a first-
decision scheme. It iteratively replaces the deepest (non)-
assignments the implicit “variable must have a value” no-
good until it arrives at a g-nogood containing a decision
assignment. This iterative replacement generally leaves a
number of the original non-assignments V �←d (line 10.1) in
NewNG, i.e., the scheme learns a g-nogood rather than an
s-nogood. This new g-nogood can then be used just as be-
fore to backtrack and to label the assignment we undo on
backtrack (lines 11-15). From the observations above it is
clear that NewNG is a valid g-nogood at each iteration. It is
also possible to show that the process must terminate with
NewNG containing a single decision assignment. However,
space precludes us from providing a proof of this latter fact.
In sketch however, this scheme for learning new g-nogoods
can be shown to be sound, and to converge, by mapping the

2Such chains of unit propagation are only possible with g-
nogoods. Standard nogoods (s-nogoods) only force prunings which
can only inactivate other s-nogoods: they can never make another
s-nogood unit.

CSP to a proposition theory. Under that mapping nogoods
become clauses, and nogood learning becomes a sequence
of resolution steps.

There are many other possible schemes for learning gen-
eralized nogoods, and we have implemented a few others.
However, all the empirical results provided below were de-
rived using the first-decision learning scheme. Alternate
schemes correspond to different strategies for applying reso-
lution, and they are very similar to the different schemes that
can be proposed for clause learning (Zhang et al. 2001).
Interesting, the 1-UIP scheme that is popular in SAT solv-
ing did not prove to be as empirically effective as the first-
decision scheme.

Generalized nogoods are more powerful
As mentioned above g-nogoods can compactly encode large
numbers of s-nogoods, and prune paths not pruned by any
of these s-nogoods. More interestingly, however, is that it
is possible to prove a concrete result about the power g-
nogoods add to backtracking search.

First consider the family of CSP backtracking algorithms
F that perform any combination of the standard techniques
for constraint propagation (e.g., maintaining arc consis-
tency), intelligent backtracking (e.g., conflict directed back-
jumping), dynamic variable ordering, and dynamic value or-
dering. F includes such standard algorithms as MAC, FC,
CBJ, etc., with any strategy for variable and value order-
ing. F does not, however, include the use of special purpose
propagators, since without restrictions propagators can add
arbitrary power to the algorithm.

Now add to F the ability to discover, store, and unit prop-
agate standard nogoods; call this new family of algorithms
FNGstan . In contrast, consider adding to F the ability to
discover, store and unit propagate generalized nogoods; call
this new family FNGgen .

Theorem 1

1. For any CSP problem P and any algorithm A ∈ F , we
can add either s-nogood learning or g-nogood learning to
A without increasing the number of nodes searched when
solving P .

2. There exists an infinite family of CSP problems of in-
creasing size n on which any algorithm in F takes time
that is a factor of size O(2n) larger than the run time of
FCCBJ with either s-nogoods (FCCBJ+S) or g-nogoods
(FCCBJ+G).

3. There exists an infinite family of CSP problems of increas-
ing size n on which any algorithm inFNGstan takes super-
polynomial time (specifically nΩ(log n)). In contrast for-
ward checking, with a particular static variable and value
ordering and simple deterministic strategy for learning g-
nogoods, can solve these problems in time O(n2).

Proof sketch:

1. It is not difficult to see that if we preserve the variable
and value ordering, storing and propagating nogoods in a
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backtracking algorithm can only decrease the size of the
search tree.

2. This is a simple corollary of results proved in (Mitchell
2003) and (Beame, Kautz, & Sabharwal 2004). The ar-
gument is that without storing and reusing nogoods the
run time of all algorithms in F is lower bounded by the
minimum size of a restricted form of resolution refutation
called a tree-resolution. Using stored nogoods removes
this restriction allowing shorter refutations and smaller
search trees. The result then follows from the fact that
there are well know examples which have short non-tree
resolution refutations but whose smallest tree-resolution
is exponential in size.

3. The proof of the third point utilizes a family of problems
given in (Mitchell 2003). By relating algorithms in the
family FNGstan to a restricted form of resolution called
negative resolution (where every resolution step involves
at least one clause containing only negative literals), and
using a previous result from proof complexity theory (Go-
erdt 1992), Mitchell shows that any algorithm inF NGstan

takes time at least nΩ(log n) on this family of CSP prob-
lems. Again the idea is that all algorithms in FNGstan

have run times that are lower bounded by the minimum
size of a negative resolution refutation. Generalized no-
goods remove the restriction to negative resolution be-
cause g-nogoods can contain both positive and negative
literals.
In our proof we have shown that a simple g-nogood learn-
ing scheme and nogood storage (and thus reuse) allows
forward checking to solve these problems in time O(n2).3

These results show that except for their runtime overhead,
storing nogoods to prune future paths can only improve
backtracking search, and can potentially yield exponential
improvements. The last result shows that storing generalized
nogoods can yield an additional super-polynomial improve-
ment over standard nogoods (since g-nogoods subsume s-
nogoods, g-nogoods can always simulate the performance
of s-nogoods). It should be further noted that it is the storing
of g-nogoods that adds extra power. If we utilize nogoods
only for conflict directed backtracking and don’t store them
for future use (e.g., by removing line 11 of FCCBJ+S), then
it can be shown that g-nogoods produce exactly the same
backjumping behavior as s-nogoods.

As noted above, however, these theorems do not cover
algorithms that utilize specialized propagators to achieve
GAC. We turn to this issue next.

Nogoods from Global Constraints
Global constraints, i.e., constraints of large arity, are com-
mon in real CSPs. To deal with such constraints the field
has developed the powerful notion of propagators. These
are special purpose algorithms for efficiently enforcing lo-
cal consistency, typically GAC, on global constraints.

3In (Mitchell 2003) it is shown that these problems can also be
solved with 2-way branching using a different branching strategy.
However, our proof shows that the key to Mitchell’s result is not 2-
way branching, but rather the ability to learn generalized nogoods.

To learn nogoods and utilize them for non-chronological
backtracking, as we do in FCCBJ+S, we must have a nogood
reason to label every pruned value. With forward checking
values are pruned because of direct constraint violations, and
thus the nogood reason for a pruned value is easy to identify.
However, with higher levels of constraint propagation values
can be pruned without any direct constraint violation.

With s-nogoods the standard technique for computing a
nogood to label a value pruned by GAC on a constraint C
is to compute the set of all decision assignments that con-
tributed to the pruning of some value of some variable in
scope(C). This can be realized by taking as an initial g-
nogood the assignment that is to be pruned along with all
of the other pruned values among the domains of the vari-
ables in scope(C). For example, if C = X + Y < Z (with
all domains being non-negative) and we have pruned X←0,
then GAC will prune Z←0. The initial g-nogood then be-
comes {Z←0, X �←0}: the pruned assignment and all other
current pruned values. To obtain an s-nogood we then re-
place all non-assignments in this initial g-nogood by their
nogood reasons (by inductive assumption these reasons are
s-nogoods). Unfortunately, when C’s arity is large, the re-
sulting s-nogood will typically include all or almost all of
the decision assignments.

It should be noted that these nogoods, just like the base
constraint violating nogoods used in FCCBJ+S, are by them-
selves not useful. They cannot prune any search paths that
would not be pruned by GAC. The initial nogood labeling a
GAC pruning simply captures the conditions under which
GAC pruned the value: under the same conditions GAC
would perform the same pruning. The power of nogoods
comes from learning new nogoods. These new nogoods
move us beyond the power of the base level of constraint
propagation by capturing subsets of the prefix that were not
directly pruned by propagation but instead required some
search to refute.

A nogood that contains the current set of decision assign-
ments is called saturated. Saturated nogoods are not useful
for backtracking (they force us to backstep to the previous
level), nor are they useful for pruning future paths (the back-
tracking search will not examine this same setting of deci-
sion assignments again). Worse, saturated nogoods make all
other nogoods learned along the same path saturated: these
learned nogoods are the result of unioning other nogoods
with the saturated nogood and this always yields another
saturated nogood. Thus once a saturated or near saturated
nogood is learned, nogood learning will be ineffective in the
rest of the search along this path. This is the reason why no-
good learning tends not to help GAC much when the stan-
dard technique for learning nogoods from GAC is used.

Generalized nogoods allow us to learn better nogoods
from GAC propagators. As with s-nogoods, the initial g-
nogood labeling a pruned value is not in itself useful, but
these g-nogoods are more useful inputs for learning new
nogoods, as we will demonstrate empirically in the next
section. We use three different methods for generating g-
nogoods from GAC in our experiments.

Method 1 generates a g-nogood reason for a GAC prun-
ing by using the initial g-nogood described above. That

AAAI-05 / 393



is, we take as the nogood reason for pruning X �←a the as-
signment that is pruned (X←a) along with all of the other
pruned values among the domains of the variables in the
scope of the constraint. This nogood is inexpensive to com-
pute, and it outperforms the standard s-nogood that would
be generated from it. However, for some constraints this g-
nogood still tends to be overly long and not very useful for
deriving new nogoods.

Method 2, which can be considerably more expensive to
compute, is to find a set of value prunings that cover the
supports of the pruned value. We take the pruned assign-
ment X←a, examine all of its supports in the constraint,
and for each support pick a pruned value that caused that
support to be lost. Since a pruned value might have caused
multiple supports to be lost, greedy heuristics can be used
in trying to construct a small set of pruned values that to-
gether cover all of X←a’s supports. The nogood reason for
X �←a then becomes X←a and the computed set of support
deleting non-assignments. Although this method yields bet-
ter nogoods than the first, it becomes impractical when the
arity of the constraint becomes large.

Method 3 generates g-nogoods from GAC by exploiting
the special structure of the constraint. Thus, a special aug-
mented propagator must be constructed for each constraint.
It turns out that the paradigm of thinking about the set of
pruned values that caused another value to be pruned can
often lead to natural g-nogoods from propagators. We illus-
trate with the all-different constraint.

The all-diff constraint over the variable V1, . . . , Vn asserts
that each variable must be assigned a distinct value. All-
different is perhaps the most well known global constraint.
(Regin 1994) developed an algorithm for achieving GAC on
an all-diff constraint that runs in O(n2.5) time. The algo-
rithm works by using bipartite graph matching to identify
sets of variablesK, such that the number of variables inK is
the same as the number of values in the unionD of their do-
mains. This means that in any solution, all values in D must
be consumed by the variables in K. As a consequence, all
values in D can be removed from the domains of variables
not inK. A g-nogood for any pruned assignment is then eas-
ily seen to be the set of pruned values of variables in K—it
is because these values were pruned that K must consume
all of D. This set of pruned values is easy to compute by
using information already computed by the propagator, and
it can be a small subset of the total set of pruned values of
variables in the scope of the all-diff (which would have been
used by method 1).

Although we do not have space to further demonstrate, the
same principle of looking for sets of pruned values can be
used to obtain propagator specific g-nogoods from a number
of other global constraints including binary dot product and
lexicographic ordering.

Empirical Results
We conclude the paper with the results of an empirical eval-
uation of the methods described above. We have imple-
mented a constraint solver that uses GAC, is able to learn ei-
ther standard or generalized nogoods, and use these nogoods

for intelligent backtracking (CBJ) and for pruning the fu-
ture search via unit propagation of the stored nogoods. Our
solver, called EFC (Katsirelos 2004) is publically available.
All experiments were run on a 2.4 GHz Pentium IV with
3GB of memory. We tested the solver on various domains.

In presenting these results we utilize the following nota-
tion. Algorithms are named by the base name of the back-
tracking algorithm e.g., GAC. The suffix CBJ indicates that
nogoods are used for conflict directed backtracking, the suf-
fix +S indicates the addition of stored standard nogoods,
and the suffix +G indicates the addition of stored general-
ized nogoods. For example, GACCBJ+G is GAC (main-
tain generalized arc consistency) augmented with nogoods
for conflict directed backjumping and stored generalized no-
goods; GACCBJ is GAC with nogoods used for conflict di-
rected backjumping, but no storing of nogoods. When +S is
used, the standard technique for computing an s-nogood for
a GAC pruning is used, as described in the previous section.
With +G, one of the three methods described in the previous
section is used, and we will specify which method was used
in which domain.
Logistics. The first domain is the logistics planning domain,
adapted from the code used in (van Beek & Chen 1999).
The baseline algorithm against which we compare is that
used in van Beek & Chen, namely GACCBJ using the DVO
heuristic dom+deg with a domain-specific tie-breaker. All
constraints are propagated using GAC-Schema (Bessière &
Régin 1997), a generic algorithm for enforcing GAC. We
compare GACCBJ against GACCBJ+G using method 1 to
learn g-nogoods from GAC. The first column shows the
name of the instance, the second whether it was satisfiable or
not. The third and fourth columns show cpu time and nodes
visited, respectively, for the GACCBJ algorithm, while the
fifth and sixth columns show CPU time and nodes visited for
GACCBJ+G.

Problem Sat? GACCBJ GACCBJ+G
Time Nodes Time Nodes

10-11 UNSAT - - 3906.26 478861
15-15 SAT 52.4 89524 2.29 1861
18-11 SAT 497.34 155662 89.09 26943
22-11 UNSAT 85.17 10519 13.85 1573
26-12 UNSAT 678.55 99220 19.4 2704
26-13 UNSAT - - 1899.09 132881
28-12 UNSAT - - 326.57 38608
30-11 UNSAT 45.77 15338 4.65 2347

Table 2: Time and nodes visited for GACCBJ vs generalized
nogood recording. A ’-’ means no solution was found after
20000 seconds.

There are a total of 81 problems in the suite. The instances
presented in table 2 are the 8 most interesting ones. Of the
rest, 71 instances were solved in under 10 seconds by both
algorithms and 2 instances could not be solved by either
algorithm within a timeout of 20000 seconds. We can see
in this table that adding generalized nogoods (GACCBJ+G)
yields a significant increase in performance. GACCBJ+G
consistently outperforms GACCBJ on this suite. In fact,
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there is no instance in this table where GACCBJ is faster
than GACCBJ+G, even though it does happen on some of
the easier instances.

GACCBJ+S did not yield any significant improvement
over plain GACCBJ. We also tried learning standard no-
goods for GAC prunings and generalized nogoods from con-
flicts on backtrack, again we obtain no significant improve-
ment over plain GACCBJ. This means on this suite both im-
provements (learning generalized nogoods from conflicts on
backtrack and from GAC) are necessary to achieve the full
potential of generalized nogoods.
Crossword puzzles. The second domain is the crossword
puzzle domain (Beacham et al. 2001). Here our base-
line algorithm is the best algorithm from (Beacham et al.
2001), EACCBJ. EAC is a version of GAC that stores con-
straints extentionally, thus can be significantly faster than
GAC-Schema at the expense of memory. We compare EAC-
CBJ against EACCBJ+G using method 2 to learn g-nogoods
from EAC. The results are shown in table 3. The first col-
umn shows the name of the instance. The second and third
columns show cpu time and nodes visited, respectively, for
the EACCBJ algorithm, while the fourth and fifth columns
show CPU time and nodes visited for EACCBJ+G.

Problem EACCBJ EACCBJ+G
CPU Nodes CPU Nodes

UK-21.01 106.91 1133 68.79 547
UK-21.10 117.44 812 105.22 799
UK-23.04 357.81 1709 231.23 1250
UK-23.06 448.33 1379 404.42 1293
UK-23.10 3343.96 7647 2841.44 6608

words-15.01 13547.55 550591 183.75 9625
words-15.02 157.92 4799 107.67 2907
words-15.04 788.95 37912 225.41 11090
words-15.06 8465.79 226022 726.53 19593
words-15.07 2308.69 61496 1400.14 35834
words-15.10 - - 4567.01 84289
words-19.03 1217.11 50959 167.54 8934
words-19.04 - - 275.98 9000
words-21.01 3727.49 64621 2760.63 55527
words-21.03 570.02 18066 327.2 8489
words-21.06 - - 188.81 6567
words-21.09 117.57 3825 56.93 2411
words-21.10 - - 14878.77 209914
words-23.02 115.96 8972 27.48 2928
words-23.03 2607.35 90843 187.96 10668
words-23.05 - - 4102.69 128797

Table 3: Time and nodes visited for EACCBJ vs generalized
nogood recording. A ’-’ means no solution was found after
20000 seconds.

The suite contains 100 instances, of which table 3 shows
only those for which at least one algorithm needed 100 sec-
onds to find a solution and at least one algorithm was able
to find a solution within the timeout of 20000 seconds. We
see that once again adding generalized nogoods significantly
improved EACCBJ. EACCBJ+G dominates EACCBJ both
in terms of CPU time as well as number of nodes visited.
The improvements range from a few percentage points for
the easier instances to more than two orders of magnitude

Problem GAC GACCBJ+S GACCBJ+G

(w,g,s) Time Nodes Time Nodes Time Nodes

11-6-2 0.23 1776 0.63 1787 0.3 1758

13-7-2 4.82 18730 18.27 18746 6.2 18497

2-7-5 1586.44 35080126 218.04 242945 4.39 15755

2-8-5 - - 1211.87 555325 5.47 16384

3-6-4 - - 869.65 624084 5.04 13958

3-7-4 - - 549.56 392693 1.57 7018

4-5-4 843.4 22525307 91.47 193181 0.26 2428

4-7-3 0.11 1455 0.25 1206 0 814

5-6-3 105.14 1973647 1142.57 592537 1.3 5896

5-8-3 218.86 1869855 277.9 207674 50.31 71541

9-8-4 1.65 2379 2.74 2379 2.02 2379

Table 4: Social golfer problem: CPU time and nodes visited for
GAC vs GACCBJ with standard nogood recording and GACCBJ
with generalized nogood recording, all with a static ordering. A ’-’
means no solution was found after 2000 seconds.

for instances such as words-15.01 and words-21.06. Once
again we tried using EACCBJ+S, but this yielded no sig-
nificant improvement in performance, and when we learned
standard nogoods from EAC, rather than generalized nogood
(learning generalized nogoods only from conflicts) again our
results were significantly worse than when both improve-
ments were used.
Social Golfer. The final domain in which we tested our al-
gorithm is the social golfer problem (prob010 in CSPLIB).
We used the model outlined in (Frisch et al. 2002). Briefly, a
three dimensional matrix of binary variables is used. Player
i plays in week j in group k if the variable at position i, j, k
is 1. Constraints are posted to ensure that each player plays
in exactly one group each week, each group gets the cor-
rect number of players s, and each pair of players play each
other at most once. In addition, lexicographic constraints
(LEX) are posted between week planes, player planes and
groups within each week to break symmetry. A static vari-
able ordering that exploits the structure of the problem is
used. We compare three algorithms: simple GAC using
specialized propagators for all constraints, GACCBJ+S and
GACCBJ+G. For GACCBJ+G we used method 3 (propaga-
tor specific g-nogoods) to learn g-nogoods from GAC, ex-
cept for the LEX constraint where method 2 was used. The
results are shown in table 4. The first column shows the
instance name, the second and third CPU time and nodes
visited for GAC, the fourth and fifth CPU time and nodes
visited for GACCBJ+S and the sixth and seventh CPU time
and nodes visited for GACCBJ+G.

When using stored nogoods, we found that the best re-
sults could be achieved when posting the decomposition
of the LEX constraint as opposed to the global constraint.
The reason for this is that even though propagator specific
g-nogoods could be generated LEX (method 3), these g-
nogoods were still too long. Even though we lose pruning
power when using the decomposition, we avoid introducing
long nogoods into the nogood database, while still retaining
most of the symmetry breaking that LEX performs.

With this in mind, we see that nogood recording helps
immensely in this domain. Even recording s-nogoods of-
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fers close to an order of magnitude improvement in some
instances, but it is not robust. Recording g-nogoods, on the
other hand, is consistently faster, except for some very easy
instances. On the hardest instances, it is as much as two
orders of magnitude faster.

It should be noted that there exist results that supersede
those presented here for the social golfer problem, using
a different model and more advanced symmetry breaking
techniques (Puget 2002). However, these symmetry break-
ing techniques are orthogonal to nogood recording, so can
be applied in conjunction with it.
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