
Utilizing Structured Representations and CSPs in
Conformant Probabilistic Planning

Nathanael Hyafil and Fahiem Bacchus1

Abstract. A CSP based algorithm for the conformant probabilistic
planning problem (CPP) has been presented by Hyafil & Bacchus.
Although their algorithm displayed some interesting potential when
compared with traditional POMDP algorithms, it was developed us-
ing a “flat” representation. In this work we revisit this algorithm and
develop a version that utilizes a structured representation. The struc-
tured representation can be exponentially more efficient than the flat
representation when dealing with the structured problems that are
typical in AI. Our new structured version of their algorithm allows us
to demonstrate that the CSP approach to CPP can be much more ef-
fective than traditional POMDP algorithms for an interesting range of
problems. This is contrary to previously presented results, and makes
the application of CSP techniques to decision theoretic planning a
promising area for further work.

1 Introduction

We address the conformant probabilistic planning problem (CPP).
Conformant planning problems are problems where there is no sens-
ing: the system state cannot be tested after an action is executed.
Since the plan is oblivious to the system state, the plan cannot be
conditional—there would be no way to determine which branch to
follow in a conditional plan. Instead conformant plans are linear se-
quences of actions. The aim of such a plan is to achieve the goal no
matter what initial state the plan is applied to and no matter what
happens during its execution. Conformant plans are useful in situa-
tions where sensing is too expensive or when a failure has occurred
and sensing is no longer available.

Requiring a conformant plan to always succeed is a very strong
condition, a condition that cannot always be satisfied. Probabilistic
conformant plans are a useful generalization of conformant plans in
the case when we can quantify the different possible initial states,
and the different possible execution paths with probabilities. A prob-
abilistic conformant plan is one that has a certain probability of suc-
cess, and the conformant probabilistic planning problem, CPP, is the
problem of finding a plan with maximum probability of success.

A planning algorithm for solving CPPs was presented by Hyafil
& Bacchus in [9]. This algorithm employed a CSP encoding of the
problem, and a backtracking tree search similar in spirit to the SAT
based encoding used in the MAXPLAN planner [11] (which also
solved CPPs). Although the CSP approach yielded consistently supe-
rior performance to the SAT based MAXPLAN, as demonstrated in
[9], its performance was generally inferior to traditional POMDP de-
cision theoretic algorithms. Such POMDP algorithms solve partially
observable Markov decision processes, and can also solve CPP as a
special case. One of the main problems with the approach presented

1 Department of Computer Science, University of Toronto, Toronto, Canada.
email: nhyafil@cs.utoronto.ca, fbacchus@cs.utoronto.ca

in [9] is that the algorithm they specified required space exponential
in the plan length. Nevertheless, the core ideas embodied in the al-
gorithm did captured a number of useful intuitions for solving CPPs
more effectively.

In this paper we recast the algorithm of [9] so that it can utilize
structured representations, specifically decision diagrams [5]. Using
structured representations in planning algorithms is a known tech-
nique, e.g., binary decision diagrams (BDDs) have been used to solve
the non-probabilistic conformant planning problems [2], and alge-
braic decision diagrams (ADDs) have been used to solve probabilis-
tic fully observable planning problems (MDPS) [8]. In this paper, we
employ Algebraic Decision Diagrams (ADDs) [12] to represent the
information required to solve CPPs in a more compact form. It is well
known that decision diagrams are not always compact, but empiri-
cally they are often very effective. Our empirical results demonstrate
that this is generally the case in our application as well.

In the rest of the paper we first present a more formal descrip-
tion of the CPP problem and describe the previous CSP based al-
gorithm for solving CPPs. Then we demonstrate how ADDs can
be employed to improve the algorithm’s space requirements and of-
ten its runtime. These techniques can also be applied to other types
of planing problems (encoded as CSPs). Then we present empirical
data about the performance of the improved algorithm, and compare
the approach with traditional POMDP algorithms. This data demon-
strates that backtracking based CSP techniques, when augmented by
caching, have considerable advantages over standard POMDP algo-
rithms on various types of problems.

2 Background

CPP: A CPP planning domain is described by a set of m state
variables, v1, . . . , vm, where vi can take on any of ki different val-
ues. Every distinct setting of the m state variables defines a state, and
every state is defined by some setting the state variables. Thus there
can be

∏m

j=1
kj distinct states in S , the set of all states (not all of

them need be legal states). The different states in S represent all of
the different possible configurations of the environment.

The agent is in some initial belief state B, which is a probability
distribution over S . For any state s ∈ S , B[s] is the probability of s.
The agent does not know the true initial state of its environment, but
B[s] measures how likely it is that the true state is s. Thus if B[s] = 0
then s is not a possible initial state. For a subset S ⊆ S , we define
B[S] =

∑
s∈S

B[s]. The agent wants to achieve a goal G, which for
now we take to be a subset of S .

The agent has available some set of actions A. The effects of these
actions are not guaranteed, rather they are only achieved with some
probability. Each action a ∈ A is modeled by a transition probability.
For each pair of states s and s′, Pr(s, a, s′) is the probability that a

yields s′ when executed in s. For example, with probability 0.25 a
particular action a might fail to have any effect. In this case we would
have Pr(s, a, s) = 0.25: with probability 0.25 the action yields the
same state.

Our approach also allows a slight generalization where we al-
low actions to have standard preconditions. The action cannot be
applied to states violating its precondition, which translates into
Pr(s, a, s′) = 0 for all states s failing to satisfy a’s preconditions
and for all states s′. Of course, in this case Pr no longer specifies
a probability distribution since it no longer sums to 1. Note that
this yields a different behavior than modeling failed preconditions
as making the action a no-op.

A plan π in a CPP problem specifies a set of execution paths. If
π = 〈a1, . . . , ak〉, then each execution path for π is a length k + 1
sequence of states s0, s1, . . . , sk where B[s0] > 0, and for each pair
(si−1, si) we have that Pr(si−1, ai, si) > 0. The first state s0 is a
possible initial state, and each subsequent state is a possible succes-
sor of the previous state under the action specified by π. The proba-
bility of an execution path is B[s0]

∏k

i=1
Pr(si−1, ai, si): the prob-

ability that executing π will yield this particular sequence of states.
The value of π is equal to the sum of the probabilities of all of its
execution paths whose final state is in G. In other words the value of
π is the probability that π achieves the goal. Note that we are only
interested in goal achievement in the final state. We could not ter-
minate π earlier even if π achieves the goal before it has completed
since we cannot observe whether or not the goal has been achieved.

From this point of view, standard preconditions correspond to as-
signing value (probability) zero to any execution path such that some
si−1 violates the preconditions of ai. If instead preconditions were
modeled as no-ops, an execution sequence containing a precondi-
tion violation might still achieve the goal and contribute to the plans
value.2

It is not difficult to see that much more general notions of goals
can be accommodated. For example, the goal could be to maximize
some metric quantity in the final state. In this case we could define
the value of a plan to be the expected value of the metric quantity over
all of the plan’s execution paths. Similarly, more complex temporal
goals could be defined, as long as we can determine the value of each
execution path with respect to such a goal we can determine the value
of the plan. CSP based algorithms for CPP can easily accommodate
general goal of this form.

CSP Encoding: Encoding planning problems as constraint satis-
faction problems is a known technique in classical planning, e.g.,
[13, 7, 10]. Hyafil & Bacchus have adapted this technique to solve
CPPs [9].

A CSP consists of a set of variables and a set of constraints over
these variables. To encode a length n CPP as a CSP, n + 1 copies
of the state variables v1, . . . , vm are used, indexed by the plan step;
each copy is used to represent one of the states in a possible execution
path of a n-length plan. There are also n action variables, each one
with domain equal to the set of all actions in the domain. Since the
actions are probabilistic, knowing the i-th state is not sufficient to
determine the effect of the i-th action. Hence an additional set of
“random” variables are required, one set for each step of the plan.
The different legal settings of the i-th random variables are in one-to-
one correspondence with the different possible probabilistic effects
of the i-th action when applied to the i-th state. Thus each setting of

2 The choice of how to model preconditions thus becomes a modeling de-
cision: in some domains preconditions are hard constraints on plan exe-
cutability while in other domains preconditions are simply constraints on
the action’s effects.

these variables has a particular probability—the probability the i-th
action will have this particular effect–and once these variables have
been set the i-th action’s effects are determined. This technique was
first used in [11].

There are three types of constraints: initial state constraints, goal
state constraints, and action constraints. These constraints force the
initial state s0 (as specified by the 0-th group of state variables) to be
one where B[s] > 0, the goal state sn (as specified by the n-th group
of state variables) to be in G, and the transitions between si and si+1

to be compatible with ai given that ai’s random effects have been
determined by the i-th random variables.

A solution to a CSP is a setting of the CSP variables that satisfies
all of the constraints. The solutions of the CSP that encodes the CPP
are in one to one correspondence with the execution paths of the
length n plans that reach the goal (if we remove the goal constraint,
then the solutions will be all execution paths irrespective of whether
or not these paths reach the goal). In a particular CSP solution, ρ, the
setting of the n action variables specifies the plan π, the setting of
the n + 1 collections of state variables specifies an execution path
for π, and the probability of this particular execution path can be
obtained from the setting of the n collections of random variables
and the setting of the variables specifying the initial state.

Solving CPP: Conceptually CPP can be solved by finding all solu-
tions to its CSP encoding and for each plan summing the probability
of the solutions corresponding to its execution paths. Standard back-
tracking search algorithms can be used to find all solutions. In this
context, the CSP constraints serve to eliminate zero probability exe-
cution paths, and constraint propagation serves to prune some of the
path prefixes that have probability zero of reaching the goal.

In Hyafil & Bacchus’ planning system, CPplan, the CSP variables
are instantiated in plan order during backtracking search. Starting
with the initial state variables and proceeding in order of plan steps,
for each step the state variables are first instantiated, thus determining
the current state, then the action, and then the random variables, thus
determining the next state.

Ignoring the goal constraint, the other constraints prune illegal
paths in the tree. Each remaining full path corresponds to a particular
execution path of some plan. Along each path a node that instanti-
ates the last of the i-th group of state variables corresponds to the
i-th state visited, and a node that instantiates the i-th action variable
corresponds to the i-th action taken in the plan. Prefixes of full paths
in the tree represent a particular execution path of a particular plan
prefix. Below this prefix are all possible extensions of this prefix, i.e.,
the set of all execution paths ρ for all plans π such that (1) ρ extends
the current execution path prefix, and (2) π extends the current plan
prefix.

With the goal constraint, the solutions now correspond only to suc-
cessful execution paths (paths reaching the goal). Constraint propa-
gation can then be used to perform “goal” lookahead. That is, propa-
gation allows the backtracking search to detect that certain path pre-
fixes have no extension reaching the goal. This can have a significant
effect in some domains. The ability to employ constraint propagation
to perform goal reachability analysis is one of the main differences
between the CSP approach and heuristic search in belief space [3].

Reusing Intermediate Computations: Finding and summing
over all solutions to the CSP encoding is not practical. Hyafil & Bac-
chus showed how dynamic programming techniques could be em-
ployed within the backtracking search to cache and reuse interme-

diate results.3 It is known that caching in backtracking search can
have a profound effect on worst case complexity when examining all
solutions, as is required when solving CPP [1].

The caching scheme employed was as follows. Let value(τ, s) be
the value of a length n − i plan suffix τ when executed in state s.
This is the probability that τ reaches the goal when executed in state
s with n − i steps to go in the plan. During the backtracking search
we will visit nodes ν corresponding to a particular state si at the i-th
step of an execution path. (ν instantiates the last of the i-th group
of state variables). The path to ν will correspond to some execution
path prefix s0, s1, . . . , si (ending at ν with si) for some plan pre-
fix a1, a2, . . . , ai, and the subtree under ν will contain all success-
ful execution path suffixes si+1, . . . , sn (sn ∈ G) for all possible
plan suffixes τ = ai+1, . . . , an. The probability of any of these ex-
ecution path suffixes is

∏k

j=i+1
Pr(sj−1, aj , sj), and summing up

these probabilities for a fixed τ gives us value(τ, si).
On visiting node ν=si the quantity value(τ, si) can be com-

puted and cached for all length n−i plan suffixes τ . From this in-
formation, the value of all length (n−i)+1 plan suffixes 〈ai; τ 〉
in the previous state si−1 can easily be computed. In particular,
value(〈ai; τ 〉, si−1) =

∑
si

Pr(si−1, ai, si)value(τ, si): 〈ai; τ 〉
can succeed in state si−1 by transitioning to state si (with
probability Pr(si−1, ai, si)) and from there reaching the goal
(value(τ, si)). Since in the subtree below (si−1, ai) all states si with
Pr(si−1, ai, si) > 0 are visited and these are the only states we
need sum over, by the time the search has backtracked out of this
subtree, all of the values it needs to compute value(〈ai; τ 〉, si−1)
will be available. Recursively, we can in this manner compute and
cache the value of all length n plans π. The critical element is that
by caching value(τ, si) for all length n−i plan suffixes τ , we need
visit si at step i only once. If some other path in the tree (correspond-
ing to another plan/execution path prefix) visits si at step i, we need
not explore the subtree below si again—we can reuse the cached
value(τ, si) information.

Two pieces of information can be stored at every step i of the plan.
The first is a list of visited states at step i—used to determine if the
value of all plan suffixes from that state has already been cached.
The second is a table for each visited state containing the value of
every length n− i plan suffix in that state. Hyafil & Bacchus utilized
a simple tabular representation for this information, which required
size exponential in n−i. The tables for the initial states thus required
space exponential in the plan horizon n (a value had to be stored for
each length n plan). Hence, although this work provided some use-
ful insights about applying CSP techniques to solving CPP its space
requirements do not allow it to scale.4 Nevertheless, on particular
problems the approach was still faster than traditional POMDP algo-
rithms, and in terms of worst case complexity it was no worse than
other algorithms for POMDPs.

Convinced that the CSP approach had more potential than could be
demonstrated by this previous algorithm, we have investigated tech-
niques for addressing the weaknesses of the previous approach. The
main difficulty of the previous approach is that the tabular representa-
tion utilized always requires exponential space; traditional POMDP
algorithms based on the idea of α-vectors need exponential space

3 The differences between searching the CSP with dynamic programming and
the more traditional use of dynamic programming for solving POMDPs,
e.g., [6], are explained in [9].

4 Turning off the cache and recomputing value(si, τ) when need was so time
expensive that even the smallest problems (that required reasonable sized
tables) could not be solved. So this simple trading of time for space does
not work.

only in the worst case. Hence we investigated ways of improving
the algorithm so that it needed exponential space only in the worst
case rather than always. Of the techniques we investigated for saving
space, the utilization of structured representations (which can save
space by sharing information) was very successful, and we report on
that technique in this paper. This technique allows us to empirically
validate the potential of the CSP approach by showing that it can be
much more effective than traditional POMDP algorithms on certain
problems.

3 Saving Space

Branch and Bound: The first technique we investigated was the
well known idea of branch and bound. We are trying to compute a
maximum valued plan, so instead of computing and storing the value
of all plans, we can eliminate from consideration plans as soon as we
know that their value cannot be the maximum. In particular, by keep-
ing track of the value of the current best solution, one can sometimes
detect that a better solution cannot lie in the subtree below a node,
and hence that that subtree need not be searched. In CPPs however,
the subtrees do not contain solutions to the CPP. Rather they only
contain incremental information about the value of the plans Π that
extend the current plan prefix µ. To obtain the full value of any of
the plans in Π we would have to search the subtrees below all of the
states that could be visited by µ. Hence, in CPP branch and bound is
only able to avoid subtrees in which every plan is already known to
be sub-optimal.

Furthermore, although branch and bound only requires linear
space when applied to planning under full observability [14], this
is not the case when it is applied to solving CPP. In particular, in
fully observable planning one need only keep bounds along the cur-
rent path, and a depth first backtracking search can perform branch
and bound in space linear in the plan horizon. With full observabil-
ity the agent can choose what action to take at each state. Thus the
value of choosing an action in a particular state is determined solely
by the subtree below that state action pair. In CPP choosing an ac-
tion at step i means that one is committed to executing that action in
all states that could arise at step i. Hence the value of choosing that
action in a particular state is not sufficient to determine the overall
value of choosing that action. Once all of the details were addressed
it was found that branch and bound had disappointing performance:
because of its weak pruning power and the information that must be
kept to perform the bounding, branch and bound neither saved time
nor space over the simple tabular representation.

ADDs: The technique that did perform well was to utilize Alge-
braic Decision Diagrams (ADDs) [12] to represent the cached value
of plan suffixes. ADDs are graphical representations of functions
from a set of boolean variables V1, . . . , Vm to the reals. Represent-
ing such a function f in tabular form would require 2m table entries.
However, if f takes on much fewer than 2m different values, and
there are compact propositional formulas representing the sets of in-
puts that generate each of these different values, the ADD represen-
tation of f can be vastly more compact. Furthermore, algorithms ex-
ists for performing various arithmetic operators on ADD represented
functions. For example, computing the new ADD representing the
function h such that h(~V) = f(~V)∗g(~V) can be done in time linear
in sizes of the ADDs representing f and g. If f and g have compact
ADD representations, h can be computed much faster than the time
it would take to compute it from tabular representations of f and g.
However, ADDs are not always compact, and in the worst case they
can can have size as large O(m)2m (e.g., when every input has a

different value). When their size approaches that of the tabular repre-
sentation, one must pay a significant overhead for using them. ADDs
where the range of the function is restricted to 0/1 are the same as
BDDs [5]. BDDs are generally significantly more compact and more
efficient to use, and are particularly useful for representing sets and
for performing set operations. As mentioned in the introduction, both
types of decision diagrams have been used before in planning.

Using ADDs with Caching: In the caching algorithm we utilize n

“visited-state” 0/1 ADDs (BDDs). The i-th of these stores the states
that have already been cached at step i. When the backtracking search
visits a state at step i it first checks this ADD to see if the state has
already been computed. If it has been seen before the cached val-
ues can be used and the subtree below can be avoided. In addition
to the visited-state BDD we utilize n “state/plan-suffix” ADDs. The
i-th of these, ADDi, maps si, a state at step i and any length n − i

plan suffix τ to value(si, τ). That is, ADDi stores the value tables
for all states visited at step i. By combining the tables for all states
into one ADD we facilitate the sharing of more structure. In par-
ticular, we might have that for two states s and s′ visited at step
i, value(s, τ) = value(s′, τ) for many plan suffixes τ . In this case
ADDi can potentially exploit this structure to save space.

After backtracking from a state si we are recursively assured
that ADDi contains value(si, τ) for all length n − i plan suf-
fixes τ . As we visit the successor states si generated by action
ai−1, we accumulate an ADD representing the function T =∑

si

Pr(si−1, ai−1, si) × si. This function maps a set of states at
step i to the probability that the set is visited by ai−1 when executed
in si−1. After we have visited all of ai−1’s successor states, i.e., after
we have backtracked to ai−1, we compute T × ADDi, followed by
the existential abstraction of all variables used to represent states at
step i. This new ADD T ′ represents a function mapping every length
n − i plan suffix τ to the expectation of value(si, τ), where the ex-
pectation is taken with respect to the distribution over si states gen-
erated by executing ai−1 in state si−1. Finally we conjoin T ′ with
the state si−1 and the action ai−1 and add this into ADDi−1. This
operation updates ADDi−1 so that it now contains value(si−1, τ)
for all length n− i+1 plan suffixes τ that start with ai−1. After vis-
iting all actions that can be taken from si−1, i.e., after backtracking
to si−1, we have augmented ADDi−1 so that it has complete infor-
mation about state si−1. We can then add si−1 to the set of visited
states at step i − 1. Recursively, at the top of the tree ADD0 will
contain the values of all n length plans for all initial states. From this
information, computing the plans that have maximal expected value
(with respect to the probability distribution over the initial states) is
straight forward.

4 Empirical Results

In order to evaluate our modified CSP algorithm we utilized two test
domains, GRID-10X10 and a probabilistic version of the standard
AI planning benchmark LOGISTICS. We also tried two other prob-
lems reported on in [9], SANDCASTLE-67 and SLIPPERY-GRIPPER.
However on these problems, (both of which have very small state
spaces) the CSP approach was still not competitive with a traditional
POMDP algorithm. This and our results on the other two domains
indicates that traditional POMDP algorithms and the CSP approach
have distinct areas of coverage.

The POMDP algorithm we tested against was the witness algo-
rithm of [6]. The advantage of this algorithm is that it can easily be
adapted to solve CPP without having to resort to specialized encod-
ings (see [9] for more details). All experiments were performed on a
2.4 GHz Xeon machine with 3GB of RAM.

GRID-10X10: GRID-10X10 has a robot starting in some fixed
initial (x, y) location with the goal of reaching the upper right cor-
ner (9, 9) of a 10X10 grid. There are 4 move actions, right, left, up,
down, each moving the robot in the right direction with probability
0.8, in the opposite direction with probability 0, and in either of the
other two directions with probability 0.1.

GRID-10X10 has a state space size of 100 (the robot can be in any
location on the grid), but each action can only reach 3 states. Hence,
GRID-10X10 has significant deterministic structure in its transition
probabilities. The CSP approach, with its constraint propagation, is
able to take advantage of this deterministic structure. The results for
GRID-10X10 are shown in Table 1. The results compare the previous
tabular representation, the ADD representation, and the witness algo-
rithm. We see that ADDs offer a significant improvement over tables,
and that the CSP approach is significantly better than the POMDP al-
gorithm.

Init. n C+Table C+ADD POMDP
(7,6) 5 0.01 0.06 1.21
(6,6) 6 0.01 0.10 1.44
(6,5) 7 0.01 0.16 2.15
(3,3) 12 2.97 1.12 237.0
(3,2) 13 11.72 1.72 508.8
(2,2) 14 oom 2.31 949.5
(1,1) 16 - 4.79 2282.3
(0,0) 18 - 11.44 3098.6
(0,0) 19 - 129.12 -

Table 1. Time on GRID-10X10 in CPU sec. Init. (initial state), n (plan
length), C+Table (caching with tables), C+ADD (caching with ADDs),
POMDP (witness POMDP algorithm), omm (out of memory), - (> 3,600
sec).

Logistics: The other domain we report on with was a conformant
version of the standard Logistics domain due to [4]. In Hoffmann’s
version everything in the domain is deterministic, except for some
non-determinism in the initial locations of the packages. We changed
this initial non-determinism into an initial probability distribution,
and added a probabilistic effect to the load, and unload actions. If
the package is in the same location as the vehicle load loads it into
the vehicle with some probability lprob (otherwise the probability of
the package becoming loaded is zero). Similarly if the package is in
a vehicle unload loads it with some probability uprob (zero if the
package is not in the vehicle).

The other actions (involving moving the vehicles) remain deter-
ministic, with their standard preconditions; however all precondi-
tions involving the packages were removed. (In this domain we do
not know with certainty where the packages are). We also treated the
preconditions as being strict. So for example any execution path that
tried to drive the truck from location a to location b would fail (have
zero probability) if the truck was not at location a.

Intuitively, in a logistics domain it makes sense to assume that ve-
hicles don’t become lost (to a first approximation), but that packages
might. Adding uncertainty to load and unload (and not to vehicle
movements) realizes this intuition.

The results on four different problems from this domain are shown
in Table 2. The probabilities of success for load are 0.875 for trucks
and 0.9 for airplanes and for unload 0.75 and 0.8 respectively. CP-
plan in its tabular representation could not solve problems with so
many actions and states because of the memory required. As the data
shows CPplan with ADDs can generate at least 12 step plans in all of
these domains whereas POMDP algorithms can solve at best 9-step
problems and no more than 2 steps for the biggest instance within the
15, 000 seconds allowed (raising this limit to 100, 000 seconds only

Name p2-2-2 p3-2-2 p4-2-2 p2-2-4
l-t-p-a 4-2-2-1 6-2-2-2 8-2-2-1 3-2-4-1
|S| 392 1458 3872 19208
|A| 30 46 66 54
n CPplan Pomdp CPplan Pomdp CPplan Pomdp CPplan Pomdp
1 0 0.2 0 5.8 0 73.7 0 648
2 0 1.8 0 48.8 0 1123 0 13974
3 0 6.5 0 116 0 3184 0 –
4 0 21.5 0 230 0.1 9119 0 –
5 0.1 66.6 0 451 0.5 – 0.3 –
6 0.6 212 0.3 877 2.4 – 2.1 –
7 1.7 737 1b.9 1796 10.9 – 11.4 –
8 3.7 3495 5.7 3871 34.9 – 39.9 –
9 7.6 – 15.6 9378 83.0 – 185 –
10 14.8 – 28 – 208 – 391 –
11 42.6 – 45.8 – 304 – 722 –
12 281 – 68.8 – 648 – 1221 –
13 oom – 122 – 6398 – 1445 –
14 – 414 – oom – 3725 –
15 – oom – – – oom –

Table 2. Solution Time on various Logistics problems in CPU seconds using Caching with ADDs. l-t-p-a: number of locations, trucks, packages and airplanes.
|S|: number of states, |A|: number of actions. n (plan length). “–”: more than 15000 seconds; oom: out of memory.

allows for one additional step to be solved!). Also on problems that
both techniques can tackle, CPplan can be up to 3 orders of magni-
tude faster.

Finally in order to evaluate how the amount uncertainty affects
the relative performance of CPplan and POMDP we ran the problem
suites using entirely 0/1 probabilities (so that the problem becomes
non-deterministic rather than probabilistic) and probabilities of 0.5
(maximal uncertainty). For reasons of space we report only on prob-
lem p-3-2-2 this problem was somewhat more tractable for POMDP.
The results show that the relative performance does not change

Deterministic Full Uncertainty
n CPplan Pomdp CPplan Pomdp
1 0 5.0 0 6.4
2 0 49.7 0 53.6
3 0 104.0 0 127.7
4 0 170.4 0 254.1
5 0.1 279.7 0 498.3
6 0.5 427.7 0.3 967.8
7 2.5 674.8 1.5 1934
8 8.9 1054 5.3 4031
9 23.6 1614 13.6 9163
10 31.4 2686 26.0 –
11 40.7 3907 32.7
12 35.0 5776 40.7
13 41.9 8536 51.7
14 69.9 11777 128.8
15 68.2 – 1124
16 91.7 oom
17 99.0
18 103.6
19 91.6
20 126.6
21 137.1
22 oom

Table 3. Solution Time on P-3-2-2 with “extreme” probability settings
(CPU seconds) using Caching with ADDs. n: plan length. “–”: more than
15000 seconds; oom: out of memory.

much: CPplan remains orders of magnitude faster than POMDPs.
However, both algorithms find the deterministic problem signifi-
cantly easier. (This also helps illustrate how much harder CPP is than
non-probabilistic conformant planning.) Interesting, in the full uncer-
tainty case CPplan is a bit faster than the results given in Table 2—
with equal probability values the ADDs tend to be more compact as
the functions tend to take on fewer distinct values.

5 Conclusions

We have shown that ADDs can significantly improve the capabil-
ity of the CSP approach to CPP to the point where it consistently
outperforms all other algorithms we are aware of some interesting
problems. A number of open questions remain, including that of how
different domain representations might affect the size and efficiency
of the ADDs, how domain specific knowledge might be employed,

and how computational leverage can be obtained from trying to find
approximate solutions to CPP rather than optimal ones. The two do-
mains we have experimented with here appear to work well with the
CSP approach because they have transitions with restrictive reacha-
bility. A final open question is whether this intuition of can be for-
malized to provide deeper answers to the question of characterizing
the domains on which the CSP approach is superior to traditional
POMDP algorithms.

REFERENCES
[1] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi, ‘Algorithms

and complexity results for #sat and bayesian inference’, in Symposium
on Foundations of Computer Science (FOCS), pp. 340–351, (2003).

[2] Piergiorgio Bertoli, Alessandro Cimatti, and Marco Roveri, ‘Heuristic
search + symbolic model checking = eficient conformant planning’, in
Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 467–472, (2001).

[3] Blai Bonet and Héctor Geffner, ‘Planning with incomplete informa-
tion as heuristic search in belief space’, in Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning (AIPS), pp. 52–61,
(2000).

[4] Ronen Brafman and Joerg Hoffmann, ‘Conformant planning via heuris-
tic forward search’, in Workshop on Planning Under Uncertainty and
Incomplete Information, (2003).

[5] R. E. Bryant, ‘Symbolic boolean manipulation with ordered binary de-
cision diagrams’, ACM Computing Surveys, 24(3), 293–318, (Septem-
ber 1992).

[6] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang, ‘Incre-
mental Pruning: A simple, fast, exact method for partially observable
Markov decision processes’, in Proceedings of the Thirteenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI–97), pp. 54–
61, San Francisco, CA, (1997). Morgan Kaufmann Publishers.

[7] Minh Binh Do and Subbarao Kambhampati, ‘Planning as constraint
satisfaction: Solving the planning graph by compiling it into CSP’, Ar-
tificial Intelligence, 132(2), 151–182, (2001).

[8] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier, ‘Spudd:
Stochastic planning using decision diagrams’, in Uncertainty in Arti-
ficial Intelligence, Proceedings of Annual Conference (UAI), pp. 279–
288, (1999).

[9] Nathanael Hyafil and Fahiem Bacchus, ‘Conformant probabilistic plan-
ning via csps’, in International Conference on Automated Planning and
Scheduling (ICAPS 2003), pp. 205–214, (2003).

[10] Adriana Lopez and Fahiem Bacchus, ‘Generalizing graphplan by for-
mulating planning as a csp’, in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), (2003).

[11] Stephen M. Majercik and Michael L. Littman, ‘MAXPLAN: A New
Approach to Probabilistic Planning’, in The Fourth International Con-
ference on Artificial Intelligence Planning Systems, pp. 86–93, (1998).

[12] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, ‘Algebraic Decision Diagrams and Their Applica-
tions’, in IEEE /ACM International Conference on CAD, pp. 188–191,
Santa Clara, California, (1993). IEEE Computer Society Press.

[13] P. van Beek and X. Chen, ‘CPlan: A constraint programming approach
to planning’, in Proceedings of the AAAI National Conference, pp. 585–
590, Orlando, Florida, (1999).

[14] Toby Walsh, ‘Stochastic constraint programming’, in Proceedings of
the European Conference on Artificial Intelligence, (2002).

