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Abstract

We present a new probabilistic framework for finding likely
variable assignments in difficult constraint satisfaction prob-
lems. Finding such assignments is key to efficient search, but
practical efforts have largely been limited to random guess-
ing and heuristically designed weighting systems. In contrast,
we derive a new version of Belief Propagation (BP) using the
method of Expectation Maximization (EM). This allows us
to differentiate between variables that are strongly biased to-
ward particular values and those that are largely extraneous.
Using EM also eliminates the threat of non-convergence asso-
ciated with regular BP. Theoretically, the derivation exhibits
appealing primal/dual semantics. Empirically, it produces
an “EMBP”-based heuristic for solving constraint satisfac-
tion problems, as illustrated with respect to the Quasigroup
with Holes domain. EMBP outperforms existing techniques
for guiding variable and value ordering during backtracking
search on this problem.

1 Introduction
Any hard but satisfiable combinatorial problem represents
some set of solutions. Elements of this set are not directly
accessible—otherwise we could solve the problem immedi-
ately. On the other hand, it may still be tractable to estimate
statistical information about such solutions, even without di-
rect access. For example, Belief Propagation (BP) [16, 14]
is a technique that, when applied to a constraint satisfaction
problem (CSP), can estimate the percentage of solutions that
contain a particular variable assignment. More generally, BP
computes asurvey, which is a vector of such estimates—one
for each possible value of every variable in the CSP. Such
surveys can then provide useful heuristic information for an
underlying search framework.

Here we exploit the Expectation Maximization (EM)
framework [7] to derive a new version of BP for CSP’s, as
exemplified by the Quasigroup with Holes (QWH) problem
[12]. The yield of this process is threefold. First, the deriva-
tion shows how to find and set the variables that make up the
densely constrained core of a problem instance. Further, it
characterizes BP’s poorly-understood dynamics as a special
case of primal/dual optimization on the search and inference
formulations of a constraint problem [5]. Finally, the deriva-
tion yields an “EMBP”-based heuristic that eliminates the
convergence problems of BP. We use this heuristic to solve
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QWH problems, and demonstrate empirically that it usually
outperforms both BP and standard heuristics.

In the remaining sections we define some necessary back-
ground concepts before proceeding to derive EMBP. After
visiting related work and pragmatic issues, we proceed to
demonstrate empirical gains and interesting behaviors. Fi-
nally, we consider theoretical insights and open questions
that arise from the derivation and the experiments.

2 Background
Algebraic structures like quasigroups have generated great
interest within various areas of Artificial Intelligence. Not
only do their underlying combinatorics capture the essence
of realistic problems like scheduling, coloring, error-
correcting coding, and resource allocation, but as experi-
mental benchmarks they also possess a number of intrigu-
ing properties [8]. Namely, their most difficult instances ex-
hibit “heavy-tailed” behavior making them extremely sensi-
tive to variable and value ordering heuristics [10]. This may
be because QWH and its generalizations often exhibit small
“backdoors”: identifying a dense inner problem and solv-
ing it first can be the key to tractability [19, 1]. Below we
formally define this domain.

2.1 The Quasigroup with Holes Problem
Definition 1 (Latin Square) A Latin Squareof order d is
represented by ad × d array of cell variables. Each cell
takes a value fromD = {1, . . . , d} such that no value oc-
curs twice in any row or column. (The array denotes the
multiplication table for an algebraic quasigroup.)

Definition 2 (Quasigroup with Holes (QWH)) A (Bal-
anced)Quasigroup with Holesproblem is a completed Latin
square that has had a given percentage of entries erased
by the careful process detailed in [12]. To solve a problem
means finding valid values for the erased cells.

Definition 3 (CSP Formulation for QWH) QWH can be
formulated as a CSP in a number of ways. Here we asso-
ciate a variable with every cell. Variables associated with
hole cells have the domain of values{1, . . . , d}, while vari-
ables associated with filled in cells have the specified value
as the single element of their domain. Finally we have2d
“alldiff” [17] constraints, one over each row and column.

2.2 Biases and Surveys
To solve CSP’s, we develop a heuristic that estimates the
most likely values for each of the variables in the otherwise



inaccessible space of satisfying assignments. That is, for
every variable assignmentX = awe estimate the proportion
of solutions whereX is assigned the valuea. Herein we will
use the following QWH-specific terminology:

Definition 4 (Variable Bias) A Variable Biasθa,b(v) for
the cell at rowa and columnb estimates the probability that
it holds valuev in a randomly sampled solution to a given
QWH instance. That is,θa,b represents a probability distri-
bution over the values available for the variable associated
with the cell in question—the term “survey” denotes a set of
bias distributions, one for each variable.

2.3 The Expectation Maximization Framework
In the past, the Belief Propagation algorithm has been used
to compute surveys for QWH [11]. To derive a replacement
technique with improved theoretical semantics, algorithmic
behavior, and empirical performance, we employ the Expec-
tation Maximization framework for parameter estimation in
the face of incomplete data.

EM [7] is an iterative algorithm for estimating model pa-
rameters from data when that data is complicated by the
presence of hidden variables. At a high level, the frame-
work assumes that a vectorY of observations was generated
by some probability model parameterized by the vectorΘ.
The goal is to find a setting ofΘ to maximize the probability
of the observation,P (Y |Θ). This would itself be straight-
forward, but EM deals with the case where we additionally
posit some latent variablesZ that helped generateY , and
that we did not get to observe. So we wantΘ to maxi-
mizeP (Y,Z|Θ), but we cannot marginalize overZ (as in∑
Z P (Y, Z|Θ)) since it is unobserved.
The solution is to bootstrap between hypothesizing an ar-

tificial distribution Q(Z) to estimateP (Z|Y,Θ), and us-
ing this distribution to maximize theexpectedlikelihood
P (Y, Z|Θ) with respect toΘ. The first step is called the
Expectation Step, and uses the current value ofΘ to update
Q(); the second step, theMaximization Step, uses the cur-
rent value ofQ() to updateΘ under expectation. Finally,
the two steps are typically combined into a single update
rule that starts with randomized initial values and repeats to
guaranteed convergence.

In the next section we will demonstrate how to derive
such an update rule for estimating variable biases, by ap-
plying the EM methodology. The rule produces a series of
surveys that can be used as a variable and value ordering
heuristic within an overall CSP-solving framework. We call
the rule “EMBP”, indicating its origins within the general
program of transforming traditional Belief Propagation-type
algorithms to use EM [9].

Propagation-based update rules perform local search
within the space of surveys, seeking a local maximum in
survey likelihood. Using EM guarantees that we will never
increase our distance from the nearest local maximum in
likelihood, thus ensuring convergence. In contrast, regular
BP does calculate the correct gradient for directing search
toward the nearest maximum, but can take overly large steps
that overshoot such maxima and enter new regions of the
search space. Thus, from the same random seed, the two

methods can return different local maxima—even when both
manage to converge. In practice, the values returned by
EMBP seem to work better, at least on heavy-tailed prob-
lems like QWH. An additional theoretical benefit of formu-
lating BP within EM will be to characterize the algorithm’s
operation as an optimized alternation between primal and
dual search and inference problems.

3 Deriving an EMBP Update Rule
To actually compute surveys for a CSP instance, we, in
essence, deceive the EM framework. Namely, we claim that
we have observed a state where all of the constraints are sat-
isfied, but that we did not get to see how exactly they were
supported by their constituent variables. The general process
is shared across domains, but the derivation below focuses
on QWH. Here EM’s task is to find variable biases that best
support our claimed solution sighting; in doing so it hypoth-
esizes and refines aQ() distribution to indicate which per-
mutation ofD = {1, . . . , d} satisfies each row and column
constraint. In the language of duality, we are hypothesizing
extensions, or satisfying tuples, for the constraints.

Vector Interpretation Domain
Y whether constraints are sat-

isfied (observed)
{0, 1}2d

Z support permutations for
constraints (unobserved)

{~r}d × {~c}d

Θ variable biases (parameters)[0, 1]d
3

Table 1: EM Formulation for the QWH Problem.
To that end, Table 1 represents the QWH problem within

the EM methodology.Y represents a2d vector of ones and
zeros indicating whether each row and column constraint is
satisfied—it can be considered to be set to all ones, corre-
sponding to the claimed observation that all constraints are
satisfied. (We actually never have to explicitly representY
in the derivation that follows). Similarly,Z represents sat-
isfying tuples for a problem’s constraints, but will take on
various conceptual forms in the derivation. The main idea is
that it represents hidden information on exactly how the con-
straints were satisfied. Initially, it will consist ofd row vec-
tors (~r) andd column vectors (~c). Each such vector is itself
of dimensiond and represents the permutation of{1, . . . , d}
that instantiates the constraint. (So for instance,~r3[1] = 5
indicates that the first column of the third row contains the
entry 5.) Finally, theΘ parameterizing EM’sQ() distribu-
tion overZ is the vector of variable biases{θa,b(v)} that we
wish to optimize. That is, for each cell indexed by rowa,
columnb, and each valuev that can be placed in that cell,
we are asking EM for the biasθa,b(v) representing the prob-
ability that this cell takes the valuev in a claimed solution.

At a higher level, we use EM to alternate between “soft,”
i.e., “probabilistic,” or “non-integral,” solutions to the pri-
mal and dual [5] representations of the CSP. (Here, “soft”
means assigning weights to various possibilities via a prob-
ability distribution, rather than just choosing one outright.)
In settingΘ, we weight the possible values of variables rep-



resenting the cells of a Latin square. In constructingQ(), we
weight the possible extensions to constraints representing
the rows and columns of the square; this amounts to choos-
ing permutations ofD to serve as satisfying tuples. Initial-
izing with random values forΘ, we use its current value to
constructQ(), then useQ() to produce an updated version
of Θ, repeating to guaranteed convergence.

3.1 E-Step: Hypothesizing Configurations
The first step of the EM derivation for QWH is to construct
an artificial distribution functionQ(Z) over the total con-
figurationZ of a Latin square.Q(Z) represents each con-
figuration’s probability given the cells’ biases and the obser-
vation that it is a valid one:P (Z|Y,Θ). We actually do not
need a general expression forQ(Z) itself, but its elaboration
will clarify the intervening stages.

In particular, we decompose the variableZ into row vec-
tors {~ri} and column vectors{~cj}, each representing the
permutation ofD = {1, . . . , d} that instantiates the corre-
sponding row or column constraint. (As such,i andj range
from 1 to d). We will not have to worry about enforcing
consistency over such hypotheses, for instance by specify-
ing that~ra[b] = ~cb[a], because ultimately the entire proba-
bility is conditioned on our (hypothetical) observationY of
a satisfying configuration. In other words, the dependence
between constraints will be enforced later, by theM -step.

Thus, we can composeQ(Z) from a second operator,q(),
that returns the probability of a given configuration for a par-
ticular row or column:Q(Z) =

∏d
i,j=1 q(~ri)q(~cj). Recall

that none of these constructions are explicitly represented
within an implementation of EMBP. Rather, they serve to
formalize its operation as optimal coordinate ascent over the
primal (search) and dual (inference) problems. Here opti-
mality means that EMBP derives exact step sizes that will
never overshoot a local maximum in likelihood, thus guar-
anteeing convergence.

3.2 M-Step: Maximizing the Likelihood
At this point we fix the currentQ-distribution and use it to
update the cell biasesθa,b(v). More specifically, we maxi-
mize the expected logarithm of the probability thatY given
Θ. Using the logarithm ensures convergence via Jensen’s
Inequality: logE[p(x)] ≥ E[log p(x)], as elaborated, for
example, in [15].

The upshot is that we must setΘ to maximize a La-
grangian functionL(Θ) = F(Θ) − P(Θ), whereF rep-
resents the expectation in question, and the penalty function
P(Θ) =

∑
i,j λi,j(

∑
v θi,j(v) − 1) introduces a Lagrange

multiplier λi,j for each cell, ensuring that the biasθi,j for
that cell sums to 1 across all possible values. The main ob-
ject of interest is the expected log-likelihood function,F :

F(Θ) = EQ[logP (Z, Y |Θ)]

=
∑
Z Q(Z) logP (Z, Y |Θ)

(1)

Because we have definedZ to range over only satisfying
tuples, any of its values already implies the observation that
Y = 1, allowing us to omitY from the above probabilities.

By proceeding to decomposeZ into its constituent row and
column configurations, we derive:

=
∑

~r1, ..., ~rd,

~c1, ...,~cd

[
d∏

i,j=1

q(~ri)q(~cj) log
d∏

i,j=1

p(~ri; Θ)p(~cj ; Θ)

]

(2)
Thep() distributions above correspond to the hypothesized
q() distributions, and express the true probability of a row or
column configuration, given the current biases of the vari-
ables. So to recapitulate, (2) is a decomposed representation
for the expected log-likelihood over all possible satisfying
configurations, given a fixed setting ofΘ. Our goal is to
choose aΘ to maximize this likelihood, with the extra con-
straintP(Θ) that it must represent valid probability distri-
butions.

To that end, the next step is to transform the logarithmic
factor in (2) by making logs of products into sums of logs
and expressing the two probabilities directly in terms ofΘ:

log
d∏

i,j=1

p(~ri; Θ)p(~cj ; Θ) =

d∑
i=1

d∑
k=1

log θi,k(~ri[k]) +
d∑
j=1

d∑
k=1

log θk,j(~cj [k]) (3)

That is, the probability thatΘ bears out a specific row (resp.
column) configuration~ri is just the chance that the biasθi,k
for each cell in the row produces the value~ri[k] specified by
that configuration. Upon substituting this expression back
into (2), we can optimize the entire LagrangianL(Θ) by
taking its derivative with respect to each individual bias:

dL
dθa,b(v) =

∑
~r1, ..., ~rd,

~c1, ...,~cd
s.t.~ra[b] = v

d∏
i,j=1

q(~ri) q(~cj) · (θa,b(v))−1

+
∑

~r1, ..., ~rd,

~c1, ...,~cd
s.t.~cb[a] = v

d∏
i,j=1

q(~ri) q(~cj) · (θa,b(v))−1

− λa,b
(4)

In other words,L varies linearly with(θa,b(v))−1, weighted
by the probabilities of those total configurations that have
put v in the correct position (b) for the row (a) in question,
along with those that have placed it correctly at positiona for
columnb. From this more holistic perspective, we can revert
to denoting these total configurations byZ, and optimize by



setting the derivative to zero:

dL
dθa,b(v) = 0 ⇒

∑
Z:~ra[b] = v

Q(Z) · (θa,b(v))−1 +

∑
Z:~cb[a] = v

Q(Z) · (θa,b(v))−1 = λa,b

(5)
Solving forθa,b(v) yields an update rule that is expressed in
terms of the hypothesizedQ-distribution on configurations:

⇒ θa,b(v) =

∑
Z:~ra[b] = v

Q(Z) +
∑

Z:~cb[a] = v

Q(Z)

N
(6)

HereN , λa,b serves as a normalizing constant, and is
defined to equal the summation of the expression in the nu-
merator over all values ofv. (This is readily confirmed by
summing both sides of (6) overv and recalling that the bi-
ases for a cell must add up to 1.)

Intuitively, this equation tells us the optimal way to take
the variable representing cell(a, b) in a Latin square and bias
it toward its various possible values. Namely, we consult our
Q() distribution over satisfying tuples for the row and col-
umn constraints, and score each possible value by additively
combining the likelihoods of tuples where it appears in this
cell. By rescaling these scores by their sum we produce a
distributionθa,b representing our desired biases.

3.3 Combining Steps: The EMBP Update Rule
To complete the derivation, we can now unite the two steps
of EMBP into a single update rule. Recall that for the E-Step
we declined to specify a fixed form forQ(Z), the estimated
probability that the cells are in a particular satisfying config-
uration. Now, we can choose an expression well-suited for
substitution into (6).

Theoretically, an initial, most extreme approach is forZ
to range over explicitly represented solutions to the entire
Latin square. Clearly, this presupposes the solution to the
problem at hand, and is thus trivially impractical. However,
such “total consistency” serves to define one extreme in a
spectrum of inferential power. Below we define three in-
creasingly pragmatic approaches, the last two of which are
actually implemented.

Less ambitious approaches than total consistency might
decomposeZ into row and column constraints, and enforce
various degrees of consistency amongst and within these en-
tities. Moving down the spectrum of constraint complexity,
then, a first practical idea might be to explicitly representZ
as a series of tuples representing rows and columns, as in
the derivation. We would then achieve consistency between
such row and column possibilities by using theirQ() distri-
bution values to updateΘ via (6), and then usingΘ to update
Q(). It turns out, though, that this first approach is still in-
tractable. Ifu is the number of unassigned variables in a
row or column constraint, then the resulting space ofO(u!)
possible tuples is unmanageable for large problems.

However, we can exploit specific knowledge about the
alldiff constraint underlying the rows and columns in or-
der to reduce the complexity of exactly computing such a

Q(Z). That is, we can implicitly calculate the probability of
each possible tuple without explicitly representing one such
probability for every possible tuple. We have implemented
aO(d · 2d) dynamic programming algorithm for doing so
exactly. Using this technique yields a second approach, a
completed EMBP rule that we will call “EMBP-e,” but we
will omit its details from this presentation.

Instead, we show how to complete the rule via a further
approximation that is still more efficient in practice. The
main idea remains the same: rather than summing over the
probabilities of all satisfying configurations, after filtering
out those whose rows or columns do not match the given
bias, express the sum itself as a decomposed probability.

Note that the first summation in (6) constructs the prob-
ability that rowa places valuev in positionb, conditioned
on the space of all satisfying total configurations. Since~ra
is supposed to range exclusively over satisfying configura-
tions, this can be approximated by the probability that none
of the other entries in the row has chosenv. With analogous
reasoning for columns, we can derive a second completed
update rule, and our third overall approach, “EMBP-a”:

θa,b(v) =

∏
b′∈D/b

(1− θa,b′(v)) +
∏

a′∈D/a
(1− θa′,b(v))

N
(7)

Here again,N is a normalizing constant equal to the sum
of the expression in the numerator over all values ofv.

Within the spectrum of inferential power, this approach
enforces pairwise (arc) consistency between the variable in
question and the other variables in its rows and columns,
producing O(u) complexity. In contrast,EMBP-e is
founded on global consistency betweeneverypair of vari-
ables in the constraint, and the initial, degenerately imprac-
tical approach assumes total consistency across the entire
problem. Under experimentation, Equation (7) turns out to
be the most effective compromise between the complexity
of its computation and the accuracy of its result.

In summary, we base a cell’s bias on the probability that
it is realized by the hidden configurationZ of its row (resp.
column) constraint (6). We express this probability via
the current bias of neighboring cells and substitute to pro-
duce a single combined update rule (7). This framework
generalizes to arbitrary CSP’s; any derivation would pro-
ceed directly to an expression like (6), expressing bias as a
sum of realizations over whatever sorts of constraints con-
tain a given variable—here, a pair ofalldiff ’s. The only
domain-specific engineering task is to efficiently represent
suchQ(Z)’s for substitution into completed update rules.

4 Discussion
Regular BP Applying traditional Belief Propagation pro-
duces a very similar family of update rules, but by a com-
pletely different route. For instance, replacing the addition
in the numerator of (7) with a multiplication actually yields
an expression that could have been derived from regular BP.
This modified update rule would ambitiously couple a cell’s
duties to its two constraints by means of a geometric aver-
age. In contrast, EMBP’s probabilistic underpinnings result



in a more conservative arithmetic average. This is the dif-
ference that guarantees convergence for EMBP but not for
BP, even as both approaches seek local maxima of the same
(negative) free energy equations.

More generally, using EM eliminates a variety of lesser
problems inherent to regular BP. Formally, BP’s operation
on CSP’s is not well-understood outside of a limited scenario
based on extreme values [6]. Given that the algorithm is
not guaranteed to converge, its overall performance is highly
sensitive to a parameter governing when to give up on trying
to compute a survey and just use the current value. In fact,
even when it converges, BP can arrive at different answers
(local maxima in survey likelihood) than EMBP’s.

Other Heuristics In general terms, almost all existing
variable/value-ordering heuristics attempt to identify the
“important” variables together with promising values for
them. As such, they often perform similar operations to BP,
just more heuristically than probabilistically. For instance,
one of the most successful recent approaches to variable or-
dering is to score variables using a system of weights on
the constraints in which they appear [3]. The weights are
devised to measure the constraints’ risks of being unsatis-
fied based on search experience and the current settings of
the variables. This mirrors EMBP’s alternation between pre-
cisely biasing variables to satisfy constraints most at risk of
unsatisfaction, and probabilistically measuring the levels of
risk for each constraint in terms of the current biases.

Indeed, the adoption of EMBP and its clearer primal/dual
semantics demonstrates that one step of the algorithm is per-
forming soft search, while the other step does soft inference
in the same sense that an operation like arc consistency or
constraint propagation performs hard inference. This helps
to explain the observation that empirically, EMBP alone per-
forms better than any such heuristics alone. (At the same
time this does not unilaterally raise one method above all
others—they can be used in partnership, as will be described
in Section 5.)

Primal/Dual Semantics Recall that the primal version of
a CSP consists of selecting values for variables, subject to
constraints, as usual. In the dual problem, the constraints be-
come variables that range over satisfying tuples drawn from
the constraints’ extensions. At the same time, the variables
define a new set of constraints: the selected tuples must be
consistent with one another. That is, when two constraints
share a variable in the primal problem, the two tuples chosen
to instantiate them in the dual must use the same value for
this variable.

While the primal and dual versions of our CSP have lent
intuitions to the derivation, the exact correspondence to EM
still bears elaboration. In particular, the EMBP framework is
performing optimal primal/dual (or perhaps, “dual/primal”)
solving in a soft assignment space. When the E-Step weights
the most likely row and column permutations according to
the current biases, it is solving thedualproblem by choosing
tuples that are born out by the current (probabilistic) variable
settings. Conversely, when the M-Step sets the biases to re-
flect the hypothesized tuples, it operates in theprimal space
by (softly) choosing variable values to meet the dictates of

the constraints. The claim of “optimal” solving stems from
the same property of EM that underlies its convergence. On
each E-Step or M-Step, EM receives a fixed solution to the
dual or primal problem, respectively. The guarantee is that
it will construct the newQ() distribution orΘ that maxi-
mizes progress toward a local maximum, given what is al-
ready fixed. At least in a softened space, then, EMBP has
struck a heretofore elusive balance between search and in-
ference for solving CSP’s.

5 Using EMBP in Practice
For QWH, the practical yield of the derivation is an update
rule (7) that expresses the bias of a cell variable in terms of
the biases of the other cells in the same row or column. If
we sequentially update the biases of all the variables over all
their values, we are guaranteed to converge to a local max-
imum in likelihood. This survey information is used as a
variable and value ordering heuristic, directing a CSP solver
toward the most extremely biased variables first, using their
most likely values. In practice, we do this by simply choos-
ing the variable whose maximal bias is itself maximal across
all such biases for all variables. By branching on such a
variable and first assigning it its maximally biased value, we
seek to enter a subtree that probably contains a solution (as
we have estimated that a large proportion of the solutions
contain this assignment). The hope is that we will never
have to backtrack out of this subtree, a wish that comes true
surprisingly often in our experiments.

In this context there remain two more algorithmic details
of interest. First is a parameter governing the size of a single
decimation[4]. Upon computing a survey, we can decide to
fix a certain number of the most highly-biased variables be-
fore computing a new survey on the reduced domains of the
remaining variables. Each such step is called a decimation,
and in practice the best decimation size is 1 (i.e., fixing only
one variable at a time). On the one hand, this entails pay-
ing the computational cost of computing a new survey every
time we fix a variable. On the other hand, the new surveys
are more accurate in that they are conditioned upon the vari-
ables fixed so far, and thus avoid the problem of correlations
between variable biases within a single decimation block.

A second parameter governs thethresholdfor turning off
the survey module. In practice, the first few surveys for a
problem return strong bias information for certain “impor-
tant” variables. As these variables are fixed, subsequent sur-
veys become weaker and weaker, converging toward uni-
form biases across all values for the remaining variables.
Eventually, we wish to stop computing surveys—both be-
cause they are no longer paying returns in useful informa-
tion, and because the remaining problem is now easily han-
dled by a regular solver. At an intuitive level, this roughly
corresponds to the notion that problems have a few “back-
door” [19, 13] variables that, when set correctly, render
the remaining problem polynomially solvable by a simpler
method. We have experimented with various definitions of
a threshold that measure the level of entropy in bias estima-
tions. However, in practice the best approach appears to be
simply stopping the computation of surveys after instantiat-
ing a fixed percentage (5%) of the variables in a problem.



6 Experimental Results
To illustrate the practical use of EMBP, we compare the
proposed EMBP methods with other commonly used vari-
able ordering heuristics for the QWH problem. In particu-
lar, we compare making variable assignment choices using
EMBP-e(the more exact form of EM survey computation
discussed above),EMBP-a(the less expensive but more ap-
proximate EM survey computation of Eq. (7)),BP-e (the
Belief Propagation algorithm [11] using the same distribu-
tion functionQ(Z) as used by the EMBP-e algorithm),BP-
a (the Belief Propagation algorithm using the same approx-
imate distribution functionQ(Z) used by the EMBP-a al-
gorithm),dom/deg(picking the variable with lowest current
domain/degree ratio), and a highly successful weighted con-
straint approachdom/wdegproposed in [3]. The EMBP and
BP approaches ran decimations of size one up to a thresh-
hold where 5% of the variables were assigned. At that point
dom/wdegwas used as the ordering heuristic.

We experimented with a range of QWH problems of size
15×15 and 17×17 and with a varying percentage of holes.
We tested 100 randomly generated instances at each percent-
age. The experiments measured the time taken to solve the
total set of 100 instances (in CPU seconds), the total number
of nodes searched during the solving episode, and the total
number of failures (within a timeout of 500 sec.). All exper-
iments were preformed on 2.20 GHz Opteron machines.

QWH 15×15 EMBP-e EMBP-a BP-e BP-a dom/wdeg dom/deg

QWH(45%) 3119 37 674 764 208 38

QWH(50%) 14109 111 2517 2411 3710 2002

QWH(55%) 22743 546 5574 3223 4813 15506

QWH(60%) 7795 868 8604 567 7376 19025

QWH(65%) 9056 935 15695 263 4266 13805

QWH(Total) 56823 2499 33066 7230 20375 50376

Table 2: Time in seconds of QWH 15×15 (100 instances with
500 second timeout). Best times in bold.

QWH 15×15 EMBP-e EMBP-a BP-e BP-a dom/wdeg dom/deg

QWH(45%) 0 0 0 0 0 0

QWH(50%) 1 0 2 1 0 1

QWH(55%) 12 0 3 5 7 27

QWH(60%) 0 1 4 0 2 34

QWH(65%) 0 1 3 0 3 25

QWH(Total) 13 2 12 6 12 87

Table 3:Timeouts on QWH 15×15 (100 instances with 500 sec-
ond timeout)

In Tables 2 and 4, we see that EMBP-a solve the complete
set of benchmarks in the fastest time, despite the expense of
computing surveys. We see a substantial improvement over
the dom/wdegalgorithm in both time and number of solu-
tions found for all benchmarks. Although the EMBP-e algo-
rithm did not solve as many problems as EMBP-a, it often

QWH 17×17 EMBP-e EMBP-a BP-e BP-a dom/wdeg dom/deg

QWH(45%) 3663 172 5063 8383 208 4429

QWH(50%) 15767 2065 13080 4471 3710 27586

QWH(55%) 12780 4338 15839 3850 4813 31610

QWH(60%) 4885 4708 28034 1951 7376 30501

QWH(65%) 5191 1909 29616 1927 4266 22026

QWH(Total) 42287 13217 91129 20585 20375 116154

Table 4: Time in seconds on QWH 17×17 (100 instances with
500 second timeout). Best times in bold.

QWH 17×17 EMBP-e EMBP-a BP-e BP-a dom/wdeg dom/deg

QWH(45%) 0 0 2 6 0 2

QWH(50%) 5 2 17 6 6 48

QWH(55%) 1 7 13 5 7 58

QWH(60%) 6 8 18 3 13 57

QWH(65%) 8 3 53 2 7 42

QWH(Total) 20 20 102 22 34 207

Table 5:Timeouts on QWH 17×17 (100 instances with 500 sec-
ond timeout)

outperformed EMBP-a with respect to nodes searched. Even
when it expanded fewer nodes, the time to solve a problem
was substantially greater than EMBP-a. This increased time
is due to the considerable overhead in performing exact sur-
veys during search. There is often a significant gap in the
time taken to solve “easy instances”.

Heuristic QWH(50%) QWH(55%)

Time Nodes Time Nodes

EMBP-e 12508 2.6*106 10925 2.0*106

EMBP-a 1047 7.0*106 837 5.0*106

Table 6: Time and nodes visited of instances solved by both
EMBP versions

To further illustrate this point, consider the comparisons
between EMBP-e and EMBP-a on instances solved by both
algorithms. Although the number of nodes searched is far
fewer using EMBP-e, the time to solve the instances is
greater. This shows the large overhead involved in running
the exact EMBP and BP algorithms.

Finally, in Table 7 we show the number of backtracks over
nodes that use the EM surveys. Table entries represent the
total number of EM surveys performed, and the total num-
ber of backtracks over these nodes for all 100 instances of
each benchmark. The number of backtracks is small com-
pared to the total number of nodes performing the surveys,
meaning that the predictions of variable assignments made
by the EM algorithm were correct a large percentage of the
time. In the case of EMBP-e, we only backtrack past 8% of
all assignments. The percentage of backtracks is highest on
the QWH(60%) benchmark at 17%.



Version EMBP-a

Surveys Backtrack

QWH(45%) 497 33
QWH(50%) 502 21
QWH(55%) 526 61
QWH(60%) 557 97
QWH(65%) 500 15
QWH(Total) 2582 227

Table 7:Total number of backtracks past EM nodes

7 Conclusions and Future Work
In this work we have solved the QWH problem by estimat-
ing the likelihoods that its variables hold their various possi-
ble values in a satisfying assignment. To do so, we derived
an EMBP update rule by re-characterizing BP within the EM
framework. Besides providing a clear semantics founded
on the duality between search and inference, this yields a
heuristic that is guaranteed to converge, and that can out-
perform existing approaches to the problem. The bulk of
this process generalizes to arbitrary domains, but future ap-
plications involving different types of constraints will have
to explore a spectrum of inferential approximations for each
such constraint.

Experimenting with new domains will also broaden the
comparison between the sorts of local maxima found by
EMBP and regular BP. Characterizing the properties of
maxima that attract convergent versus overstepping local
searches would serve to explain differences in performance
across domains. We would also like to rigorously compare
the variables identified by our heuristic with those that com-
prise known backdoors and backbones.

In addition, estimating the fraction of solutions where a
variable is fixed a certain way directly corresponds to model
counting. Thus methods from this area can be used in a
similar way to our technique, and vice versa. Likewise, there
is a Bayesian correspondence between computing surveys
via parameter estimation and finding soft solutions directly
via local search. IfY is the event of a solution andΘ is a
probabilistic setting for the variables in a problem, then the
former maximizesP (Θ|Y ) and the latter,P (Y |Θ).

A final future direction is to learn online from search ex-
perience, as per some of the latest advances in systematic
search [2, 18]; on its own the methodology of computing
surveys does not perform any such operation.
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