
Clause Learning Can Effectively P-Simulate General Propositional Resolution

Philipp Hertel and Fahiem Bacchus and Toniann Pitassi
Department of Computer Science,

University of Toronto,
Toronto ON M5S 3G4, Canada

[philipp|fbacchus|toni] at cs.toronto.edu

Allen Van Gelder
University of California,

Santa Cruz,
CA, 95060, USA
avg at cs.ucsc.edu

Abstract

Currently, the most effective complete SAT solvers are based
on the DPLL algorithm augmented by clause learning. These
solvers can handle many real-world problems from applica-
tion areas like verification, diagnosis, planning, and design.
Without clause learning, however, DPLL loses most of its ef-
fectiveness on real world problems. Recently there has been
some work on obtaining a deeper understanding of the tech-
nique of clause learning. In this paper we utilize the idea
of effective p-simulation, which is a new way of compar-
ing clause learning with general resolution and other proof
systems. We then show that pool proofs, a previously used
characterization of clause learning, can effectively p-simulate
general resolution. Furthermore, this result holds even for
the more restrictive class of greedy, unit propagating, pool
proofs, which more accurately characterize clause learning
as it is used in practice. This result is surprising and indicates
that clause learning is significantly more powerful than was
previously known.

Introduction
DPLL (Davis, Logemann, & Loveland 1962) is a depth-
first backtracking search procedure for solving SAT devel-
oped in the 1960s. However, it is only recently that SAT
solving using DPLL has been effective enough for practical
application. This has mainly been due to algorithmic im-
provements to the basic procedure. The most important im-
provement, and the one that has revolutionized DPLL SAT
solvers, has been the technique of clause learning(Marques-
Silva & Sakallah 1996). Clause learning involves learning
information (new clauses) when paths in the search tree lead
to failure, akin to explanation-based learning (Stallman &
Sussman 1977). These clauses are then utilized to reject, or
refute, nodes in the future search, thus avoiding having to
search the subtree below these nodes. This yields consider-
able reductions in the size of the search tree.

How much can the search tree and the run time of DPLL
be reduced by clause learning? Can this reduction be quan-
tified? Are there “easy” inputs in which clause learning re-
mains ineffective? These are the kinds of questions that arise
as we try to achieve a better understanding of the power
and limitations of clause learning. In this paper we study

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the formal properties of clause learning, addressing ques-
tions like those just posed. We provide a number of new
insights into this important technique extending previous
work in this direction (Beame, Kautz, & Sabharwal 2004;
Van Gelder 2005b).

In particular, we argue that previous formalizations have
characterized clause learning as a system that is far more
general than any practical implementation. Specifically,
these formalizations have allowed clause learning to utilize
extra degrees of non-determinism that would be very hard to
exploit in practice. Hence, the formal results obtained from
these characterizations are not as informative about practice
as one would like. We identify some very natural constraints
on a previous formalization that allows us to more accurately
capture clause learning as it is implemented in practice.

Previous work has shown relatively little about the rela-
tionship between clause learning and general resolution. In
this paper we show the surprising result that the formaliza-
tion of clause learning we present here is essentially as pow-
erful as general resolution, despite it being more constrained
than previous formalizations. This immediately implies that
previous formalizations are also essentially as powerful as
general resolution, in a sense made precise in the paper.
However, more importantly, since our formalization is much
closer to practical clause learning algorithms, this indicates
that clause learning as it is used in practice adds more power
to DPLL than previously thought.

Our second result shows that as a consequence of this
power no clause learning implementation can ever effi-
ciently solve all inputs.1 That is, for any deterministic im-
plementation A there will always be formulas that some al-
ternative clause learning implementation can solve super-
polynomially faster than A. This means, e.g., that there
can be no universally effective branching heuristic for clause
learning; any heuristic will be seriously sub-optimal on
some inputs. This is in stark contrast to DPLL without
clause learning, for which an algorithm exists that always
runs in time quasi-polynomial in the size of the short-
est DPLL refutation (in technical terms DPLL is quasi-
automatizable). In sum, our two results show that clause
learning is more powerful than previously known, but that
finding short proofs with a clause learning algorithm is

1Unless a widely-believed complexity assumption is false.

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

283

harder than previously known.
As with previous work we analyze clause learning by for-

malizing it as a proof system. We therefore first present the
formalism of proof systems and explain how proof systems
are compared. We then explain our model of clause learning
and how it generates proofs. This results in a characteriza-
tion of clause learning as a proof system, and allows us to
compare it with resolution. We show that our formalism of
clause learning is essentially as powerful as resolution. Next
we show how this power leads to our negative result, namely
that no deterministic implementation of clause learning can
ever fully realize the power of our clause learning.It is im-
portant to note that since our system is a constrained version
of previous clause learning formalizations, both our positive
and negative results hold for them also.

Proof Systems and Resolution
For this paper, we are concerned with resolution proofs of
propositional formulas, primarily proofs of unsatisfiability,
called refutations. A proof system S is a language for ex-
pressing proofs, such that a proposed S-proof π, of formula
F , can be verified (or found to be faulty) in time that is
polynomial in the lengths of π and F (Cook & Reckhow
1979). (Proofs may be exponentially longer than the un-
derlying formulas.) Although the original definition casts
proofs as strings, the system with which we are concerned
in this paper (resolution) has proofs which can intuitively be
viewed as directed acyclic graphs (DAGs).

Definition 1 lays the groundwork for comparing the power
of different proof systems.

Definition 1 The complexity of an unsatisfiable formula F
in proof system S is the size of the shortest proof of F in
S. We denote this by |S(F)|. For proof systems S and T
we say S p-simulates T if, for all formulas F , the shortest
S-proof for any formula F is at most polynomially longer
than the shortest T proof of F .

If the proof system S p-simulates the proof system T , then
all formulas that have a short T proof also have a short S
proof. Thus the range of formulas with short S proofs is at
least as large as the range of formulas with short T proofs,
and S is viewed to be at least as powerful as T .

Resolution (res) is a proof system that permits unre-
stricted use of the resolution rule, its only rule of inference.
All the proof systems discussed in this paper are refine-
ments of general resolution; that is, they also use only the
resolution rule, but have various constraints on its applica-
tion. Clearly, res p-simulates all of its refinements.

Resolution operates on formulas in conjunctive normal
form (CNF), i.e., a conjunction of a set of clauses. Each
clause is a disjunction of a set of literals.

Definition 2 We define the resolution rule as a function
which takes as input two clauses A and B and a variable
x, and produces a single clause.

• If x ∈ A and ¬x ∈ B, then Res(A, B, x) = A′ ∨ B′
where A′ and B′ are A and B with any mention of x and
¬x removed.

• If, on the other hand, x �∈ A and x ∈ B, then
Res(A, B, x) = A.

• Finally, if x �∈ A and x �∈ B, then Res(A, B, x) can be
either clause, but in the interest of making the rule deter-
ministic, we will always pick the shorter clause.

We refer to either of the last two cases as degenerate reso-
lutions.

Our definition of the resolution rule is slightly different
from the standard definition because we allow degenerate
resolutions. It is important to note that degenerate resolu-
tions add no power to res. It is easily shown that a min-
imally sized res proof contains no degenerate resolutions
(Van Gelder 2005a), even if it is permitted to use them. Use
of the degenerate resolution rule can alter the structure of a
proof and might therefore affect the power of resolution re-
finements (though it can never make them exceed the power
of res). In particular, since clause learning based SAT-
solvers cannot anticipate whether the variable branched on
at a node will actually appear in the clauses learned at either
of its children, they naturally generate proofs containing de-
generate resolutions. We therefore obtain a more accurate
formalization of standard clause learning implementations
by extending resolution in this way. Previous formaliza-
tions of clause learning, notably (Beame, Kautz, & Sabhar-
wal 2004; Van Gelder 2005b) also extend resolution in this
way.

We define a res-proof of a formula F to be a rooted di-
rected acyclic graph (DAG), where the root is the unique
source. Each node v of the DAG is labeled by a clause
clause(v). Internal nodes (with out-degree two) are also la-
beled with a clashing literal, denoted by clash(v). Nodes
with out-degree zero (leaves in the DAG) are labeled with a
clause of F , called an initial clause, and have no clashing
literal. The clause label of an internal node is the (unique)
clause obtained by applying the resolution rule to the clause-
labels of its two children and its clashing literal. The two
edges leaving v, are labeled with clash(v) and ¬clash(v) in
the way that is consistent with the resolution step.

If clause(root) = ∅ (the empty clause), then the DAG is a
refutation of F (a proof of F ’s unsatisfiability); otherwise
it is a proof that F logically implies clause(root). The size
of a proof in this format is the number of nodes in the DAG.

The set of traces of a decision algorithm’s computations
on its inputs naturally produces a proof system. If the traces
of an algorithm A correspond to the proofs of a proof sys-
tem S, then we say that A is an S-based algorithm. The
traces of many SAT-solvers naturally correspond to resolu-
tion proofs. A lower bound on the size of resolution proofs
for some class of formulas implies a lower bound on the per-
formance of such resolution-based algorithms on that class.
The situation is made more complicated because efficiently
refuting a formula with a resolution-based SAT-solver re-
quires that 1) a short resolution proof exists for that formula,
and that 2) such a short proof can be found quickly. Our two
results basically show that clause learning is almost as good
as res at producing short proofs, but as a consequence, it is
just as hard to search for them as it is to search for short res
proofs.

284

Tree-like Resolution (tree) and Regular Resolution (reg)
are two well-known refinements of res. A res proof π is
a tree-proof iff the induced subgraph of π in which all leaf
nodes have been removed is a tree. A path in π is regular
if every internal node along the path is labeled by a distinct
clashing variable; the proof is regular if all its paths are. Ir-
regularities in a tree-proof can be removed without increas-
ing the size of the proof, hence tree-proofs may always be
considered to be a refinement of reg.

tree-proofs correspond very naturally to the traces of
DPLL algorithms, but this correspondence breaks down
once clause learning is employed. A relatively new refine-
ment of res that is useful for analyzing clause learning is
pool resolution (pool) (Van Gelder 2005b). Briefly, a res
proof π is a pool resolution proof iff there is some depth-
first search of π (starting at the root) such that every path
traversed by the depth-first search is a regular path. One can
think of pool proofs as being depth-first regular.

It is known that reg is exponentially stronger than tree
(Buresh-Oppenheim & Pitassi 2003) (i.e. reg p-simulates
tree but tree cannot p-simulate reg). We observe that reg
is a refinement of pool—every depth-first search of a reg
proof is regular, so clearly pool p-simulates reg. However,
reg cannot p-simulate pool (Van Gelder 2005b).

It is also known that reg cannot p-simulate res
(Alekhnovich et al. 2002; Urquhart 2008), but it is unknown
whether pool can p-simulate res. Although that question
remains open, our main result shows that even a restricted
form of pool, which we call CL, is effectively as powerful
as res in a sense we make precise below. 2

The Clause Learning Algorithm
Algorithm 1 shows an abstracted version of a clause learn-
ing algorithm, which we will use to present our CL proof
system. It operates with a background set of clauses F ini-
tialized to the initial CNF we are trying to solve. As clauses
are learned (line 15) F is augmented. The algorithm builds
up a partial assignment ρ (a set of literals made true) as it de-
scends through its recursive calls. If ρ satisfies all the clauses
of F we have a solution and the algorithm can exit (line 4).
At various points ρ might falsify some clauses of F . (The
terminology can be confusing: this event is called a con-
flict, but the falsified clause is not a conflict clause.) If the
algorithm is operating with greedy conflict detection, i.e.,
the GREEDY flag is true, it must accept a falsified clause
(line 8) if one is present in the possibly augmented F . In
nongreedy mode, the algorithm can choose to accept or ig-
nore the falsified clause. (It must accept if all variables have
been assigned by ρ.)

If neither a solution nor an accepted falsified clause has
been found, the algorithm continues to line 10 where a new
unassigned literal � is chosen and branched upon, thus build-
ing up ρ. The common terminology is that the global deci-
sion level starts at zero and increases by one when � is not in
a unit clause; in this case � is called a decision literal. The
decision level remains unchanged when � is in a unit clause.

2We use “effective” in its natural meaning, not in the technical
sense of “computable” as seen in the computability literature.

Algorithm 1: A1 (DPLL with Clause Learning). The
objective of A1(ρ) is to return an initial or soundly de-
rived clause that is falsified by the partial assignment ρ.

// The current set of clauses F is a global data structure;1

A1(ρ) begin2

if All clauses of F are satisfied by ρ then3

Exit (ρ is a satisfying assignment);4

if (F |ρ contains a falsified clause) ∧5

(GREEDY ∨ choose(Accept))6

then7

choose a falsified clause C of F |ρ;8

return C (without ρ applied);9

choose A literal � such that neither � nor ¬� is in ρ;10

D1 = A1(〈ρ, �〉);11

D2 = A1(〈ρ,¬�〉);12

D3 = Res(D1, D2, �);13

if choose Learn then14

Add D3 to F ;15

return (D3);16

end17

Either of these recursions could return a clause not con-
taining the branch variable �, in which case the value of D 3

is set by the degenerate resolution rule. If the first recursive
call (line 11) learned D1 before returning, and D1 does not
contain ¬�, then the second recursive call (line 12) may im-
mediately return D1 (from line 9), as well. (D1 is falsified
by ρ so it is also falsified in the second recursive call). In
this case, D3 = D1. If D1 does contain ¬�, but D2 does not
contain �, then D3 = D2. However, it might be important
that D1 was learned in the recursive call, as it can be utilized
later.

In the normal case, the two returned clauses clash on �,
and a (standard) resolution step derives a clause D3 not con-
taining �. In some cases this is what is known as a con-
flict clause in the clause-learning literature, but more often
it is intermediate, on the way to deriving a conflict clause.
Backtracking then continues. If F is UNSAT, eventually
some recursive call will derive the empty clause as a con-
flict clause, which will cause backtracks that unwind all re-
cursions (line 9 or 16 will constantly be executed until the
initial recursive call is terminated).

Algorithm 1 abstractly represents a class of algorithms,
where each algorithm in this class resolves in some particu-
lar way the non-deterministic choices shown in the pseudo-
code. Algorithms that are essentially the same as standard
deterministic implementations of DPLL with clause learn-
ing (but without far backtracking). In particular, algorithms
that use greedy conflict detection (GREEDY = true) and al-
gorithms that perform unit propagation are among the deter-
ministic realizations of Algorithm 1.

Notice that we can ensure that unit propagation is per-
formed by requiring that the non-determinism of variable
selection (line 10) is resolved in such a way that it always se-
lects a literal appearing in a unit clause of F |ρ if one exists.

285

Thus a decision literal is chosen only after unit propagation
is exhausted.

The deterministic realizations of Algorithm 1 include ver-
sions that support the derivation of 1-UIP clauses, but lack
far backtracking. Far backtracking is a form of partial
restarts that comes into play following a 1-UIP derivation.
In fact, when a unit 1-UIP clause is learned, far backtrack-
ing backtracks to the root of the search tree, causing a total
restart. However, our main result on the power of Algo-
rithm 1 shows that far backtracking does not add any extra
theoretical power, even though it may be useful in practice.
For this reason we assume in the rest of the paper that far
backtracking is not being employed and take Algorithm 1 to
be our abstract model of clause learning.

Proofs Generated by Algorithm 1
As discussed above, to study the properties of Algorithm 1,
we view it in terms of the proofs of UNSAT it is capable of
generating. If given an UNSAT formula, it can be seen that
Algorithm 1 will generate a DAG proof containing resolu-
tion steps (added when line 13 is executed). These proofs
are a refinement of res proofs that have a special structure.

The results of (Van Gelder 2005b) show that the proofs
generated by the most general form of Algorithm 1, in which
neither mandatory unit propagation nor greedy conflict de-
tection are enabled, are pool proofs. Van Gelder also shows
that every pool proof can be generated by Algorithm 1.
Hence, Algorithm 1 exactly characterizes the proof system
we call pool—a system in which all proofs are depth-first
regular resolution proofs. Intuitively, this characterization
arises from the fact that Algorithm 1 explores a DPLL tree
and the paths of that tree never branch on the same vari-
able twice. The DPLL tree is embedded in the pool DAG
as the regular depth-first traversal, each cross-edge of which
corresponds to the falsification in the algorithm of an earlier-
derived clause.

Most standard implementations of clause learning include
unit propagation and greedy conflict detection. As a conse-
quence, the space of pool proofs is much richer than the
space of clause learning computations. To more accurately
characterize the theoretical power of clause learning, we
therefore define a new refinement of pool that we call CL,
which is much closer to clause learning as it is used in prac-
tice.

Definition 3 The Clause Learning proof system (CL) is
the refinement of pool that consists of refutations that can
be generated by Algorithm 1 with greedy conflict detection
and unit propagation enabled.

In earlier work, Beame et al. (Beame, Kautz, & Sabhar-
wal 2004) also studied clause learning as a proof system,
giving a more complex characterization. They formalized
clause learning as a system containing any proof that could
be produced by running DPLL with unit propagation and
some learning scheme S. The learning scheme S is able
to learn conflict clauses that are cuts in a conflict graph
(Marques-Silva & Sakallah 1996). We call this previous idea
of clause learning conflict clause resolution (CL+).

The difficulty with CL+ is that it allows very general,
even non-deterministic, learning schemes for extracting con-
flict clauses from the implication graph. For example, the
learning scheme S can extract a conflict clause from a path
in a manner that is unrelated to the order in which the vari-
ables along the path have been set. Furthermore, it can ex-
tract such conflict clauses and backtrack without inserting
a literal into the DPLL path. This last point is particularly
important since, if no literal is inserted into the DPLL path,
DPLL is then free to branch again on that variable: i.e., this
introduces a new source of irregularity into CL+ proofs. The
CL+ formalism is therefore very hard to analyze in its full
generality. In particular, a proof separating res from CL +

would require one to prove that for all learning schemes S,
there is no CL+ proof utilizing S than can match the perfor-
mance of res on some infinite family of formulas. Nor is it
clear that the full generality of CL+ offered by its choice of
learning schemes could ever be profitably exploited in any
real implementation.

Furthermore, for all of the more specific clause learning
schemes mentioned in (Beame, Kautz, & Sabharwal 2004),
including first-cut, RelSat (Bayardo & Schrag 1997), 1-UIP
(Marques-Silva & Sakallah 1996), and all-decision (Zhang
et al. 2001), Van Gelder has shown that CL+ using any of
these schemes produces proofs that are in pool (Van Gelder
2005b). (As mentioned, restarts and far backtracking from
1-UIP clauses do not fall into this framework.) Hence, pool
can reasonably be said to subsume CL+ for any practical
clause learning scheme. CL further refines pool to make it
an even better formalization of clause learning.

CL is Effectively as Powerful as res
In this section we present our main result, which is that CL
is effectively as powerful as res. To accomplish this, we use
a recent method for comparing proof systems, called effec-
tive p-simulation, proposed by (Hertel, Hertel, & Urquhart
2007).

Definition 4 Let S and T be two proof systems. We say that
S effectively p-simulates T if there is an algorithm R that
takes as input a CNF formula F , and outputs a CNF formula
R(F) such that

• F ∈ sat iff R(F) ∈ sat,
• the run time of R is polynomial in |F |,
• and if F has a T proof of size s then R(F) has an S proof

whose size is polynomial in s.

Theorem 1 CL effectively p-simulates res.

This theorem means that if F has a short res refutation,
then we can transform F to a new equivalently satisfiable
formula F ′ in time polynomial in |F |. Algorithm 1 can then
be used to refute F ′ with a proof whose size is polynomial in
|res(F)|, the size of the short res-refutation of F . That is,
by first applying the transformation R, described in Def. 6,
to its inputs we can make Algorithm 1 p-simulate res.

Note that the theorem states that this can be accomplished
by Algorithm 1 operating with the standard features of

286

clause learning implementations, except for far backtrack-
ing. That is, we are restricting Algorithm 1 so that it gen-
erates CL proofs. Furthermore, the construction used in the
proof does not use far backtracking. Therefore, since CL
with far backtracking is still a subsystem of res, the theo-
rem also shows that far backtracking adds no extra theoreti-
cal power to clause learning. It is possible, however, that far
backtracking might allow CL to p-simulate res—i.e., allow
CL to generate as short proofs as res without first having to
transform the input to R(F).

Though the result that CL effectively p-simulates res is
weaker than the standard notion of p-simulation, it shows
that an encoding that can be performed in deterministic poly-
nomial time is all that is required to bridge the gap between
res and CL. Note that R(F) does not need to know anything
about the proofs of F .

We provide an outline of the proof of Theorem 1 in the
appendix. Using the same reduction which provides us with
our effective p-simulation, we also prove the following the-
orem. A similar theorem was first proved in (Beame, Kautz,
& Sabharwal 2004). This theorem allows us to conclude
that most other refinements of res, including Regular Reso-
lution, are weaker than CL.

Corollary 2 Every resolution refinement S, that is closed
under taking restrictions and cannot p-simulate res also can-
not p-simulate CL.

Proof: Let R be the polytime reduction which allows CL to
effectively p-simulate res, as described above. If S cannot
p-simulate res, then there must be some infinite family
of unsatisfiable formulas, Γ, whose smallest S proofs are
super-polynomially larger than its smallest res proofs. Now
consider the family of formulas Γ ′ = {R(F) : F ∈ Γ}.
Since S is closed under taking restrictions and the restriction
that sets y0 = 0, a = 0, and b = 0 transforms R(F) back
into F (see Def. 6), S must still have high proof complexity
on Γ′, but the proof complexity of CL on Γ ′ will be within
a polynomial factor of res’s. So S cannot p-simulate CL
because of Γ′ (technically we say Γ′ super-polynomially
separates CL from S). �

Finding Short CL Proofs Is Hard
As stated earlier, the definition of a propositional proof sys-
tem is agnostic about the difficulty of proof search, as is
the definition of the power of a proof system. However, it
turns out that proof search is generally harder in more pow-
erful proof systems, since they have combinatorially larger
spaces of proofs which must be searched. It is believed to
be very hard to search for res proofs. People have devised
algorithms like DPLL and deterministic implementations of
CL to do some sort of (hopefully fast) systematic search of
the space of res proofs. But these algorithms end up only
searching small portions of the overall space of res proofs,
which is why they correspond to refinements of res rather
than to res itself.

To formalize the difficulty of searching for proofs, (Bonet,
Pitassi, & Raz 2000) devised automatizability.

Definition 5 (Bonet, Pitassi, & Raz 2000) A proof system
S is f(n, s)-automatizable if for all formulas F , an S proof
of F can be found in time f(n, s) where n is the size of F
and s is the size of the smallest S proof of F . A proof system
S is automatizable if it is f(n, s)-automatizable, for some
polynomial function f(n, s). A proof system S is quasi-
automatizable S is f(n, s)-automatizable, for some quasi-
polynomial function f(n, s). (Quasi-polynomial means
O(nlogc n) for some constant c.)

Showing that a proof system S is not automatizable
shows that there can be no algorithm based on it that
works relatively quickly for all formulas. That is, any
algorithm for generating S proofs must sometimes gen-
erate a proof that is super-polynomially longer than nec-
essary (and thus take super-polynomially more time than
needed). In (Alekhnovich & Razborov 2001), it was proved
that res is not automatizable unless the widely believed
complexity assumption that W [p] is intractable is false.
A reviewer pointed out that the proof in (Alekhnovich &
Razborov 2001), also implies that CL is not automatiz-
able. But that proof leaves open the possibility that CL is
quasi-automatizable while res is not. Currently, the best
known lower bound on the automatizability of res is quasi-
polynomial, while the best known upper bound is exponen-
tial. Before our work, it was unknown whether clause learn-
ing might be as easy to automatize as Tree Resolution, which
has both quasi-polynomial upper and lower bounds, or as
hard as res. We have shown that it is as hard to automatize
CL as it is to automatize res. This result is easily adapted to
apply to more general formalisms for clause learning such
as pool.

Theorem 3 If CL is f(n, s)-automatizable (resp. quasi-
automatizable) then res is g(n, s)-automatizable, where
g(n, s) is within a polynomial factor of f(n, s).

Proof Sketch: We show that we can build a res solver that
is only a polynomial factor slower than an assumed polytime
CL solver. If some algorithm A(F) produces a CL proof of
F in time polynomial (resp. quasi-polynomial) in the size
of the smallest CL proof of F , then run A(R(F)) (Def. 6)
obtaining a CL proof π of R(F). We can then transform
this into a res proof of F in polynomial time. This is
possible because res is closed under taking restrictions,
so we can restrict both π and R(F) by the assignment
y0 = 0, a = 0, b = 0, which transforms R(F) back to F
and transforms π into a refutation of F . The full proof is
included in a thesis (Hertel 2008). �

Conclusions and Open Problems
In this paper, we have studied the power of clause learn-
ing and the closely connected question of its automatizabil-
ity. Clause learning sits in the middle between DPLL and
general resolution, and was hoped to have the best of both
worlds. DPLL, on the one hand, is tractable from an imple-
mentation point of view because the only nondeterminism
that has to be resolved is in the branching heuristic. This

287

limited nondeterminism is tractable in the sense that there
is an algorithm that searches for DPLL proofs and that runs
in time almost polynomial in the size of the shortest DPLL
proof. (In technical terms, DPLL is quasi-automatizable.) In
contrast, the nondeterminism of general resolution is prov-
ably intractable. That is, we know that general resolution is
not automatizable and it is widely believed that in general it
requires exponential time find the shortest general resolution
proofs.

Clause learning, while known to be more powerful than
DPLL, has the same amount of nondeterminism, since the
only source of nondeterminism comes from the branching
heuristic. Thus one might hope that it should also be au-
tomatizable. We show somewhat surprisingly that this isn’t
the case. An explanation lies in the difference in “budget”:
in order to automatize clause learning, we must run in time
polynomial in the size of the shortest CL proof, which can
be significantly smaller than the size of the smallest DPLL
proof. The practical implication is that no implementation
generating CL proofs can be effective on all formulas: some
formulas with short CL proofs will run very inefficiently. On
the positive side, we prove that CL is more powerful than ex-
pected (it can effectively p-simulate resolution).

Acknowledgments

We thank the anonymous reviewers for numerous helpful
comments.

Appendix: Proof of Theorem 1
In this appendix we provide an outline of the proof of our
main result, Theorem 1. Showing that proof system S p-
simulates proof system T requires one to demonstrate that,
for every unsatisfiable CNF formula F , the smallest S proof
of F is at most a polynomial factor larger than the smallest
T proof of F . This usually involves describing a function
which maps S proofs to similarly sized T proofs. An ef-
fective p-simulation is a little more complicated. It requires
one to demonstrate that there exists a deterministic, polytime
computable function R which maps formulas onto formulas,
such that for every unsatisfiable CNF formula F , F ∈ sat
iff R(F) ∈ sat, and the smallest S-proof of R(F) is at most
a polynomial factor larger than the smallest T -proof of F .

This proof therefore has a number of subparts. First we
start with a specification of the transformation function R
that is applied to the input formula. We then prove that
F ∈ sat iff R(F) ∈ sat. We then describe how to trans-
form a res proof π of F into a CL proof of R(F), which is
only a polynomial factor larger than π. We begin with the
encoding:

Definition 6 Let CNF formula F consist of clauses
C1, . . . , Cm and have variables x1, . . . , xn. The notation±v
means that we include separate clauses with each combina-
tion of v and v̄. The encoding R(F) is defined as follows:

• Introduce new variables, a, b, c, d, e, y0, y1, . . . , yn, and
z1, . . . , zn.

y0 y0

y0y0

y1 y1

α 1 α i
α s

y0 α1

su
b-

pr
oo

f 1

C m 1

y0 αi

su
b-

pr
oo

f i

C m i

y0 αs

su
b-

pr
oo

f s

C m s

()

Figure 1: Overview of the construction for Theorem 1,
showing a balanced binary tree with s leaves that branches
on y1, y2, . . . to the depth necessary.

• Introduce O(n3) new Type I clauses (ȳ0, p,±yj, zi,±e),
for all 1 ≤ j ≤ n and all j ≤ i ≤ n and all p ∈
{ā, b̄,±x1, . . . ,±xn}.

• Introduce O(n) new Type II clauses
(ȳ0, p, z̄1, . . . , z̄n,±e) for all p ∈ {ā, b̄,±x1, . . . ,±xn}.

• Introduce 24 new Type III clauses (ā, b̄,±c,±d,±y0),
(ā, b,±c,±d,±y0), (a, b̄,±c,±d,±y0).

• Finally, we transform every clause Cj of F into C ′
j =

(Cj , a, b).

We now prove that F ∈ sat iff R(F) ∈ sat. An as-
signment of 0 to y0, a, and b transforms R(F) back into F ,
so any assignment which satisfies F can be extended to an
assignment which satisfies R(F). But every extension of ev-
ery assignment which falsifies F also falsifies some clause
of R(F). To prove this, consider any falsifying assignment
of F . Applying it to R(F) transforms every C ′

i clause into
(a, b). We can resolve this clause with the Type III clauses
to derive the empty clause. So F ∈ sat iff R(F) ∈ sat.

We now describe the main ideas of the simulation by de-
scribing the construction of the CL refutation corresponding
to an arbitrary res refutation. The main ideas of the simula-
tion are shown in the figures. Due to space constraints, we
do not provide a proof of correctness for our construction.
The full proof appears in (Hertel 2008).

Let π = C1, C2, . . . , Cm, Cm+1, . . . , Cm+s be a res
refutation of F . We will now show that there is a size
O(s · n2) CL refutation of R(F). Note that clauses
Cm+1, . . . , Cm+s are the derived clauses of π. We will pro-
duce a CL proof which derives these clauses in the same
order as they appear in π. To be precise, we will not derive
the exact same clauses. Since we added a and b to every
initial clause of F to form R(F), we will actually derive
Ci ∨ a ∨ b in the CL proof whenever we would derive C i

in π. Just as with the initial clauses, we call such a derived
clause C ′

i . Since π ends by deriving Cm+s = [], we will
end up by deriving C ′

m+s = (a, b). We will then use this

288

y0 αi

y0 αi 1 y0 αi 1

P 1 i

11

y0 αi 2

P 2 i

2
2

y0 α i 1 k 1

y0 α i 1 k y0 α i k

P k i

k 1

kk

y0 αi 1 k a y0 α i a

P a i

aa

Cm+i y0 α i b

P b i

bb

C q C r

xx

Figure 2: Sub-proof i of the simulation.

clause along with the 12 clauses of Type III which contain
the positive literal of y0 to derive [].

We will describe how to construct the refutation from the
root downwards. We begin our refutation by branching on
y0. On the positive side of this branch, we will first de-
rive each successive clause from C ′

m+1, . . . , C
′
m+s. Once

we have derived C ′
m+s, we will use it to derive [] on the neg-

ative side of y0. The general form of the proof can be seen in
Figure 1. On the positive side of the root the refutation forms
a binary tree with exactly s leaves, which we name node 1
through to node s. Each of the clauses C ′

m+1, . . . , C
′
m+s

will be derived in a subproof rooted at one of these leaves,
with C ′

m+i being derived in the subproof rooted at node i.
The tree is composed entirely by branching on y i variables,
where the variable’s subscript corresponds to its depth in the
tree. Furthermore, the tree is constructed so that paths to the
“left” are never shorter than paths to the “right”. Clearly, no
path will ever be repeated twice. We introduce two pieces of
notation: αi refers to the clause which contains exactly the
literals falsified by αi, and yi

j refers to the literal of variable
yj falsified by αi.

We will now show how to construct subproof i, the sub-
proof rooted at node i, at the end of α i. Clause C ′

m+i is de-
rived deep within subproof i. Suppose that clause Cm+i =
(l1 ∨ · · · ∨ lk) is derived from clauses Cq and Cr (q, r <
m + i) by resolving on variable x in π. In our refutation, we
will therefore derive clause C ′

m+i = (l1 ∨ · · · ∨ lk ∨ a ∨ b)
from clauses C ′

q and C ′
r by resolving on variable x in sub-

proof i.
The idea is to falsify every literal in C ′

m+i down the back-
bone of subproof i. This falsifies every literal in C ′

q and C ′
r

except for x. Unit propagating x will then allow us to derive
C′

m+1 by resolving the already existent C ′
q and C ′

r on x. Fig-
ure 2 shows subproof i. Each node is labeled with the clause
derived at it, and each edge is labeled with literal set when
crossing the edge. A copy of the proof P (p, i) is rooted at
the negative branch of each node in the backbone of sub-
proof i, where p is the variable of C ′

m+i branched on at that

node of the backbone. We will describe the construction of
P (p, i) in the next paragraph. For now, the most important
fact about each P (p, i) proof is that the clause labeling its
root contains αi. Every node of subproof i’s backbone will
therefore also be labeled with αi. This will avoid unwanted
cache hits. The literals of C ′

m+i can be branched on down
the backbone in any order (but we can set a lexicographical
ordering for concreteness), except that a must be negated
second last and then b must be negated last. Call the node
at the end of this backbone v. This is the node that we will
label with C ′

m+i. At v, we branch on x. Setting x = 0 fal-
sifies C′

q , while setting x = 1 falsifies C ′
r. If C ′

q or C ′
r is an

initial clause of F , then we add a sink node labeled with the
appropriate clause as a child to v. If one is a derived clause,
then we add a cross edge from v to the node of the earlier
subproof where that clause was derived.

We now explain how to construct each P (p, i) proof. The
structure of P (p, i) depends on the length of α i. The root
of P (p, i) is labeled by the clause (p̄ ∨ ȳ0 ∨ αi). P (p, i)
immediately branches on the variable e. On both sides of
this branch, P (p, i) is composed of two linear chains of
unit resolutions. When e is set in either direction, every z j ,
1 ≤ j ≤ n is unit propagated because of a Type I clause. Ac-
cordingly, each chain is built by branching on each z j from
j = 1 to j = |αi|. The negative side of each branch immedi-
ately falsifies the initial clause of Type I which includes zj ,
p, and yi

j . After positively setting z|αi|, we continue to unit
propagate zj from j = |αi| + 1 to j = n, except that the
falsified Type I initial clause on the negative side now con-
tains p and yi

|α| rather than yi
j . We must therefore branch on

yj there. Finally, setting zn = 1 falsifies the Type II clause
which includes p.

The proof’s depth-first traversal first branches positively
on y0 and visits every subproof in order from i = 1 to i = n.
Within each subproof, the traversal travels down the entire
backbone before entering each P (p, i) on the way back up.
We do not provide the full proof of correctness here, but will
give a high level intuition. We argue that the traversal will

289

not violate the greedy unit propagation or cache hit condi-
tions, so the only cache hits in the entire proof are those
which hit one of the derived clauses from the original res
refutation. For the most part this is true, but some greedy
cache hits do occur from some P (p, i) proofs to earlier ones.
We point out under which conditions this can occur and then
argue that these cache hits do not interfere with the simula-
tion. For all the details, see (Hertel 2008).

References

Alekhnovich, M., and Razborov, A. A. 2001. Resolution
is Not Automatizable Unless W[P] is Tractable. In FOCS,
210–219.

Alekhnovich, M.; Johannsen, J.; Pitassi, T.; and Urquhart,
A. 2002. An Exponential Separation Between Regular And
General Resolution. STOC 448 – 456.

Bayardo, R. J. J., and Schrag, R. C. 1997. Using CSP
look-back techniques to solve real-world SAT instances. In
Proceedings of the Fourteenth National Conference on Ar-
tificial Intelligence (AAAI’97), 203–208.

Beame, P.; Kautz, H.; and Sabharwal, A. 2004. Towards
Understanding and Harnessing the Potential of Clause
Learning. JAIR 22:319 – 351.

Bonet, M. L.; Pitassi, T.; and Raz, R. 2000. On interpola-
tion and automatization for Frege systems. SIAM Journal
on Computing 29(6):1939–1967.

Buresh-Oppenheim, J., and Pitassi, T. 2003. The Com-
plexity of Resolution Refinements. LICS 138 – 147.

Cook, S., and Reckhow, R. A. 1979. The Relative Ef-
ficiency of Propositional Proof Systems. The Journal of
Symbolic Logic 44:36 – 50.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
Machine Program For Theorem Proving. Communications
of the ACM 5:394 – 397.

Hertel, A.; Hertel, P.; and Urquhart, A. 2007. Formalizing
dangerous sat encodings. In SAT, 159–172.

Hertel, P. 2008. Ph.D. Thesis. Ph.D. Dissertation, Depart-
ment of Computer Science, University of Toronto.

Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP - A
New Search Algorithm for Satisfiability. In Proceedings of
IEEE/ACM International Conference on Computer-Aided
Design, 220–227.

Stallman, R., and Sussman, G. J. 1977. Forward rea-
soning and dependency-directed backtracking in a system
for computer-aided circuit analysis. Artificial Intelligence
9:135–196.

Urquhart, A. 2008. Regular and general resolution: An
improved separation. In SAT, 277–290.

Van Gelder, A. 2005a. Input distance and lower bounds for
propositional resolution proof length. In SAT.

Van Gelder, A. 2005b. Pool resolution and its relation
to regular resolution and DPLL with clause learning. In
LPAR, 580–594.

Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Ma-
lik, S. 2001. Efficient conflict driven learning in boolean
satisfiability solver. In ICCAD, 279–285.

290

