
A Uniform Approach for Generating Proofs
and Strategies for Both True and False QBF Formulas

Alexandra Goultiaeva∗

Department of Computer Science,

University of Toronto, Canada.

alexia@cs.toronto.edu

Allen Van Gelder

University of California,

Santa Cruz, CA, USA.

www.cse.ucsc.edu/∼avg

Fahiem Bacchus∗

Department of Computer Science,

University of Toronto, Canada.

fbacchus@cs.toronto.edu

Abstract

Many important problems can be compactly rep-
resented as quantified boolean formulas (QBF)
and solved by general QBF solvers. To date
QBF solvers have mainly focused on determining
whether or not the input QBF is true or false. How-
ever, additional important information about an ap-
plication can be gathered from its QBF formula-
tion. In this paper we demonstrate that a circuit-
based QBF solver can be exploited to obtain a Q-
Resolution proof of the truth or the falsity of a QBF.
QBFs have a natural interpretation as a two person
game and our main result is to show how, via a sim-
ple computation, the moves for the winning player
can be computed directly from these proofs. This
result shows that the proof is a representation of the
winning strategy. In previous approaches the win-
ning strategy has often been represented in a way
that makes it hard to verify. In our approach the
correctness of the strategy follows directly from the
correctness of the proof, which is relatively easy to
verify.

1 Introduction

Quantified Boolean Formulas (QBFs) are a powerful general-
ization of satisfiability (SAT) in which variables can be uni-
versally as well as existentially quantified. While any prob-
lem in NP can be compactly encoded in SAT, QBF allows us
to compactly encode any problem in PSPACE. Hence QBF
solvers have a much wider range of potential application ar-
eas as there are many problems with compact QBF encoding
but whose SAT encodings will necessarily be exponentially
larger (unless NP=PSPACE). As a result QBF solvers have
already seen application in a range of areas including auto-
mated planning [Rintanen, 2007; Giunchiglia et al., 2004],
ontological reasoning [Kontchakov et al., 2009], and formal
verification [Mangassarian et al., 2007; Biere et al., 1999].

To date, QBF solvers have mainly focused on techniques
for more efficiently solving the decision problem, i.e., on de-
termining whether or not the input QBF is true or false. In

∗Supported by Natural Sciences and Engineering Research
Council of Canada

SAT, on the other hand, a range of useful applications have
been made accessible by obtaining from the solver either
a satisfying model or a proof of UNSAT. Such certificates
verify the result and supply additional valuable information
about the application. Certificates for QBF can be valuable in
similar ways.

Previous work on generating certificates for QBF, e.g.,
Narizzano et al. [2009], Jussila et al. [2007], has treated
the cases of true and false formulas differently. Q-Resolution
refutations are usually used to certify false formulas. Q-
Resolution [Kleine Büning et al., 1995] is a well studied and
simple proof system for QBF, and refutations in this proof
system thus form natural and easily checked certificates. Pre-
vious methods for verifying true formulas, however, have
used certificates that are very hard to verify, or have used cer-
tificates that require an additional non-standard proof theory
based on term resolution.

In previous work it has been demonstrated how a QBF
solver utilizing a circuit representation [Goultiaeva and Bac-
chus, 2010] can attain complete duality in its treatment of
existential and universal quantifiers using a technique called
dual propagation. In this paper we show how this duality can
be exploited to yield Q-resolution proofs for both true and
false QBF. Thus we obtain a uniform treatment for both types
of QBF with the same natural and well studied certificate.

Another critical piece of information that can be obtained
about a QBF comes from its natural interpretation as a two-
player game. This means that (for a closed QBF) there always
exists a winning strategy for one of the players. In applica-
tions that are naturally viewed as games, the utility of know-
ing the winning strategy is clear. But strategies can be useful
in other contexts as well. For example, Staber and Bloem
[2007] demonstrate how repairs for a sequential circuit can
be computed from a strategy.

In this paper, our main contribution is to show that a Q-
resolution proof is in fact a representation of a winning strat-
egy. In particular, we show how the winning moves of the
strategy can be easily computed from the proof. This has two
consequences. First, since we can generate proofs for both
true and false QBFs, our technique can be used to realize a
winning strategy for either player. Previous work on obtain-
ing strategies [Benedetti, 2005; Jussila et al., 2007] has gen-
erated strategies only for true QBF. Second, the correctness of
the strategy follows directly from the correctness of our eas-

546

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

ily checked proofs. Previous work yields strategies that can
be hard to verify and the suggested verification techniques are
error prone.

After presenting sufficient background (Section 2) to for-
malize the problem, we explain how circuit-based QBF
solvers can generate proofs for both true and false QBF for-
mulas and present our main contribution: a simple algorithm
for computing the winning moves specified by the proof (Sec-
tion 3). The fact that such an algorithm exists shows that the
proof actually represents a strategy. We then look in more
detail at previous work (Section 4). Empirical results are pre-
sented next. We have instrumented a circuit solver CirQit
to produce certificates, and we provide some results showing
that generating proofs does not impose a large overhead over
simply determining truth or falsity, and that the requirement
of a circuit based representation to obtain proofs for true for-
mulas is not a practical impediment (Section 5). Then we
show how an implemented version of our algorithm for ex-
tracting winning moves from a proof can be utilized to gener-
ate winning lines of play from the certificates.

2 Background

A quantified boolean formula (QBF) has the form Q.φ where
Q is a sequence of universally (∀) or existentially (∃) quan-
tified variables, and φ is a propositional formula over those
variables. Let Q.φ�x=0 (Q.φ�x=1) be the new QBF that is
the restriction of Q.φ by x = 0 (x = 1). This restriction
is computed by replacing the variable x in φ by the constant
0 = false (or 1 = true) followed by standard boolean sim-
plification, and the removal from Q of the variable x. In a
closed QBF all of the variables are bound by a quantifier.

The truth of a closed QBF is defined recursively: ∃xQ.φ
is true iff either Q.φ�x=0 or Q.φ�x=1 is true, and ∀xQ.φ is
true iff both Q.φ�x=0 and Q.φ�x=1 are true. Hence, when
deciding the truth of Q.φ, φ will eventually be reduced to the
constant 1 or 0: Q.1 is always true and Q.0 is always false.

Most current QBF solvers utilize a conjunctive normal
form representation (CNF). For the QBF Q.φ this means that
φ is in CNF, i.e., it is a conjunction of clauses each of which is
a disjunction of literals each of which is either a propositional
variable, e.g., x, or its negation, x , where overbar is used to
denote negation. We write clauses as sets of literals enclosed
in square brackets, e.g., [p, q, r], and use ⊥ to denote the
empty clause []. We say that a set of literals S is tautological

if there exists a literal l such that {l, l } ⊆ S. Otherwise S
is non-tautological. The restriction of a CNF encoded QBF
is particularly simple to compute. For example, Q.φ�x=0 is
computed by simply removing all clauses of φ that contain x
and then removing x from all remaining clauses.

A key feature of the CNF representation is that it supports
a well known and simple QBF proof system known as Q-
resolution [Kleine Büning et al., 1995]. Q-resolution is a
sound inference system that is complete for proving that a
CNF-encoded QBF is false. It is formally attractive because
it is quite simple and is a natural generalization of the well
studied resolution proof system for SAT. Q-resolution con-
tains two rules of inference, resolution and universal reduc-
tion.

Definition 1 (resolution, universal reduction) Let C1 =
[q, α] and C2 = [q , β] be two clauses, where α ∪ β is non-
tautological (α and or β can be empty), q is an existentially
quantified literal, and neither q nor q appear in α ∪ β. Reso-
lution infers the new clause resq(C1, C2) = [α, β] which is
called the resolvent.

Let C = [q, α] be a non-tautological clause, and q be a
universally quantified literal that is tailing in C. A universal
literal q is said to be tailing in C if there is no existential
literal in C that is scoped by q (q comes after all of these
variables in the quantifier prefix). Universal reduction infers
the new clause unrdq(C) = [α].

Definition 2 (Q-derivation, Q-refutation) A Q-derivation
is a directed acyclic graph (DAG) in which each node is either
an input clause (a DAG leaf), or a Q-Resolution inference step
(an internal node). A sample Q-Resolution is shown in Fig-
ure 2a). The inference operation at a node n is resq(n1, n2)
or unrdq(n1), and is said to generate the clause that results
from that operation. The literal being resolved upon or re-
duced is specified, and must have the right sign for the opera-
tion. The outgoing edge(s) from n go to the operand node(s)
n1 and possibly n2, whose clauses are used for the operation
at n.

The root node generates the derived clause C that is the
result of the Q-derivation. If C is the empty clause, ⊥, then
the Q-derivation is called a Q-refutation.

The derivation and all of the clauses generated by the inter-
nal nodes are fully specified by the leaf input clauses. Thus
one DAG can represent multiple actual derivations, depend-
ing on the clauses in its leaves.

A Q-resolution proof can often be extracted from the in-
ferences made by a QBF solver, yielding a natural and useful
certificate verifying when a QBF is false. However, when the
QBF is true, there is no refutation to extract. As a result previ-
ous work has utilized other kinds of certificates for true QBF.
This problem arises in part because these solvers use different
inference steps to show that a QBF is true, steps that are not
so easily modeled as Q-resolution steps.

In Goultiaeva and Bacchus [2010], however, a solver was
presented that used a circuit representation rather than a CNF
representation. The paper showed that by exploiting the cir-
cuit representation the solver could treat true and false QBF
formulas in a completely symmetric manner.

A circuit representation of Q.φ involves representing φ
as a boolean circuit utilizing AND, OR and NOT gates. The
quantified variables Q (i.e., the variables of φ) are the inputs
to the circuit, and the circuit outputs 0 or 1 for each setting
of these inputs depending on whether or not φ is true or false
under this setting of its variables. Figure 1a) shows a circuit
representation of the formula Q.ψ = ∃p∀q.(p ∧ q)∨(p∧q).
In general, circuit representations can be more compact than
propositional formulas since any repeated sub-formula needs
to be represented by only a single sub-circuit.

A circuit-encoded QBF Q.φ can easily be converted to
CNF, and in fact most verification problems are initially en-
coded as circuits or general propositional formulas and then
converted to CNF. This is standardly accomplished using the
Tseitin encoding [Tseitin, 1983; Plaisted and Greenbaum,

547

[y, q][y, q]
z

^

 _

^

xy

p q

qp

1.[z, y, x]
2.[z, x]
3.[z, y]
4.[y, p, q]
5.[y, p]

p x y zq

6.

7.[x, p, q]
8.[x, p]
9.[x, q]

10.[z]

1.[z, y, x]
2.[z, x]
3.[z, y]
4.[y, p, q]
5.[y, p]

q x y zp

6.

7.[x, p, q]
8.[x, p]
9.[x, q]

10.[z]
(a) Q.ψ (b) CNF[Q.ψ] (c) CNF[¬Q.ψ]

Figure 1: The running example: a circuit representation of
the formula, and the Tseitin encoding of it and its negation

1986] which introduces new variables to ensure only a poly-
nomial increase in the size of the formula. The encoding
works by introducing a new existentially quantified variable
for every gate output in the circuit along with clauses that
force this variable to have a truth value equal to the gate out-
put given the values of the gate inputs.

Figure 1b) shows a Tseitin encoding of the formula given
in 1a). New variables x, y and z are introduced. Clauses
1-3 (4-6, 7-9) constrain the variables z (y,x) to agree with
their assigned gate outputs. The last clause represents the
requirement that the formula is true. (Later we will consider
¬(Q.ψ), and discuss its refutation in Example 6)

Each newly introduced variable is the output of some sub-
circuit. These new variables must be existential since they are
functionally determined by the inputs that feed into their sub-
circuit. Furthermore, they can be introduced into the quanti-
fier Q right after all of the variables that form their inputs.
However, for this paper is it sufficient to simply place all
these new variables at the end of Q. Given a circuit rep-
resented QBF Q.φ we use CNF[Q.φ] to denote its conver-
sion to CNF via the Tseitin encoding. That is, CNF[Q.φ] =
Q∃g1, . . . , gk.CNF[φ], where CNF[φ] is the Tseitin encod-
ing of φ and g1, . . . , gn are the newly introduced variables
inserted (for simplicity) at the end of Q. We call the clauses
in CNF[φ] the input clauses.

3 Proofs and Strategies

It well known that backtracking DPLL search generates a res-
olution proof, and this connection has been exploited in SAT
solvers to develop the critical technique of clause learning and
to allow such proofs to be extracted from the solver for UN-
SAT instances. Similarly it can be shown that a Q-refutation
can be extracted from DPLL search based QBF solvers for
false formulas.

DPLL search can also be used with a circuit representa-
tion, as described in Goultiaeva et al. [2009]. The inferences
used in such a search can be mapped to Q-resolution steps
making it possible to extract a Q-refutation from such solvers
even though they are not working directly with a CNF rep-
resentation. In particular, if the circuit based formula Q.φ
is being solved and is found to be false then a Q-refutation
can be extracted. This Q-refutation certifies that CNF[Q.φ]
is false; it does not apply directly to the non-CNF formula
Q.φ. However, one can quite safely take this Q-refutation as
also certifying Q.φ since it is easy to see that CNF[Q.φ] and

Q.φ are equivalent.
For our purposes, however, the most important feature of

a circuit representation is that it supports a completely sym-
metric treatment of true and false formulas. In particular, the
solver CirQit described in Goultiaeva and Bacchus [2010] si-
multaneously attempts to solve bothQ.φ and¬Q.φ by propa-
gating two different truth values along the same circuit repre-
sentation for Q.φ. It will terminate with either the conclusion
that Q.φ is false from which a Q-refutation for CNF[Q.φ]
can be extracted, or with the conclusion that ¬Q.φ is false
from which a Q-refutation for ¬Q.φ can be extracted.

This can be accomplished because in a circuit representa-

tion Q.φ and ¬Q.φ ≡ Q .¬φ, where Q is Q with every
quantifier switched, turn out empirically to be solvable with
similar amounts of effort. Figure 1c) shows a Tseitin encod-
ing of ¬Q.ψ. The encoding is different from Figure 1b) in
the quantifier, and in Clause 10, which now encodes the con-
dition that the formula must be false. All other clauses are
unchanged. In contrast, if φ is in CNF, converting¬φ to CNF
often results in a much harder problem that is often not feasi-
ble to solve [Jussila et al., 2007].

There are various technical challenges that arise when try-
ing to instrument a solver so as to extract a proof. Some
of these challenges have to do with managing the poten-
tially very large sized proofs, and some have to do with deal-
ing with “special” optimizations that are often embedded in
real solvers. These special optimizations often involve in-
ferences that are difficult to map to Q-resolution steps. For-
tunately, CirQit solver does not utilize any hard to translate
specialized inference rules. For example, the technique of
long distance resolution [Zhang and Malik, 2002] used in
many search-based solvers can generate and use tautologi-
cal clauses. Solver specific arguments are needed to show
that the solver remains sound even when making inferences
from such clauses [Zhang, 2003]. CirQit employs a dynamic
reordering technique during clause learning that allows it to
always learn non-tautological clauses via a legal sequence of
Q-resolution steps.

As a result we were able to instrument CirQit so that it
would output a Q-refutation for both true and false formulas:
a Q-refutation of Q.φ shows that the input is false, while a
Q-refutation of ¬Q.φ shows that the input is true. The Q-
refutation can then be verified by simply checking that all in-
put clauses are correct (i.e., that they would be present in the
Tseitin encoding of the circuit), and that all resolution steps
are correct. Checking the correctness of the input clauses re-
quires consulting the circuit representation.

Our aim was to be able to use any third party verifier to
check these refutations. Such a verifier would not in general
know anything about circuit representations. So we could
not assume that it would be able to verify the input clauses
against an inputted circuit. To solve this problem we in-
stead generated and output CNF[Q.φ] for false formulas and
CNF[¬Q.φ] for true formulas from CirQit (note CirQit has
to solve the decision problem first to determine which CNF
to output) along with the relevant Q-refutation. We were then
able to use the previously developed verifier tool QBV [Jus-
sila et al., 2007] to verify that the Q-refutations was in fact a
proof of CNF[Q.φ] or CNF[¬Q.φ], thus verifying the truth

548

value of Q.φ.

3.1 Proofs represent Strategies

The main innovation of this paper was to realize that Q-
refutations are sufficient. In particular, in this section we
demonstrate that a Q-refutation represents a strategy: the
moves mandated by the strategy can be extracted from a refu-
tation via a simple computation and the correctness of the
strategy follows directly from the correctness of the refu-
tation. Previous works have used other representations of
strategies (e.g., a set of Skolem functions) that make verifying
their correctness considerably more difficult.

To understand the connection between QBFs and strategy
it should be noted that a closed QBF formula Q.φ has a natu-
ral interpretation a two-player game with players E (existen-
tial) and A (universal), whose “moves” involve setting their
boolean variables. The variables are set in quantifier-prefix
order, from outer to inner scopes. The quantifier prefix can
be partitioned into blocks of alternating quantifier type. The
quantifier depth of a block begins at 1 for the outermost block
and increases by 1 with each alternation. The variable order
within a quantifier block is immaterial to the value of the QBF
formula, so we may assume that each player sets all the vari-
ables in one block in a single turn. Thus turns are taken in
order of increasing quantifier depth, and the quantifier type
of the outermost unset block of variables determines whose
turn it is to play. By the time all variables have been set, φ,
the body of the QBF, will be reduced to a formula that evalu-
ates either to true, in which case E is the winner, or to false,
in which case A is the winner, for this particular “play”.

For every true QBF there exists a strategy for E, with
which E can win every play of the game, no matter how A
plays. In particular, the strategy tells E how to play given the
previous moves played. If E follows the strategy for all its
moves, it will set its variables in such a way that the body of
the QBF must evaluate to true. Hence, the strategy serves to
counter all of A’s moves ensuring that E wins. Similarly, a
winning strategy exists for A for every false QBF.

A Q-refutation of Q.φ verifies that it is false. This means
that there is a winning strategy for A. As stated previously,
a Q-refutation itself is a representation of a strategy. This
means that it can be used to extract the moves for A that are
guaranteed to make the formula false.

Algorithm 1 presents a method for extracting the moves
for A from a Q-refutation. Algorithm 1 can be equally well
applied to a Q-refutation of ¬Q.φ (verifying that Q.φ is true)
to obtain a winning strategy for E. In particular, in ¬Q.φ,
E has become the universal player, since the quantifiers have
been switched. Hence, E can win Q.φ by playing universal’s
winning strategy for ¬Q.φ.

This is exactly the case in our example, since Q.ψ is true.
Then, to generate a winning strategy for E, we start with a
Q-refutation of ¬(Q.ψ), which is shown in Figure 2a).

Our algorithm produces an assignment for the universal
variables u that A has to play each time it is A’s turn to play.
These assignments constitute winning moves for A given the
previous moves of the game.

The algorithm takes as input the CNF encoded QBF for-
mula Q.φ (which must be false for A to have a winning strat-

Algorithm 1: Compute Strategies

1 strategy For A
(
Q.φ, π)

2 while Q is not empty do
3 Let B be outermost block of Q
4 if B is existential then
5 σ = Query existential player E for their move

/* σ must assign every variable in B. */

6 π = π�σ
7 Q.φ = (Q.φ)�σ

8 else B is universal and it is A’s move
9 Search nodes of π in reverse topological order

10 D = first node with no existential literals

11 τ = { q |q ∈ D ∧ q ∈ B}
12 if τ does not set every variable in B then
13 Add to τ an arbitrary value for each variable of B

it does not set

14 Output τ (this is A’s next move)

15 π = D ∪ {all nodes reachable from D}
16 π = π ∪ {unrd generating ⊥ leading to D}
17 π = π�τ
18 Q.φ = (Q.φ)�τ

egy) along with a Q-refutation π verifying that the formula is
false. It works its way through the blocks of Q processing the
outermost block first. If the outermost block is existential, it
queries E for its move. E must set all the variables of this
block. These moves are represented in a partial assignment
σ, and then applied to restrict the formula Q.φ → (Q.φ)�σ
and the proof π → π�σ . The technique for restricting a proof
is given below. The algorithm will then return to the outer-
most while loop with a shorter Q that is either empty or with
a universal outermost block.

If the outermost block is universal a search of π is con-
ducted in reverse topological order (children of a node are ex-
amined before the node is) for the first node D whose clause
has no existential variables. (This ordering implies that the
inputs to an inference step are examined before the output of
the inference step). If multiple nodes qualify, the first node
encountered is selected. Some node of the current proof π
must satisfy this condition, as the root of π must be the empty
clause ⊥ at this stage of the algorithm. The clause generated
at node D by π thus contains only universal variables (or is
empty). Any universal literals from the outermost block B
contained in D are then set to false in A’s winning moves.
The other variables of B can be set by A to an arbitrary
value—A will still win.

Finally, we modify the proof and the formula in prepara-
tion for the next round of the game. In particular, we make D
the new root of π and remove the other parts of π which are
now redundant. We then add a sequence of universal reduc-
tion steps to derive the empty clause from D (this is possible
since D contains only universal variables). The new node
deriving the empty clause then becomes the new root of π.
This restores π’s status as a Q-refutation (a derivation of ⊥).
Finally, we restrict π by A’s move, τ . It can be shown that
τ cannot satisfy any clause of the new π, so π remains a Q-
derivation of ⊥ after this step and is ready for processing the
next round of the game.

549

Table 1: Extensions to res and unrd to accommodate restric-
tions. For interpreting conditions, is considered to contain
every literal.

If . . . then resq(D1, D2) = . . .
(1) q ∈ D1 and D2 = � �
(2) D1 = � and q ∈ D2 �
(3) q �∈ D1 and q ∈ D2 D1

(4) q ∈ D1 and q �∈ D2 D2

(5) q �∈ D1 and q �∈ D2 narrower(∗) of D1, D2

If . . . then unrdq(D1) = . . .
(6) D1 = � �
(7) q �∈ D1 D1

(∗) Narrower means shorter. The most narrow clause is ⊥, the least
narrow is �. Break ties by any fixed order on clauses.

Now we describe how the restriction of the proof by the
players’ moves is computed, completing the technical details
of the algorithm. As specified above a proof π consists of
a DAG with leaf nodes labeled by input clauses and internal
nodes computed by applying the inference step they specify
to the clauses computed by their children. We want to restrict
π by an assignment of truth values σ to some of the variables.
We usually represent σ as the set of literals it maps to true.

To compute π�σ we first restrict all of π’s input clauses at
its leaf nodes using the standard technique. For a clause C,
C�σ= if σ contains a literal of C, otherwise we remove the
negation of all literals in σ from C. Once the leaf nodes have
new clauses they are marked as processed. Once an internal
node n’s children have been marked as processed we compute
n’s new clause by applying the inference step specified at n
to the new clauses that have been computed for its children.

Now, however, the standard inference steps of resolution
and universal reduction might no longer apply to the clauses
supplied to n by its children. One or more of these clauses
might have been reduced to by σ. Similarly, because of
previous reductions n might be trying to resolve on a literal q
such that q or q has vanished from the clauses it is to apply
the resolution step to. Hence, we have to extend the inference
rules res and unrd to deal with these cases. The extensions
are summarized in Table 1. The extensions for res were pre-
viously developed for SAT [Van Gelder, 2005] (although they
were part of the proof-theory folklore before this paper). The
extension for unrd is new, for QBF.

Lemma 3 The extensions to Definition 1 given in Table 1 are
sound. That is, any clause generated by the extended rules at
some node n is logically entailed by the children of n.

With these extensions to the inference rules the restric-
tion σ of a Q-derivation, π. π′ = π�σ , is defined induc-
tively as follows: (1) for a leaf C′

i = Ci�σ; (2) if D =
resq(D1, D2) and D′

1
and D′

2
have been derived for π′, then

D′ = resq(D
′

1
, D′

2
); (3) if D = unrdq(D1) and D′

1
has

been derived for π′, then D′ = unrdq(D
′

1
). Rules (2) and

(3) might require Table 1. This shows how to compute π�σ at
line 6 and 17 of Algorithm 1.

The results of applying a restriction by p and p are shown
in Figure 2b) and c). Note that, since is considered to con-
tain all literals, the rules 3) and 4) can apply when one of the
clauses is . One example is the clause [q , z] when the proof

q

y

p

, p, q

C4

z C10
q, z

p, q, z

x , p,q

C7

z, x

C2

p, q

z C10
p, q, z

z, y

C3

a Q-refutation π

q

z C10
q, z

z, x

C2

x, q

C7

b π after restriction by p

q

z C10
q, z

z, y

C3

y, q

C4

c π after restriction by p

q x y zp

p =1 p =1

p =1

p =0

p =0 p =0

Figure 2: Applying a restriction to an initial Q-refutation
based on the E’s first choice leads to a Q-refutation in which
one node contains exactly those universal literals that A
should set to 0 as the winning strategy for that situation.

is reduced by p. In this case, D1 = and D2 = [q , z], and
rule 4) applies, yielding D2. However, these rules can also
apply when no clause is present. For example, consider a
derivation C1 = resp([a, p], [b, p]), C2 = resa(C1, [a]).
Suppose we restrict it by p. By rule 5), C′

1
= resp(, [b])

becomes [b]. Now, C′

2
= resa([b], [a]). Rule 3) applies, and

C ′

2
= [b].

Lemma 4 Suppose C is the clause generated at some node n
in π, and C ′ is the clause generated at a node n in π′. Sup-
pose further that the Q-derivation of n in π does not contain
any universal reduction steps that would reduce some variable
u ∈ σ. Then C�σ logically entails C ′.

Proof: (Sketch) Assume there is no such universal re-
duction step. Then we can show that C�σ logically entails C ′

by induction on the structure of the derivation.
Any steps that produce a clause that is not would yield

C′ such that C ′ ⊆ C�σ .
C ′ is only when C contains some literal p ∈ σ: we can

show this by considering the rules that produce . Consider
rule 1), and let C = resq(D1, D2). D

′

2
= , which means

that p1 ∈ D2 for some literal p1 ∈ σ. If p1 /∈ C, then p1 = q .
Since q ∈ D′

1
, but q is false under σ, then D′

1
= . This

means there is some literal p2 ∈ D′

1
such that p2 ∈ σ and

p2 �= q , which means p2 ∈ C′. Rule 2) is symmetric. Rule
3) also cannot break the property unless some literal p ∈ σ
was universally reduced.

Now we show that Algorithm 1 is correct, i.e., it computes
a winning strategy for universal.

Theorem 5 Let π be a Q-refutation of Q.φ. Let (Q.φ)�τ be
as computed at line 18 of Algorithm 1. Then π�τ as computed
at line 17 is a Q-refutation for (Q.φ)�τ .

550

Proof: (Sketch) Every internal node in π�τ that is not
itself has at least one operand that is not . All such nodes
are derived from their operands using Definition 1 and Ta-
ble 1. So, it suffices to show that ⊥ is derived in π�τ .

Consider the node D, which is the first node with no exis-
tential literals (an all-universal node). Let τ be the variable
assignment determined by the current iteration of the algo-
rithm. If the Q-derivation of D contained any universal re-
duction steps on any literal u ∈ τ , then there must have been a
previous all-universal clause D2 (because all existential vari-
ables of smaller blocks have already been assigned). The
algorithm uses reverse topological order, so D2 would have
been chosen first. So, D�τ= ⊥, and by Lemma 4 D′ = ⊥.
Through rules 3), 4), 5) and 7), ⊥ would be propagated to the
root of π�τ .

The proof of correctness for the reduction on line 6 is sim-
ilar. Here σ only contains existential variables, which cannot
be universally reduced.

The formula (Q.φ)�τ at line 18 characterizes the remain-
ing of the game between E and A after A’s latest move τ : it
is the original formula restricted by all of the moves played
so far. The theorem says (Q.φ)�τ has a Q-refutation. That
is, it is false, and thus there is a winning strategy for A in the
game that remains after all prior moves. In other words, by
playing τ , A is still able to win the game. A will thus remain
in a winning position up to the end of the game, and when it
has finished all of its moves it must be a winner. That is, τ as
computed by the algorithm is a part of a winning strategy.

Example 6 Theorem 5 and the preceding discussion are il-
lustrated in Figure 2. Part (a) shows the initial Q-refutation,
π, of CNF[¬(Q.ψ)] which is shown in Figure 1c). Observe
that universal reductions on both q and q occur on the left
branch of this proof. This is normal.

If E chooses p to be 1, then the restriction p = 1 is applied
to the underlying formula and π is transformed into a new
Q-refutation shown in part (b). The lowest all-universal node
contains the clause [q], which becomes ⊥ after universal re-
duction(s). Thus the winning response by A is q = 1.

If instead, E chooses p to be 0, then the restriction p = 0 is
applied to the underlying formula and π is transformed into a
new Q-refutation shown in part (c). The lowest all-universal
node contains the clause [q], which becomes⊥ after universal
reduction. Thus the winning response by A is q = 0.

All necessary settings for the entire quantifier block are
found in one node.

The solver reported in this paper produces proofs in the
QIR format, an announced standard for the 2011 SAT Com-
petition1 This format permits “linear input” subproofs to be
condensed by omitting resolvents that are used only once.
This condensation has large practical advantages. For exam-
ple, the Q-refutation in part (a) of Figure 2 takes only two
QIR lines.

Another practical advantage of QIR for strategy extraction
is that the algorithm described in this section for full resolu-
tion proofs adapts very cleanly to this more abbreviated for-
mat, in that it is able to extract the winning strategy without
computing the omitted resolvents.

1See http://www.satcompetition.org/2011.

This proof format differs from many Q-resolution formats
suggested previously in that it restricts the ordering of the
clauses in each derivation line. It is not clear if it is sound
to leave the ordering up to the verifier to derive, since the
“pivoting” method as used in SAT is not sufficient.

4 Related Work

The papers Narizzano et al. [2009], Jussila et al. [2007] re-
view a number of works on generating certificates from QBF
solvers as well as making some original contributions to the
subject. In these papers a number of different solvers capable
of generating certificates along with tools for verifying these
certificates are discussed. None of these solvers/verifiers are,
however, capable of generating Q-refutations for both true
and false formulas. Nor has it been previously observed that
the refutations serve as representations of a winning strategy.
qube-cert/checker generates Q-refutations for false

QBF, but a specialized term-refutation for true QBF. The
term-refutations require their own theory and verification
tools: techniques standard for Q-refutations cannot be ap-
plied. This solver/verifier does not generate strategies. How-
ever, Algorithm 1 could be applied to obtain winning moves
from the Q-refutation. Furthermore, potentially our method
could be extended to deal with term-refutations to extract
winning moves for existential when the QBF is true.

Both ebddres/tracecheck and Squolem produce Q-
refutations for false QBF. ebddres/tracecheck does not
produce a certificate for true QBF.

Both Squolem and sKizzo/ozziksproduce strategies rep-
resented as a set of Skolem-functions for true QBF. The idea
of Skolem-functions is that the value of each universal vari-
able in an optimal game can be defined as a function over the
the preceding existential variables. A set of such functions
for all the universal variables would constitute a strategy.

Verifying the strategies produced by these solvers is a hard
problem (co-NP complete [Kleine Büning and Zhao, 2004]).
To verify them Jussila et al. [2007] (and Benedetti [2005]
before) utilize multiple calls to a SAT solver. In contrast, the
correctness of the strategies we generate follows directly from
the theorems we presented in Section 3 and the correctness of
our relatively easy to verify Q-refutation proofs. Clearly this
is a much less error prone process than multiple calls to a SAT
solver.

5 Experimental Results

5.1 Proof Generation

We evaluated our implementation of two-sided Q-resolution
generation empirically, to study the effect of proof genera-
tion on performance, and to see how CirQit fits in generally
with other state-of-the-art QBF solvers. Each test was run
on a 2.6GHz 2-core AMD processor with 16 GB of memory.
Programs were single-thread, and were limited to four GB of
memory because they were 32-bit binaries. A 1200 second
timeout was used for the solver.

We have used CirQit to generate certificates for the non-
CNF benchmarks from QBFEVAL [Peschiera et al., 2010].
The results are summarized in Table 2. We can see that the

551

Table 2: Statistics of CirQit on the QBFEVAL dataset.
Solved S Time Prf % Verified Ver

Family T F T F T F T F T F

assertion (120) 0 45 0 14522 - 1.03 - 100 - 1.08

Core (63) 11 33 2918 7024 1.22 1.08 0 100 0.00 1.55

counter (45) 35 7 28 282 1.23 1.19 100 71 6.00 0.20

dme (11) 11 0 12 0 1.03 - 100 - 1.49 -

possibility (120) 7 54 2877 17132 0.92 1.00 100 100 2.72 1.07

ring(20) 10 10 1 35 1.37 1.21 100 100 3.68 11.59

Umbrella (73) 7 26 914 665 1.16 1.04 0 100 0.00 1.63

semaphore (16) 16 0 2 0 1.46 - 100 - 4.04 -

Seidl (150) 93 57 38 7 1.25 1.41 100 100 4.34 6.61

consistency (10) 7 0 2197 0 1.02 - 100 - 2.95 -

Total (628) 197 232 8986 39666 1.07 1.03 91 99 1.48 1.18

S is solving time in CPU seconds. Prf is ratio of the time producing
the proof over the time just solving. % Verified is the percentage of
solved problems that was successfully verified by QBV. Ver is the
ratio of time verifying the proof to time producing it. The results
are segregated into true (T) and false (F) formulas.

overhead of producing the proofs is quite small, and it was
able to produce proofs for every problem it solved.

We used an independently written verifier, named qbv [Jus-
sila et al., 2007], to verify the Q-resolution proofs produced
by CirQit. This procedure helps to prevent the verifier from
incorporating some faulty assumptions that might be in the
solver, and verifying incorrect output. On 20 problems the
verifier ran out of memory. On the remaining problems it ac-
cepted the proof produced.

As mentioned previously, the QIR format which CirQit
now natively produces is a bit more restrictive than the for-
mat of qbv. As a result, some information that is lost in
translation can make the certificate easier to verify. Currently
qbv performs constraint propagation as part of the verifica-
tion process, which is unnecessary for verifying QIR. How-
ever, even though it is possible to construct a more efficient
verifier, even results with qbv demonstrate that it is quite fea-
sible to produce and verify Q-resolution proofs for both true
and false formulas.

A CNF formula can also be represented as a logical circuit.
The output gate would be an AND-gate, with one child OR-
gate for each clause. However, the resulting circuit is very
shallow, and, of course, does not contain any information lost
in translating to CNF. Running on CNF formulas CirQit is
stripped of most of its advantages, and the specialized data
structures of CNF solvers overtake it. However, when given
formulas that have not been transformed, CirQit is a robust
solver that can compete with the state of the art.

The families Core and Umbrella are encoded in both CNF
and non-CNF [Peschiera et al., 2010]. CirQit solved 77
problems in these two families, while qube-cert solved 88.
However, the certificates of qube-cert include tautologous
clauses, for which there is no established proof theory. All
of the certificates for the true formulas solved by qube-cert
were rejected by its own verifier.

On the same dataset, Squolem was not able to solve a sin-
gle problem within the timeout. sKizzo solved 72 problems,
of which 45 were true. As expected, verification of those cer-
tificates proved prohibitive. It was only able to verify 10, and
in all cases verifying an instance took orders of magnitude
longer longer than solving it. The certificates produced by
CirQit were on average 3.93 times smaller.

0

200

400

600

800

1000

1200

20000 30000 40000 50000 60000 70000

U
se

r
C

P
U

 S
ec

s.

Input File Size

cirqit
qube-cert

qube 7.1 valid
qb 7.1 invalid
depqbf valid

depqbf invalid

Figure 3: User CPU time comparisons on 22 benchmarks in
the marbles family.

CirQit does not generally do well on problems represented
in CNF. However, performance varies greatly from family
to family, and there are cases where CirQit outperforms
other search-based CNF-based solvers, includingdepqbf and
QuBE 7.1, even on CNF encoded problems. For example,
the marbles family of benchmarks, available in CNF only,
encodes two-person games similar to, but simpler than, nim.
Figure 3 displays the results on that family.

These problems pose an interesting challenge for search-
based solvers because polynomial-length proofs exist; the
preprocessor in Qube 7.1 solves them almost instantly. CirQit
succeeds in quadratic time, while several other leading
solvers take exponential time.

5.2 Move Extraction

We have implemented Algorithm 1 described in Section 3.
Given the CNF problem specification, a refutation in QIR for-
mat, and the appropriate settings for the outermost variables,
the algorithm determines the settings of the first unassigned
block.

We have applied the algorithm to the game of Tic-Tac-Toe.
This is a two-player game on a 3-by-3 grid, which is initially
empty. Two players, x and o, take turns marking the empty
squares. The first one to get three marks in a row wins the
game. We used Q-resolution proofs as strategies for both
players, and played them against each other using the move
generation algorithm, obtaining the first game shown in Fig-
ure 4.

For each player p, let φp be the QBF encoding the question
“Does p have a winning strategy?”. The moves of x (o) will
be existential (universal) in φo and universal (existential) in
φx. Both φx and φo are false: if both players play optimally,
there will be a tie. An optimal strategy Sp for the universal
player in φp ensures that player p cannot win.

We used CirQit to generate a certificate for each formula.
After that, the lines of play were generated from the certificate
alone. No other input was needed to determine the moves.

552

X

O

X X X X

O O O

X O X

X

O

O

X

OX X

OO

X

OX

X

X

OO

X

OX

X

X

O

X X X

OO

X

OX

X

X O

XX O

O

X

X

O

X

O

X

O

X

OX

X

O

X

OX

O X

O

X

OX

X

O

X O X O

X

X O

X

O

X O

X

O

X

X O

X

O

X

O

X O

X

O

X

O

X

X

O

X

OX

X

OX

O

X

OX

O

X X

OX

O

X

O

X

OX

O

X

O

X

Figure 4: Sample games obtained by strategy generation.
Greyed-out moves were predetermined.

The move generator for the x-player provided the settings
of variables in the first quantifier block (which represent x’s
first move). Those settings were then fed into the move gen-
erator for the o-player, which determined o’s next move. The
iterations continued for all quantifier levels, and resulted in
the first game shown in Figure 4.

Now, suppose we pre-specify two initial moves so that the
o-player is put into a losing position. Let φ′

p represent φp re-

stricted by those two moves. The formula φ′

x becomes true,
because now x can ensure its victory. Then our move gen-
erator can be used to play a winning strategy for x. Note
that we cannot obtain a strategy for the losing player, because
its moves are irrelevant to the outcome. So, we demonstrate
the generated moves against a human player. The remaining
games in Figure 4 display sample games with different initial
settings.

6 Conclusion and Future Work

We have demonstrated that Q-resolution proofs can, in fact,
be viewed as a different representation of the strategy. They
are straightforward to generate for both true and false formu-
las using a circuit solver. Also, they are much easier to verify
than Skolem-function approaches.

The interesting question for future work is to formalize and
compare the properties of this representation to those of exist-
ing ones. Are there useful queries that are easily answerable
in one representation but not the other? What other advan-
tages and limitations are there?

We conjecture that both representations would have the
same worst case size complexity. However, it is likely that
for some formulas one might be more compact and vice versa.
Investigating the potential trade-offs is another interesting av-
enue for future work.

References

[Benedetti, 2005] M. Benedetti. Extracting certificates from quan-
tified boolean formulas. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2005.

[Biere et al., 1999] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In Proceedings of the
International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS), pages 193–207, 1999.

[Giunchiglia et al., 2004] E. Giunchiglia, M. Narizzano, and
A. Tacchella. QBF reasoning on real-world instances. In The-
ory and Applications of Satisfiability Testing (SAT), 2004.

[Goultiaeva and Bacchus, 2010] A. Goultiaeva and F. Bacchus. Ex-
ploiting QBF duality on a circuit representation. In Proceedings
of the AAAI National Conference (AAAI), pages 71–76, 2010.

[Goultiaeva et al., 2009] A. Goultiaeva, V. Iverson, and F. Bacchus.
Beyond CNF: A circuit-based QBF solver. In Theory and Appli-
cations of Satisfiability Testing (SAT), pages 412–426, 2009.

[Jussila et al., 2007] T. Jussila, A. Biere, C. Sinz, D. Kröning, and
C. M. Wintersteiger. A first step towards a unified proof checker
for QBF. In Theory and Applications of Satisfiability Testing
(SAT), pages 201–214, 2007.

[Kleine Büning and Zhao, 2004] H. Kleine Büning and X. Zhao.
On models for quantified boolean formulas. In Logic versus Ap-
proximation, Springer LNCS 3075, pages 18–32, 2004.

[Kleine Büning et al., 1995] H. Kleine Büning, M. Karpinski, and
A. Flögel. Resolution for quantified boolean formulas. Inf. Com-
put., 117(1):12–18, 1995.

[Kontchakov et al., 2009] R. Kontchakov, L. Pulina, U. Sattler,
T. Schneider, P. Selmer, F. Wolter, and M. Zakharyaschev.
Minimal module extraction from DL-lite ontologies using QBF
solvers. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 836–841, 2009.

[Mangassarian et al., 2007] H. Mangassarian, A. G. Veneris, S. Sa-
farpour, M. Benedetti, and D. Smith. A performance-driven
QBF-based iterative logic array representation with applications
to verification, debug and test. In International Conference on
Computer-Aided Design (ICCAD), pages 240–245, 2007.

[Narizzano et al., 2009] M. Narizzano, C. Peschiera, L. Pulina, and
A. Tacchella. Evaluating and certifying QBFs: A comparison of
state-of-the-art tools. AI Commun., 22(4):191–210, 2009.

[Peschiera et al., 2010] C. Peschiera, L. Pulina, A. Tacchella,
U. Bubeck, O. Kullmann, and I. Lynce. The seventh QBF solvers
evaluation (qbfeval’10). In Theory and Applications of Satisfia-
bility Testing (SAT), pages 237–250, 2010.

[Plaisted and Greenbaum, 1986] D. A. Plaisted and S. Greenbaum.
A structure-preserving clause form translation. Journal of Sym-
bolic Computation, 2:293–304, 1986.

[Rintanen, 2007] J. Rintanen. Asymptotically optimal encodings
of conformant planning in QBF. In Proceedings of the AAAI
National Conference (AAAI), pages 1045–1050, 2007.

[Staber and Bloem, 2007] S. Staber and R. Bloem. Fault localiza-
tion and correction with QBF. In Theory and Applications of
Satisfiability Testing (SAT), pages 355–368, 2007.

[Tseitin, 1983] G. Tseitin. On the complexity of proofs in proposi-
tional logics. In Automation of Reasoning: Classical Papers in
Computational Logic 1967–1970. Springer-Verlag, 1983.

[Van Gelder, 2005] A. Van Gelder. Input distance and lower bounds
for propositional resolution proof length. In Theory and Applica-
tions of Satisfiability Testing (SAT), 2005.

[Zhang and Malik, 2002] L. Zhang and S. Malik. Conflict driven
learning in a quantified boolean satisfiability solver. In Proceed-
ings of the International Conference on Computer-aided Design
(ICCAD), pages 442–449, 2002.

[Zhang, 2003] L. Zhang. Searching for Truth: Techniques for Sati-
fiability of Boolean Formulas. PhD thesis, Princeton University,
2003.

553

