
Using First-Order Probability Logic for the Construction ofBayesian NetworksFahiem Bacchus�Department of Computer ScienceUniversity of WaterlooWaterloo, Ontario, CanadaN2L{3G1AbstractWe present a mechanism for constructinggraphical models, speci�cally Bayesian net-works, from a knowledge base of generalprobabilistic information. The unique fea-ture of our approach is that it uses a power-ful �rst-order probabilistic logic for express-ing the general knowledge base. This logicallows for the representation of a wide rangeof logical and probabilistic information. Themodel construction procedure we proposeuses notions from direct inference to identifypieces of local statistical information fromthe knowledge base that are most appropri-ate to the particular event we want to reasonabout. These pieces are composed to gener-ate a joint probability distribution speci�edas a Bayesian network. Although there arefundamental di�culties in dealing with fullygeneral knowledge, our procedure is practicalfor quite rich knowledge bases and it supportsthe construction of a far wider range of net-works than allowed for by current templatetechnology.1 IntroductionThe development of graphical representations for prob-abilistic and decision-theoretic models [Pea88, OS90]has vastly increased the range of applicability of suchmodels in AI. However, it appears that current graph-ical representations are limited to specialized domainsof knowledge|somewhere around the scope of modernexpert systems. For a number of reasons, it seems im-possible to use such models to represent, say, the gen-eral medical knowledge possessed by a typical physi-cian.A major limitation of current graphical representa-tions is that they are propositional . That is, they�This work was supported by NSERC under its Operat-ing Grants program and by the IRIS network. The author'se-mail address is fbacchus@logos.uwaterloo.ca

lack quanti�ers, which are essential for representinggeneral knowledge. With quanti�ers one can repre-sent an assertion about a whole class of individualsusing a single sentence, while in a propositional lan-guage this would require a separate sentence for eachindividual. As a result, important knowledge structur-ing techniques, like taxonomies, cannot be applied topropositional representations.However, graphical representations have important ad-vantages of their own. In particular, they support ef-�cient reasoning algorithms. These algorithms are farmore e�cient than the symbolic reasoning mechanismstypical of more general representations.This dichotomy of utility has lead to proposals forhybrid uses of general and graphical representations.In particular, Breese et al. [BGW91] have proposedthe technique of knowledge based model construc-tion (KBMC): the automatic construction of propo-sitional/graphical models for speci�c problems from alarger knowledge base expressed in a general repre-sentation. Breese et al. provide a number of moti-vations for this approach that extend the argumentsgiven above.We refer the reader to [BGW91] for this motivation,and take as our starting point that KBMC is a po-tentially useful technique, certainly worth examiningin more detail. Our contribution, then, is to lookmore closely at a particular mechanism for perform-ing KBMC. In particular, we develop a mechanism inwhich a �rst-order probability logic [Bac90b] is usedto represent the general knowledge base, and modelconstruction is performed using ideas arising from thestudy of direct inference. Direct inference involvesreasoning from general statistical knowledge to prob-abilities assigned to particular cases and has beenworked on by a number of authors including [BGHK92,Bac90b, Kyb61, Kyb74, Lev80, Lou87, Pol90, Sal71].Our mechanism brings to light the important role ex-pressive �rst-order probability logics can play in rep-resenting general probabilistic knowledge, and the im-portant relationship between KBMC and direct infer-ence.In the sequel, we �rst introduce a probability logic



that can be used for the representation of generalprobabilistic and logical knowledge, and demonstratethat it is capable of representing any Bayesian net-work [Pea86]|perhaps the most important of currentgraphical representations. Then we discuss how ideasfrom direct inference can be used to specify a modelconstruction procedure that can construct graphicalmodels for particular problems. We point out howthis idea is related to, but strictly more general than,template models. Throughout our discussion we try topoint out various insights about the process of KBMCo�ered by our approach. Finally, we close with someconclusions and indications for future work.2 Representing General ProbabilisticKnowledgeKBMC requires a mechanism for representing generalknowledge. This representation should be declarative,for a number of good reasons that are beyond the scopeof this paper to discuss. Furthermore, the representa-tion should have a precise semantics, so that we canspecify exactly the meaning of the expressions in theknowledge base. Without precise semantics it wouldbe impossible to verify the accuracy of the knowledgebase.Since logical representations meet our desiderata, wepropose as a representation mechanism a �rst-orderlogic for statistical information, developed by Bacchus[Bac90a]. This logic is basically �rst-order logic aug-mented to allow the expression of various assertionsabout proportions.Syntactically, we augment an ordinary collection of�rst-order symbols with symbols useful for express-ing numeric assertions, e.g., `1', `+', `�'. In ad-dition to allowing the generation of ordinary �rst-order formulas we also allow the generation of nu-meric assertions involving proportions. For example,[P(x)]x = 0:75, expresses the assertion that 75% ofthe individuals in the domain have property P, while0:45 � [R(x; y)]hx;yi � 0:55 expresses the assertionthat between 45% and 55% of all pairs of domain in-dividuals stand in relation R. In general, if � is anexistent formula and ~x is a vector of n variables, theproportion term [�]~x denotes the proportion of n-aryvectors of domain individual that satisfy the formula�. Most of the statistical information we wish to ex-press will in fact be statements of conditional probabil-ity denoting relative proportions. For example, [�j�]~xwill denote the proportion of n-ary vectors of domainindividuals among those that satisfy � which also sat-isfy �. We can then express various statistical asser-tions by expressing various constraints on the valuesthat these proportion terms can take. For example,by asserting that [Q(x)jP(x)]x = 0:5 we are assertingthat the domain we are considering is such that 1/2 ofthe P's are Q's.We will not give a formal speci�cation of the seman-

tics of our language here (see [Bac90b] for all suchdetails). The speci�cation simply formalizes the fol-lowing notion: a formula with free variables might be-come true or false depending on how the variables areinstantiated. For example, bird(x) might be true whenx = Tweety but false when x = Clyde. A proportionterm, then, simply evaluates to the proportion of pos-sible instantiations that make the formula true.This language can express an wide variety of statisticalassertions ([Bac90b] gives an extensive collection of ex-amples). It can also express whatever can be expressedin �rst-order logic, so essential structuring mechanismslike taxonomies can be applied.Example 1 Let the domain contain, among otherthings, a collection of coins, and a collection of coin-tossing events.1 In addition to some obvious symbols,let our language include the predicate CoinToss(e)which is true of an individual e i� e is an coin-tossingevent ; Coin(x) which is true of x i� x is a coin; andObject(e; x) which holds of the individuals e and x i�e is an event and x is the object of that event: the ob-ject of a coin-tossing event is the particular coin thatis tossed. Now we can express the following:1. 8e; x:CoinToss(e) ^ Object(e; x) ) Coin(x).That is, the object of any coin toss is always acoin.2. 8x:Fair(x) , [Heads(e)jCoinToss(e) ^Object(e; x)]e 2 (:49; :51). We agree to call anycoin x fair i� approximately 50% of the events inwhich it is tossed result in heads. This exampledemonstrates the useful interplay between univer-sal quanti�cation and the proportion terms.3. �[Heads(e)jCoinToss(e) ^ Object(e; x)]e 2(0:49; 0:51)��Coin(x)�x = 0:95. This formula saysthat 95% of all coins are such that approximately50% of the events in which they are tossed re-sult in heads. That is, 95% of the coins in thedomain are approximately fair. This exampledemonstrates the useful ability to nest proportionstatements.3 Representing Bayesian NetworksUsing the logic described in the previous section wecan represent a large knowledge base of general logi-cal and statistical information by a collection of sen-tences. It is not di�cult to see that any discrete val-ued Bayesian network can easily be represented in the1The explicit inclusion of events in the domain of indi-viduals is similar to the inclusion of other abstract objectslike time points or situations (as in the situation calculus[MH69]). There may be philosophical objections, but tech-nical di�culties can be avoided if we restrict ourselves toa �nite collection of distinct events.



logic.2 Here we will give a particular scheme for repre-senting an arbitrary network, although there are manyother schemes possible.Any Bayesian network is completely speci�ed by twopieces of information: (1) a product decomposition ofthe joint distribution which speci�es the topologicalstructure of the network, and (2) matrices of condi-tional probability values which parameterize the nodesin the network [Pea88]. Consider an arbitrary networkB. Let the nodes in B be the set fX1; : : : ; Xng. EachnodeXi has some set of parents �Xf(i;1); : : : ; Xf(i;qi)	,where f(i; j) gives the index of node Xi's j-th parent,and qi is the number of parents of Xi. Furthermoreeach node Xi can take one of some discrete set of val-ues fv1; : : : ; vkig, where ki is the number of di�erentvalues for Xi.The topological structure of B is completely speci�edby the equationPr(X1; : : : ; Xn) = Pr(X1jXf(1;1); : : : ; Xf(1;q1))�� � � � Pr(XnjXf(n;1); : : : ; Xf(n;qn)):That is, the topological structure of B is equivalentto an assertion about how the joint distribution overthe nodes X1{Xn can be decomposed into a productof lower-order conditionals. Actually, this equation isshorthand. Its full speci�cation is that this productdecomposition holds for every collection of values thenodes X1{Xn can take on.We can translate this equation into a sentence of ourlogic by creating a function symbol for every node Xi;for convenience we use the same symbol Xi . Now theabove structure equation can be rewritten as the sen-tence8z1 ; : : : ; zn:[X1(e) = z1 ^ � � � ^Xn(e) = zn]e =hX1 (e) = z1 ��� Xf (1;1) = zf (1;1) ^ � � �^Xf (1;q1) = zf (1;q1) ie �...� hXn(e) = zn��� Xf (n;1) = zf (n;1) ^ � � �^Xf (n;qn) = zf (n;qn) ie:Here we have treated the multi-valued nodes as func-tion symbols X1{Xn in our language. Our translatedsentence asserts that for every particular set of val-ues the X1{Xn can take on, the proportion of events ethat achieve that set of values can be computed fromthe lower-order relative proportions. The universalquanti�cation ensures that this product decompositionholds of every collection of values.Having completely speci�ed the topological structureof B, we can equally easily specify the conditionalprobability parameters in our language. For each nodeXi, B provides the probability of Xi taking on any ofits allowed values under every possible instantiation of2It is also possible, with a few technical caveats, to rep-resent networks with continuous valued nodes. But herewe restrict our attention to discrete valued nodes.

its parents Xf(i;1); : : : ; Xf(i;qi). This matrix of condi-tional probabilities consists of a collection of individualequations each of the formPr(Xi = tijXf(i;1) = tf(i;1); � � � ; Xf(i;qi) = tf(i;qi)) = p;where tj is some value for variable Xj , and p is somenumeric probability value.To translate these equations into sentences of our logicwe create new constant symbols for every possiblevalue ti of every node Xi; for convenience we use thesame symbol ti . Now the above equation can be rewrit-ten as the sentencehXi(e) = ti��� Xf (i;1)(e) = tf (i;1) ^ � � �^Xf (i;qi)(e) = tf (i;qi) ie = p:Here we have simply rewritten the conditional proba-bility equations as equations involving the proportionof events in which Xi takes on value ti.The above procedure can be applied to any network.Thus we make the following observation. Any discretevalued Bayesian network can be represented as a col-lection of sentences in the knowledge base.What is important to point out about this transla-tion is that the translated assertions represent templatenetworks. As pointed out in [BGW91] most probabilis-tic networks in use in consultation systems are actuallytemplate models. That is, the nodes represent gener-alized events which get instantiated to the particularevent under consideration. For example, a node rep-resenting \Disease D" will be instantiated to \PatientJohn R. Smith has disease D," a node representing\Blood test shows low white cell count" will be instan-tiated to \Blood test T0906 for patient John R. Smithshows low white cell count," etc. In our representationthe template nature of the networks is made explicit:our formulas refer to proportions over classes of sim-ilar events not particular events. As we will see thisis not a limitation in representational power, rather itis simply a more accurate representation which allowsfor greater modularity. Propositional networks refer-ring to particular events are to be generated from theknowledge base via model construction techniques.4 Simple Model ConstructionTo introduce the basic ideas that underlie our modelconstruction technique consider a knowledge base thatconsists simply of a collection of template Bayesiannetworks, each one applicable to di�erent types ofevents.To specify that each di�erent decomposition, and col-lection of conditional probability parameters, is appli-cable to a di�erent class of events we only need add theevent type as an extra conditioning formula. For ex-ample, say that we have two networks both suitable fordiagnosing abdominal pain. However, one of the net-works is designed for women in late-term pregnancy,



8z1 ; z2 ; z3 :[X1(e) = z1 ^X2(e) = z2 ^X3 (e) = z3 jAbdominalPain(e) ^ :Pregnancy(e)]e= [X1(e) = z1 jAbdominalPain(e) ^:Pregnancy(e)]e� [X2(e) = z2 jX1(e) = z1 ^AbdominalPain(e) ^ :Pregnancy(e)]e� [X3(e) = z3 jX1(e) = z1 ^X2 (e) = z2 ^AbdominalPain(e) ^ :Pregnancy(e)]e ;(1) 8z1 ; z2 ; z3 :[Y1(e) = z1 ^Y2 (e) = z2 ^Y3 (e) = z3 jAbdominalPain(e) ^Pregnancy(e)]e= [Y1 (e) = z1 jAbdominalPain(e) ^ Pregnancy(e)]e� [Y2(e) = z2 jY1(e) = z1 ^AbdominalPain(e) ^ Pregnancy(e)]e� [Y3(e) = z3 jY1(e) = z1 ^AbdominalPain(e) ^ Pregnancy(e)]e :(2) Figure 1: Alternate Structures for Abdominal Painwhile the other is suitable for other patients with ab-dominal pain. Our general knowledge base might con-tain the two formulas (Equations 1 and 2) shown inFigure 1.In this example the events involving abdominal painand pregnancy have a di�erent network models (i.e.,structural decompositions) with entirely di�erent vari-ables than the events where there is no pregnancy. Ina similar manner we can represent a whole collectionof disjoint types of events, where each event type ismodeled by a di�erent probabilistic structure.In this case the model construction technique inthis case would simply locate the appropriate tem-plate model using information about the particularevent being reasoned about. For example, if theevent is E001 and we know AbdominalPain(E001) ^Pregnancy(E001), i.e., the event being reasoned aboutinvolves adominal pain in a pregnant patient, we wouldconstruct a network model for reasoning about E001using the second template model. This network wouldhave the structurePr(Y1; Y2; Y3) = Pr(Y1) � Pr(Y2jY1)� Pr(Y3jY1);and would be parameterized by the values speci�edin the knowledge base for the Yi variables. Sincethe constructed network is now speci�c to event E001we can drop the extra condition AbdominalPain(e) ^Pregancy(e) as we know that E001 satis�es these con-ditions. Now we have an event speci�c network thatcan be used to reason about the probable values of thevariables Yi in the particular event.We can see that the model constructor is simply \in-stantiating" the general template model with the par-ticular event E001. By using the same structure andprobability parameters as the class of abdominal pain-pregnancy events we are assigning probabilities to theparticular event E001 that are identical to the statis-tics we have about that general class of events. Thisis an example of direct inference, where we use statis-tics over a class of similar events to assign probabilitiesto a particular event. For example, when we assign aprobability of 1/2 to the event of heads on a particu-lar coin toss based on statistics from a series of cointosses we are performing direct inference. This kind ofinference is pervasive in reasoning under uncertainty.33See Kyburg [Kyb83a] for further arguments pointing

Simple model construction of this kind is not thatinteresting however. We could easily accomplish thesame thing with a control structure that chooses fromsome collection of networks. The main di�erence isthat here we have an explicit, declarative, represen-tation of which network is applicable to what type ofevent. Furthermore, it also serves to illustrate the ba-sic idea behind our approach to KBMC.5 More General Model ConstructionIn general we will not have explicit template modelsin our knowledge base for all of the events we wishto reason about. Indeed, this is exactly the point ofthe KBMC approach: we want to deal with situationsbeyond the ability of template models.Our knowledge base will more likely contain informa-tion about conditional probabilities isolated to neigh-borhoods of related variables. For example, insteadof having an explicit product decomposition for all ofthe relevant variables, as in the above examples, theknowledge base might simply contain the individualproduct terms, i.e., the neighborhood information, inisolation. It will be up to the model construction pro-cedure to link these individual terms into a joint dis-tribution. Consider Pearl's classic Holmes's burglaryexample. It is unlikely that Holmes has in his knowl-edge base an explicitly represented decomposition ofthe form shown in Equation 3 (Figure 2). Such a de-composition is simply far too speci�c. Rather Holmeswould more typically have information like that shownin Equation 4 (Figure 2). In this case Holmes has theknowledge (a) in 75% of the events in which a housewith an alarm is burglarized, the alarm will sound;(b) in 45% of the events in which an alarm soundsnear where a person lives that person will report thealarm; (c) the speci�c knowledge that Watson livesnear Holmes's house and that Holmes's house has analarm. The advantage of knowledge in this more gen-eral form is that it can be used to reason about manyother types of events. For example, the statisticalknowledge (a) can be used to reason about any alarmin any house, e.g., if Holmes learns that his parents'house alarm has been tripped; similarly (b) can beout the prevalence of \direct inference" in probabilisticreasoning.



[Burglary(e;MyHouse) ^AlarmSound(e;MyHouse) ^ReportsAlarm(e;Watson;MyHouse)]e= [AlarmSound(e;MyHouse)jBurglary(e;MyHouse)]e� [ReportsAlarm(e;Watson;MyHouse)jAlarmSound(e;MyHouse)]e :(3) (a) [AlarmSound(e; x)jBurglary(e; x) ^HouseWithAlarm(x)]he;xi = :75(b) [ReportsAlarm(e; y ; x)jAlarmSound(e; x) ^HouseWithAlarm(x) ^ LivesNear(x; y)]he;x;yi = 0:45(c) LivesNear(MyHouse;Watson) ^HouseWithAlarm(MyHouse)(4) Figure 2: An overly Speci�c Decomposition vs. General Informationused for reasoning about reports from any neighbor,e.g., if Mrs. Gibbons reported the alarm instead of Dr.Watson.Holmes will also have other pieces of statistical infor-mation, e.g., statistics about the event that a househas been burglarized given that a police car is parkedoutside, and other pieces of information speci�c to theparticular event being reasoned about. The task, then,of a model construction procedure is to use the infor-mation speci�c to the particular event being reasonedabout to decide which local pieces of statistical infor-mation are relevant and how they should be linkedinto a Bayesian network representation. Once a net-work has been constructed it can be used to quicklyperform a range of complex reasoning about the par-ticular event.There are three issues that arise when constructing aBayesian network model of the particular event we arereasoning about. First, the model construction proce-dure must have some information about the variables(properties of the event in question) that we wish to in-clude in the constructed network. Second, we must useinformation about the particular event to locate ap-propriate pieces of local statistical information in theknowledge base. And third, we must combine theselocal pieces of information into a network.5.1 The Set of VariablesSome information must be supplied about what collec-tion of variables we want to model in the constructednetwork. In the simplest case we will just supplya query about the particular event under consider-ation along with some additional information aboutthat event. For example, we might be reasoningabout event E002 and the query might be expressedas Burglary(E002)?; i.e., did a burglary occur aspart of this event? We might also have the informa-tion ReportsAlarm(E002;Watson;MyHouse), i.e., Dr.Watson reported an alarm at Holmes's house duringthis event. If the knowledge base is similar to thatgiven above, the procedure could determine that it canchain probabilistic in
uence from a report by Watsonto belief in the alarm sounding, and then from thereto a belief in a burglary, i.e., to an inference aboutthe query. Given that this is the only chain of in
u-ence it can �nd in the knowledge base linking alarmreports and burglaries, the constructed network will

only contain a burglary node, an alarm sound node,and an alarm report node. That is, in a strictly querydriven KBMC procedure the constructed model willonly contain variables relevant to the particular query.Alternately, we could supply the procedure with moreinformation. For example, we could specify a set ofvariables that we wish to include in the constructedmodel. For example, we could specify that we are alsointerested in reasoning about earthquakes and radiobroadcasts. If the knowledge base has local statisticsabout the frequency of alarms sounding given earth-quakes, and radio reports given earthquakes, a largerBayesian network could be constructed that includesnodes for these variables. The links between thesevariables would be determined by the local statisticscontained in the knowledge base. For example, if weknow the frequency of alarm triggers given earthquakeevents, we would place a link from the earthquake nodeto the alarm node in the constructed network.As in the simple query driven case, however, the proce-dure would still be able to add additional intermediatevariables that link the variables in the set of inter-est. These intermediate variables would be found bylooking through the knowledge base for chains of in-
uences between the speci�ed variables. For example,if we inform the procedure to build a model of someset of diseases fD1; : : : ; Dng and some set of symp-toms fS1; : : : ; Smg, it can search for chains of localconditional probabilities linking members of these twosets. Hence, the constructed network will generallycontain additional intermediary nodes describing thecausal processes known to link the diseases with thevarious symptoms, just as the alarm sound informa-tion linked burglaries and alarm reports in the querydriven case.It seems likely that we would want to amortize the ef-fort of constructing the Bayesian network over a wholerange of queries. Hence, we will probably want to sup-ply the model constructor with more information thanjust a single query.5.2 Locating the Appropriate Local StatisticsInformation about the particular event will help deter-mine which collection of local statistics are appropri-ate. The issue of choosing appropriate statistics is atthe heart of the di�culties in direct inference. Old



approaches to direct inference revolved around try-ing to �nd appropriate reference classes from whichstatistics can be drawn [Kyb83b]. More recent workhas taken an approach based on the principle of indif-ference that dispenses with the notion of a referenceclass altogether [BGHK92]. In general, however, de-termining the probabilities to assign to a particularevent given a collection of statistical information aboutclasses of similar events is a very di�cult problem. Fora practical enterprise like KBMC, however, we can usethe work on direct inference to derive general guide-lines as to what statistics to consider. For example,all approaches to direct inference validate the subsetor speci�city preference: one should choose the mostspeci�c statistics applicable to the event in question.Similarly, if we have statistical information about aspeci�c individual involved in the event we should usethat.Information about the particular event can alter boththe parameterization and the structure of the con-structed Bayesian network. This 
exibility is not pos-sible with simple template models. Consider the fol-lowing example.Example 2 Say that the local information shown inFigure 3 was contained in the knowledge base. Andsay that our information about the particular eventwas ReportsAlarm(E002;Watson; MyHouse). If it isdecided that AlarmSound should be placed in the con-structed network, either because it is a variable of in-terest or because it is in a chain of in
uences to avariable of interest, then the procedure would have tochoose how to parameterize the link from theMyHousealarm sound node and the Watson alarm report node.The only statistic we have about the chance of analarm report given an alarm concerns the class of peo-ple who live near the house whose alarm sounded. Inthis case we know Dr.Watson is a member of this class,i.e., LivesNear(MyHouse;Watson), so item 1 gives themost speci�c known probability of a report given analarm. However, we do have a more speci�c statisticfor Dr. Watson, item 3, in the case of a report whenthere is no alarm, indicating that Watson is a bit of apractical joker. Hence, this more speci�c value wouldbe used for the probability of a report given no alarm.On the other hand if the event in question involveda report by Mrs. Gibbons, we would be forced to usethe more general statistics 1 and 2 to parameterize thealarm-report/alarm-sound link as we have no speci�cstatistics for Mrs. Gibbon's alarm reports.Example 3 Let the knowledge base be as in Figure 3,except augmented by the additional statistical infor-mation shown in Figure 4. That is, in this case Holmeshas a special alarm installed by a security companyAlarmMonitorCompany with a direct line to their of-�ce, and from the company's literature about the ac-curacy of their alarm systems Holmes has come to ac-cept the above statistical assertion about the reliabil-ity of their alarm reports. Now if the event was Re-

portsAlarm(E003, AlarmMonitorCompany, MyHouse)there would be no need for the model constructionprocedure to include an intermediary node of alarmsound, nor would the direction of the links be requiredto go from burglaries towards alarm reports. Insteadit could use this statistic, as the particular event E003is a member of this class of events, to link the alarmreport node directly to the burglary node, and a quitedi�erent network structure would result.5.3 Linking the Local PiecesOnce appropriate local statistics are obtained from thedatabase we have enough information to link variousnodes in the network. That is, each local statistic willserve to parameterize a link between two nodes in thenetwork. A di�culty that arises here is justifying thiscomposition.All we really know about the probability distributiondescribing the interaction between the variables arethe local conditional probabilities. There will in gen-eral be many di�erent joint probability distributionsthat are consistent with these local conditional prob-abilities. In linking up the nodes in a manner de-termined solely by the local information we are con-structing a particular joint distribution, one in whichthe local conditional probabilities determine a productdecomposition. An important question is: to what ex-tent is such a procedure justi�ed? Lewis [LI59] provedsome results which show that by taking the productof local conditional probabilities one obtains a best es-timator in the sense of Kullback-Leibler cross-entropy[KL51]. But his results do not cover all of the casesthat might occur. Another justi�cation comes from re-cent work that applies the principle of indi�erence toreasoning about change [BGHK93]. For an enterpriselike KBMC, however, we will again want to use gen-eral principles derived from such work. One generalprinciple arising from [BGHK93], and earlier work byHunter [Hun89], is that when the variables are causallyrelated, as compared to being simply correlated, usingthe product of the local conditional probabilities canbe justi�ed by principles of indi�erence.A related di�culty occurs when we have some but notall of the information required to specify the parame-terization of the network. For example, we might havestatistics about a number of distinct causes for an ef-fect, but we might not have statistics about their jointe�ect. Pearl [Pea88] has suggested the use of \proto-typical structures" like noisy OR gates. There is anunderlying probabilistic model from which noisy ORgates arise, and when it is reasonable to assume thatthis model holds in a domain, prototypical structuresof this form could be used. Alternately, the indi�er-ence considerations of [BGHK93, Hun89] can also beused in certain cases to complete the joint distributionover the di�erent causes.



1: [ReportsAlarm(e; y ; x)jAlarmSound(e; x) ^HouseWithAlarm(x) ^ LivesNear(x; y)]he;x;yi = 0:452: [ReportsAlarm(e; y ; x)j:AlarmSound(e; x) ^HouseWithAlarm(x) ^ LivesNear(x; y)]he;x;yi = 0:053: [ReportsAlarm(e;Watson; x)j:AlarmSound(e; x) ^HouseWithAlarm(x) ^ LivesNear(x;Watson)]he;xi = 0:154: HouseWithAlarm(MyHouse) ^ LivesNear(MyHouse;Watson)5: LivesNear(MyHouse;Gibbons)Figure 3: Knowledge Base for Example 26: [Burglary(e;MyHouse)jReportsAlarm(e;AlarmMonitorCompany ;MyHouse)]e = 0:907: [Burglary(e;MyHouse)j:ReportsAlarm(e;AlarmMonitorCompany ;MyHouse)]e = 0:05Figure 4: Additional Knowledge for Example 36 Conclusions and Future WorkWe have outlined a mechanism for KBMC of Bayesiannetworks from a knowledge base expressed in a �rst-order probabilistic logic. Although we have only beenable to present a sketch of how the mechanism workswe have discussed the main ideas behind the proposal:(1) identify the variables of interest either through aquery driven process or through information providedby the user; (2) locate local statistics, relevant to theparticular event being reasoned about, by using prin-ciples from work on direct inference, like speci�city, toprefer certain local statistics over others; (3) constructchains of probabilistic in
uence from these local statis-tics; (4) construct an event speci�c network by usingthe chains of probabilistic in
uence to specify the arcsin the network, and by using the local statistics toparameterize the nodes, perhaps �lling in missing pa-rameters by using prototypical structures or principlesof indi�erence. The resulting network can then be usedto reason probabilistically about the particular event.The mechanism can be actualized fairly easily instraightforward cases. In such cases the chains of in
u-ence are easy to locate: the individual links are explic-itly expressed in the knowledge base. If the statisticsin the knowledge base are of a form such that select-ing the most appropriate statistics reduces to simplespeci�city considerations and if we have su�cient sta-tistical information, we can easily parameterize the re-sulting structure. Such a mechanism, although limitedin some ways, already o�ers a considerable increase in
exibility over current template models.One issue we have not addressed here is a mechanismfor representing temporal information, but as shownby Bacchus et al. [BTH91] �rst-order logic is su�-cient for representing a range of temporal ontologies.Hence, once an appropriate temporal ontology is de-cided upon, it is possible that the representation couldbe extended to allow for temporal information. Ifthe temporal structure is discrete we could also al-

low the formation of proportion statements over timepoints, thus allowing the expression of various asser-tions about discrete stochastic processes. A relatedissue that can be addressed is the representation ofutilities. Extending our representation to utilities andtemporal information, and the KBMC procedure weproposed to generate, e.g., in
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