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Abstract. We present a sampling method to approximate the weighted model
count of Boolean satisfiability problems. Our method is based on distributional
importance sampling, where a subset of the variables are randomly set accord-
ing to a backtrack-free distribution, and the remaining sub-formula is counted
exactly. By using distributional samples (also known as Rao-Blackwellised sam-
ples), we can improve the accuracy of the approximation by reducing the variance
of the samples. As well, distributional sampling allows us to exploit the power of
dynamic component analysis performed by state-of-the-art exact counters. We
discuss several techniques for providing a measure of confidence in the result-
ing estimates, including an analysis based on the Central Limit Theorem. Ex-
periments on unweighted and weighted benchmarks demonstrate the promising
performance of this approach.

1 Introduction
#SAT, or model counting, is the problem of counting the number of satisfying truth
assignments to a CNF formula φ. Weighted model counting is the simple, but very
useful, extension where each truth assignment π has a weight wt(π), and the problem
becomes that of computing the sum of the weights of the satisfying truth assignments
(models) rather than simply counting their number.

Since there are a finite number of truth assignments (2n where n is the number of
variables in φ), we can assume without loss of generality that the sum of wt(π) over all
2n truth assignments is one. In this case, wt(π) can be viewed as being a probability
distribution over the truth assignments such that P(π) = wt(π), and the weighted
model count of a formula φ, wt(φ), can be viewed as being the probability (under that
distribution) that φ is TRUE, P(φ). If we choose the uniform distribution where every
truth assignment has weight 1/2n, then P(φ) is equal to the number of models (the
unweighted model count) divided by 2n.

This probabilistic interpretation naturally leads to capturing various forms of prob-
abilistic inference using SAT encodings, an approach that has proved to very effective
on many probabilistic reasoning problems, e.g., [22, 4]. This is arguably the most com-
pelling application of #SAT.

There are different ways of encoding the truth assignment weights in a CNF for-
mula, but one particularly simple method, proposed by Sang et al. [22], is to encode
the weights by assigning a weight to each literal, so that the weight of any model π
becomes simply the product of the weights of the literals it makes TRUE. Using this
encoding (and others, e.g., [4]) most exact model counters can be easily modified to
perform weighted model counting with no additional overhead.



However, despite the success of exact weighted model counters, application in-
stances often lie beyond their reach. Therefore, much recent work has focused on ap-
proximation techniques for model counting [17, 14, 13, 10] and inference in probabilis-
tic models [12, 9, 11], which can yield useful estimates when the exact answer cannot
be computed.

All of these approximation techniques are based on the idea of using samples to
estimate the model count or probability of a formula φ. Theoretically, the number of
solutions of a Boolean formula can be estimated given a way to sample the solutions
uniformly at random [16]. Sampling based methods for approximate #SAT such as
SampleSat [25] and SampleCount [14] are based on this inspiration, augmented by
various techniques to overcome the difficulty of generating solutions uniformly at ran-
dom in practice. Additionally, traditional methods of approximating the expectation of
a random variable such as importance sampling [8] have been applied to model count-
ing [10], by defining a random variable whose expectation is the solution count.

In this paper we introduce a sampling method for weighted model counting. Since
other probabilistic queries as well as Bayesian inference can be encoded as weighted
model counting, our resulting approximator is of more general applicability. Like the
work of [10] we utilize the technique of importance sampling, however in addition we
introduce the use of distributional (or Rao-Blackwellised) samples to better exploit the
recent advances in exact-model counting systems (e.g., Cachet [21]). The advantage of
this approach is that each sample now covers more of the solution space, which can
reduce the variability between samples yielding better estimates.

We also discuss three techniques for providing estimates of the true weighted count
based on the samples, along with confidence measures. For example, following [14]
we consider using the Markov inequality to provide a lower bound on the true count
with high probability. We also present a statistical argument, based on the assumption
that the samples come from a log-normal distribution, which results in a confidence
interval that should contain the true count if the assumption is true. The assumption
can be tested using the sample data. This is similar in spirit to the #SAT upper-bound
produced in [17]. Finally, we show that the Central Limit Theorem can be applied to
our sampling scheme, and use it to produce a confidence interval under the assumption
that we have generated enough samples.

Our distributional importance sampling algorithm has been implemented in Minisat,
using Cachet as the exact weighted counter. We compare the performance of our tech-
niques with SampleCount [14] on unweighted model counting, and with IJGPSample-
Search [11] on weighted CNF’s encoding probability of evidence queries in Bayesian
networks.

The paper is organized as follows. In Section 2, we review the weighted model
counting problem, and distributional importance sampling in the context of probability
theory. Section 3 presents our algorithm for approximate weighted model counting, fol-
lowed in Section 4 by a discussion of several possible confidence measures. A descrip-
tion of our implementation and the experimental results appears in Section 6. Section 5
compares our techniques to related work. The paper ends with a conclusion and plans
for future work in Section 7.



2 Preliminaries

Weighted Model Counting: We use the following definitions and notation. Given a
Boolean formula φ (which we assume to be in Conjunctive Normal Form) over the
variables V , we denote the set of literals of V by L(V). A truth assignment π for the
variables V is an assignment of TRUE or FALSE to each variable. A model π is a satis-
fying truth assignment for φ if φ is TRUE under the truth assignments made by π; this
is denoted by π |= φ. There will be 2|V| truth assignments, and we denote the set of all
truth assignments for V by M(V), or simply by M when the set V is understood. We
denote the set of models of φ, i.e., {π ∈M|π |= φ}, by sol(φ).

In weighted model counting there is a weight function wt that assigns to each model
π ∈ M a real-valued weight wt(π). The weighted model counting problem is to de-
termine wt(φ) =

∑
π∈sol(φ) wt(π) for any formula φ: the sum of the weights of the

satisfying models of φ. Typically, the weight function wt is encoded by adding to φ a
new set of variables and clauses yielding an extended formula φ+. Various encodings
exist (see, e.g., [4]) but a particularly convenient one for our purposes is the encoding
proposed by Sang et al. [22]. In this encoding each literal ` in the extended formula
φ+ is assigned a weight wt(`) in the range [0–1], and the weight of any model π (of
the extended formula φ+) is simply the product of the weights of the literals it makes
TRUE. The encoding ensures that wt(φ+) = wt(φ) and that the weight function is a
probability distribution. Note that under this encoding of weights an unweighted model
counting problem φ can be easily translated to a weighted problem. No new literals or
clauses need to be introduced. Instead one need only assign weight 0.5 to each of the
literals of the original formula. The model count can then be computed by multiplying
the weighted model count by 2|V|. It is not difficult to further refine the encoding of
Sang et al. to ensure that for every literal, wt(`) + wt(¬`) = 1. We use this addition
refinement in our work.

Our sampling method utilizes partial truth assignments ρ. We denote the set of mod-
els π that extend a partial assignment ρ by ext(ρ), and the set of satisfying models of a
formula φ that extend ρ by sol(φ, ρ).

Distributional Importance Sampling: Suppose that X is a set of random variables. We
use the corresponding lower case x to indicate a corresponding set of values for these
random variables. The various values x of X occur with frequency given by the proba-
bility distribution P(X). We are interested in a function f of X , and particularly in the
expected value of f(X) under the distribution P(X), i.e. EP [f(X)] =

∑
x P(x)f(x).

However, often we cannot calculate this expectation directly, for example, it is gener-
ally too time consuming to calculate f(x) for the exponential number of sets of values
x.

We can, however, often approximate EP [f(X)] using the technique of distributional
importance sampling as follows. First we partition X into two sets of variables, the



prefix variables Xp and the remaining variables Xd. Then

EP [f(X)] =
∑

x

P(x)f(x) =
∑

xp,xd

P(xp, xd)f(xp, xd)

=
∑

xp,xd

P(xp)P(xd|xp)f(xp, xd) =
∑
xp

P(xp)
∑
xd

P(xd|xp)f(xp, xd)

=
∑
xp

P(xp)EP(Xd|xp)[f(xp, Xd)]

= EP [g(Xp)] where g(xp) = EP(Xd|xp)[f(xp, Xd)]

We can now use importance sampling [8] to approximate EP [g(Xp)] by generating
random sample assignments xp to the variables Xp. The idea of importance sampling
is to draw samples from a sampling distribution Q different from the target distribution
P . For example, Q can be chosen in order to avoid generating 0-probability samples,
i.e. xp such that g(xp) = 0. The only restriction on Q is that it must dominate P , i.e. if
P(xp) > 0 then Q(xp) > 0. So

EP [g(Xp)] =
∑
xp

P(xp)g(xp)

=
∑
xp

P(xp)g(xp)
Q(xp)
Q(xp)

since Q(xp) = 0 =⇒ P(xp) = 0

= EQ[
P(Xp)
Q(Xp)

g(Xp)] = EQ[w(Xp)g(Xp)] = EQ[ξ(Xp)],

where w(Xp) = P(Xp)/Q(Xp) is the weighting function that corrects for the fact
that we are sampling from Q not P , and ξ(Xp) = w(Xp)g(Xp) is a random variable
representing the weighted samples. Note that by the above EQ[ξ(Xp)] = EP [f(X)].

Therefore, to approximate EP [f(X)], we can generate M sample settings of Xp,
{xp[1], . . ., xp[M ]}, each randomly generated with probability Q(xp[i]) and calculate
{g(xp[1]), . . ., g(xp[M ]} exactly. Define the unnormalized importance sampling es-
timator to be

ÊQ[w · g] =
M∑

m=1

ξ(xp[m])
/

M

Then ÊQ[w · g] converges to EP [f(X)] as M → ∞ [8]. Its accuracy depends on the
variability of the sample weights which increases as Q differs from P (as well as the
variability of g(Xp)). Therefore it is desirable to choose a sampling distribution Q that
is as close to P as possible.

The key to this approach is that by reducing the original function f by setting
the variables Xp to xp, we can then effectively compute all of the terms involved in
the above equation, whereas with all variables unassigned it is too hard to compute
EP [f(X)] exactly.



3 Approximating Weighted Model Counting

In this section we present our sampling method for approximate weighted model count-
ing. We cast the weighted model counting problem as the calculation of the expected
value of a function over a distribution, and use distributional importance sampling to
produce an estimate.

Let φ be a Boolean formula over variables V with associated weight function wt
such that each literal ` is assigned a weight wt(`) ∈ [0, 1] and each model π has weight
equal to the product of the weights of the literals it makes TRUE (as described above).
Under these conditions wt is a probability distribution P over M(V) (the models of
V). Let f : M(V) → {0, 1} be such that f(π) = 1 if and only if π ∈ sol(φ). Then∑

π∈sol(φ)

wt(π) =
∑

π∈M(V)

wt(π)f(π)

=
∑

π∈M(V)

P(π)f(π)

= EP [f(V)]

Since it is often infeasible to calculate this expectation exactly, we use distributional
importance sampling to estimate it instead, thus obtaining an estimate for the weighted
model count of φ. The distributional importance sampling approach outlined in the
previous section requires us to partition the variables V into two sets, a set of pre-
fix variables Vp and the remaining variables Vd. We then generate M random sam-
ples {ρ[1], . . . , ρ[M ]} from M(Vp) using some distribution Q over these models. The
derivation in Section 2 gives

ξ(ρ[m]) =
P(ρ[m])
Q(ρ[m])

g(ρ[m])

=
P(ρ[m])
Q(ρ[m])

EP(Vd|ρ[m])[f(ρ[m],Vd)]

=
P(ρ[m])
Q(ρ[m])

∑
vd

P(vd|ρ[m])f(ρ[m],vd)

=
P(ρ[m])
Q(ρ[m])

∑
vd

P(ρ[m],vd)
P(ρ[m])

f(ρ[m],vd)

=
1

Q(ρ[m])

∑
vd

P(ρ[m],vd)f(ρ[m],vd)

=
1

Q(ρ[m])

∑
π∈sol(φ,ρ[m])

wt(π)

Thus to compute the estimator ÊQ[w · g] =
∑M

m=1 ξ(ρ[m])
/
M it is necessary to know

for each sample ρ[m], the probability of producing it (i.e. Q(ρ[m])), and the weighted



model count of the solutions to φ extending it (i.e.
∑

π∈sol(φ,ρ[m]) wt(π)). We de-
scribe below how to compute Q(ρ[m]) by describing how we generate random samples;
the term

∑
π∈sol(φ,ρ[m]) wt(π) can be calculated by an exact weighted model counter

given the original formula φ with unit clauses added for each literal in the prefix, i.e.,
φ ∪ {(`)}`∈ρ[m]. The method works when the simplified formula is significantly easier
to count than the original formula. This can occur in practice when, for example, the
setting ρ[m] sufficiently reduces the tree-width of the formula, or sufficiently constrains
the formula so that it becomes easy to solve.

It remains to choose a set Vp from V to be the prefix variables, and to specify a
distribution Q over Vp. These choices are of primary importance to the efficiency and
accuracy of the resulting algorithm. For example, if Vp is a backdoor set [19], then
exactly counting the residual formula φ|ρ[m] will be possible in polynomial time. Al-
though there is currently no practical method of finding backdoors for model counting,
it may be possible to reduce the complexity of the formula by choosing variables that
reduce the tree-width of the formula since exact model counters like Cachet operate
efficiently on formulas of low tree-width [1].

Besides making it easier to compute the exact weighted model count of the residual
formula, an additional consideration is reducing the variance among the samples ρ[m].
Methods such as Iterative Join Graph Propagation [10], Belief Propagation [17], or
solution sampling [14] can be used to estimate the probability a variable is TRUE among
the set of satisfying models of φ, i.e., P(v|φ) = P(v, φ)/P(φ) =∑

π∈sol(φ,v) wt(π)/
∑

π∈sol(φ) wt(π). Variables that have probability around 0.5 in the
solution space may be suitable for inclusion in the prefix, since setting them to either
truth value leaves similarly weighted sub-formulas. This can help to reduce the vari-
ability of the sample values, leading to a more accurate estimation of the true weighted
count [18].

Once the prefix variables are chosen, the sampling distribution Q over Vp is com-
puted with the goal of avoiding the generation of samples that cannot be extended
to positive-weight solutions of φ. Otherwise, the predominance of non-solutions to φ
among the truth assignments M(V) may lead to an under-approximation of the true
weighted solution count, since most of the samples generated will produce g(vp[m]) =
0. Formally, Q is defined by first setting an ordering o over the prefix variables. Then Q
is given in factored form by Q(vo(i)|vo(1), ..., vo(i−1)) for 1 ≤ i ≤ |Vp|. Letting φ+

i be
φ ∪ {o(j)}j=1,...,i−1 then Q(vo(i)|vo(1), ..., vo(i−1)) is equal to

1. wt(vo(i)) if both P(φ+
i ∪ {(vo(i))}) > 0 and P(φ+

i ∪ {(¬vo(i))}) > 0.
2. 1 if P(φ+

i ∪ {(¬vo(i))}) = 0.
3. 0 if P(φ+

i ∪ {(vo(i))}) = 0.

This is equivalent to the backtrack-free distribution PF of [10]. A SAT-solver can be
used to generate the samples, by setting the variables of Vp in the order o, randomly
according to Q(vo(i)|vo(1), ..., vo(i−1)). The SAT-solver is invoked at each step to de-
termine if at least one positive-weight solution π to φ lies under each setting of vo(i).
Note that if the generated solution π is saved at each step, it is only necessary to check
one setting of vo(i), since the other is already known to be extendable to the value in π.

In practice, it can sometimes be hard to perform the SAT tests required to follow
the Q distribution. In our system we utilized Minisat at each stage to perform the SAT



test, however in some cases a local search engine like WalkSat [24] might have better
performance. If the SAT test is too difficult, one could always use wt(vo(i)) as the value
for the Q distribution. This will not affect the correctness of the derivation given above,
but it might lead to generating zero weight samples.

4 Confidence Measures

In the previous section, we presented a method to generate samples, ρ[m], compute a
corresponding set of weighted samples, ξ[m], and use the weighted samples to com-
pute an estimate ÊQ[w · g] that approaches the true weighted model count wt(φ) as the
number of samples goes to infinity. However, this is not the only way weighted samples
computed from our sampling procedure can be used to estimate wt(φ). In this section
we examine three different ways to provide estimates along with confidence measures
that indicate how likely it is that the estimate stands in a particular relationship with the
true value of wt(φ).

Markov Lower Bound: This method has been used extensively in the context of ap-
proximate model counting [15, 14, 17, 10] and probability of evidence in Bayes nets [9].
Markov’s inequality states that for any random variable X , P(|X|/α > E[|X|]) <
1/α, where |X| is the sample mean of X . In our context, ξ(Vp) is a random variable
from which we generate M independent samples {ξ(ρ[1]), . . . , ξ(ρ[M ])}, and which is
always ≥ 0. Let c = min(ξ(ρ[1]), . . . , ξ(ρ[M ])). Therefore by Markov’s inequality

P(c/α > EQ[ξ(Vp)]) <
1

αM
,

since ξ(Vp) yielded M independent samples all greater than or equal to c. As shown
in Section 2, EQ[ξ(Vp)] = EP [f(V)], i.e., the weighted model count of φ. Therefore
we obtain a lower bound on the true weighted model count. For example, to obtain a
lower bound on the true model with 99% probability using M samples, we take c/α
where α = 102/M . The advantage to this approach is that only a few samples need to
be taken in order to calculate a high probability lower bound, for example, with 100
samples 1/α = 1/101/50 = 0.955, so the 99% probability estimate is still 95.5% of the
minimum valued sample. However, if the weighted samples ξ(ρ[m]) vary considerably,
their minimum value may be a very conservative lower bound on the true weighted
count.

Cox’s Confidence Interval for the Log-Normal Mean: This method is based on the
observation that the samples {ξ(ρ[m])}M

m=1 often exhibit characteristics of the log-
normal distribution, mainly, that most values are close together and small relative to
the sample mean, with just a few much larger outliers. If we believe that a random
variable X is likely to be log-normally distributed, then we can use statistical methods
to estimate the mean of X .

Therefore, the first step is to determine if ξ(Vp) is likely to be log-normal, which is
the case exactly when Y (Vp) = log(ξ(Vp)) is normally distributed. To test this hypoth-
esis, we apply the Wilk-Shapiro test for normality to the {Ym = log(ξ(ρ[m]))}M

m=1 [23,



20]. This test outputs the probability that the {Ym} are observed by sampling Y , given
the hypothesis that Y is normally distributed. If it is very unlikely that these values
would be produced by sampling a normal distribution, then the test fails. If the test
for normality is passed, we then calculate a confidence interval for the expectation of
ξ(Vp), which will contain the true value with 99% probability, assuming that ξ(Vp)
is truly log-normal. Several methods of constructing confidence intervals for the mean
of a log-normal random variable have been compared in [27]. We use Cox’s method,
which gives the confidence interval

e
Ȳ + S2

2 −Z1−α/2

q
S2
M + S4

2(M−1) ≤ EQ[ξ(Vp)] ≤ e
Ȳ + S2

2 +Z1−α/2

q
S2
M + S4

2(M−1) ,

where Ȳ = (1/M)
∑M

m=1 Ym is the sample mean of Y = log(ξ(Vp)), S2 =
∑M

m=1(Ym−
Ȳ )2/(M − 1) is the sample variance of Y , and Z1−α/2 is the (1 − α/2)-percentile of
the standard normal distribution. We take α = 0.01 to obtain 99% confidence.

There are two main advantages to this approach. First, since the estimate is based on
all M samples, it may be less conservative than the Markov lower bound, and secondly
it also provides an upper bound on the weighted model count. However, its 99% con-
fidence is undermined by our uncertainty of the distribution of ξ(Vp), since the Wilk-
Shapiro test does not guarantee log-normality. If the {ξ(ρ[m])} do not come from a
log-normal distribution, then the mean of ξ(Vp) could be well outside the calculated
bounds.

Central Limit Theorem: Consider repeating our distributional importance sampling
algorithm many times on the same formula φ. How similar would the sample means
ÊQ[w ·g] =

∑M
m=1 ξ(ρ[m])

/
M be over these many runs? Or more specifically, what is

the distribution of the {ÊQ[w · g]}? The Central Limit Theorem answers this question
in the limit as M goes to infinity.

Theorem 1 (e.g., [7]). The Central Limit Theorem: Given M independent, identically
distributed random variables {Xm}M

m=1 with finite mean µ and finite standard devi-

ation σ, the distribution of Ψ = (
PM

m=1 Xm)−Mµ

σ
√

M
converges to the standard normal

distribution N(0, 1) as M goes to infinity .

In other words, limM→∞ P(Ψ ≤ β) = Φ0,1(β), where Φ0,1 is the cumulative distri-
bution function of the standard normal distribution. We can rearrange this to produce
limM→∞ P(X̂ − µ ≤ βσ/

√
M) = Φ0,1(β), where X̂ is the average of the random

variables {Xm}. Therefore, if our number of samples M is large enough, we obtain an
interval around the sample mean that contains the true mean with probability 1− α:

E[X] = µ ∈ [X̂ ± Φ−1(1− α)σ/
√

M ],

where X has the same distribution as the {Xm}. If the standard deviation σ of X is
also unknown, we can take the sample standard deviation as an estimate, σ ≈ S =√∑M

m=1(Xm − X̂)2/(M − 1), as the sample standard deviation also approaches the
true standard deviation as M goes to infinity.



In our context, it is possible to prove that ξ(Vp) satisfies all of the conditions of the
theorem, and we can use the above equation with the sample mean and sample variances
(in place of X̂ and σ respectively) to bound EQ[ξ(Vp)].

This estimate introduces uncertainty in that we do not know how large M has to
be for the sample mean to become normally distributed, or for the sample variance
to be a reasonable estimate of the true variance. However, the estimated interval may
be tighter than that provided by Cox’s method, and this analysis can still be applied
when the weighted samples {ξ(ρ[m])} are very unlikely to be log-normally distributed
as indicated by the Wilk-Shapiro test. Furthermore, one can perform various tests on
random subsets of the samples to see if the distribution of the sample means of these
subsets is close to normal.

5 Related Work
In this section we discuss the existing work in approximate model counting and constraint-
based methods of approximating probability of evidence in Bayes nets that is closest to
our distributional importance sampling technique.

In [14, 17], a combination of distributional samples and an exact model counter is
used to generate samples for approximate model counting, and the Markov inequality
is applied to produce lower bounds. In these respects the work is similar to ours, but
the distribution from which they generate the samples is rather different. For exam-
ple, every sample has a different set of prefix variables, and no work is done to check
the unsatisfiability of alternative settings of the prefix variables. In fact the distribution
from which the samples are drawn is unknown, so importance sampling is not applica-
ble. The advantage to this approach is that the samples may be faster to generate, and
the sampling method is more flexible since each sample’s prefix can contain different
variables.

Kroc et al. also used the Wilk-Shapiro test for normality, and a method of calculating
a confidence interval for the log-normal mean, similar to our analysis [17]. However,
they apply this analysis to a different random variable (the number of choice-points a
SAT-solver encounters on a solution branch) to obtain an upper bound on the solution
count.

Gogate and Dechter directly apply the importance sampling framework to the model
counting problem in [10], and use a backtrack-free distribution as the sampling distri-
bution. However, they do not use distributional samples, so each sample is one solution
to the boolean formula. When solutions exist under each setting of a variable, the set-
ting is randomly chosen according to an Iterative Join graph propagation estimate of its
marginal probability. Also, they consider using an approximation to the backtrack-free
distribution when the exact calculation requires too much search.

Gogate and Dechter also apply very similar techniques to the problem of approx-
imating the probability of evidence in Bayes nets [11]. In addition to the differences
mentioned in the context of model counting, their approach only encodes the 0-probability
entries of the Bayes net’s conditional probability tables as constraints, rather than our
encoding of the entire problem to weighted CNF. We intend to investigate the advan-
tages of a full CNF encoding further.

In [13, 9], the authors also address the issue of providing a confidence measure for
the estimates generated by importance sampling. The Markov inequality is invoked and



refinements are investigated, both in the context of approximate model counting and
probability of evidence in Bayes nets.

6 Experiments
We implemented the distributional sampling algorithm described in Section 3 and the
three confidence measures from Section 4 using a modified version of Minisat [6] and
Cachet [22]. We first describe the details of the implementation, which we call WAC
(weighted approximate counting), and then present the results of tests on unweighted
and weighted CNF instances, in comparison to two existing techniques.
Implementation: We use Cachet-wmc version 2.0 [26] to perform the exact weighted
counting of the residual formulas. Once the prefix variables and ordering are chosen, we
use a modified version of Minisat to test the satisfiability of each setting of the variables
and set variables that have solutions on both sides randomly according to their weight, in
order to generate samples from the distribution Q. For probability of evidence in Bayes
nets, we use the encoding of [22]. We use two methods of selecting the prefix variables.
For the weighted benchmarks that encode the probability of evidence in Bayes nets, we
randomly choose variables from among the State variables of the encoding, which cor-
respond to the original Bayes net nodes. For the unweighted benchmarks, we found that
a completely random approach produced prefixes that were too long and thus expensive
to sample according to Q, while shorter prefixes made counting the residual formula
with Cachet infeasible. Therefore, we use C2D [5] to generate a decomposition tree,
and randomly choose variables that occur in the largest separator sets in order to exploit
the structure of the instances. In both the weighted and unweighted case, we determine
the best size for the prefix by generating one sample for each possible size, in incre-
ments of 5% of the maximum size. We take the prefix size that minimizes the time for
the Minisat and Cachet steps combined. This search for the best prefix size is limited
by a strict timeout: each possible prefix size was tested for a max of 60s.
Experiments: All experiments were conducted on a cluster of 8 Intel Xeon 2.00GHz
processors with a total of 16GB of RAM. For the unweighted model counting case, we
compare our implementation against the approximate model counter SampleCount [14]
on the benchmarks used in that paper [2]. We omit the results for those cases where
our technique could not generate at least one sample within the 5000s timeout. The re-
maining results are shown in Table 1. The values in the column ‘True Count’ are taken
from [14]. The ‘SampleCount’ columns show the lower bounds calculated by Sample-
Count and its runtimes. The next five columns show our estimates (lower and upper
bounds) as given by the three techniques from Section 4. The estimates using Cox’s
method are omitted for cases where the Wilk-Shapiro test for log-normality failed. The
last three columns of the table show the size of the prefix as a percentage of the total
number of boolean variables, the number of samples M , and the time taken to generate
the samples by our distributional importance sampling method.

Comparing the SampleCount lower bounds with our Markov lower bounds, we see
that on every instance our technique is several orders of magnitude less. This could be
due to the fact that SampleCount employs techniques aimed at reducing the variance of
the samples (and thus tending to generate fewer outlier small minimums) that are cur-
rently not part of our implementation. The Wilk-Shapiro test for normality is passed by
8 out of 17 cases. Four of the upper bounds generated by the Cox technique are less than



SampleCount WAC
True Lower Time Markov Cox CLT |Vp| Time

Instance Count Bound (s) LB LB UB LB UB %|V | M (s)
2bitmax 2.1e29 6.39e27 5 1.41e22 – – 5.60e28 1.53e29 10 1000 11
fclq-18 ≥ 2.4e33 8.07e46 52 6.77e38 – – 0 1.81e53 55 902 210
fclq-20 ≥ 8.6e38 1.07e59 84 1.36e50 1.97e59 1.49e63 0 6.35e59 40 139 5049
w.3.100 1.8e21 1.29e20 1941 1.47e16 1.79e21 5.11e21 1.60e20 5.08e21 47 1000 8
w.3.150 1.4e14 1.47e12 2 3.26e05 1.56e13 1.00e14 0 4.55e13 25 1000 16
w.4.100 ≥ 1.0e14 1.53e15 3909 2.51e07 4.33e16 3.84e17 0 1.16e17 60 1000 12
ls8 5.4e11 7.78e09 4 4.18e06 – – 1.62e11 4.95e11 45 1000 43
ls9 3.8e17 4.98e14 7 1.71e10 4.19e16 1.83e17 0 2.89e17 45 1000 193
ls10 7.6e24 2.50e21 15 5.25e13 – – 2.81e22 2.73e23 50 1000 1093
ls11 5.4e33 4.74e26 25 2.87e17 – – 0 5.81e28 15 1000 7836
ls12 ≥ 4.6e07 5.78e36 54 2.01e27 – – 1.69e31 2.08e32 30 22 5169
lang12 1.0e05 1.20e03 57 6.37e01 – – 1.89e04 7.85e04 15 1000 152
lang15 3.0e07 1.55e04 203 2.54e02 – – 4.73e05 1.44e06 15 1000 995
lang19 2.1e11 1.40e08 640 7.03e03 2.72e06 5.37e08 4.93e05 2.36e07 10 30 209
lang20 2.6e12 3.56e08 909 1.64e04 – – 0 2.58e08 5 2 5019
lang23 3.7e15 5.74e09 7704 6.64e03 2.64e07 1.40e12 0 1.52e09 5 22 422
lang28 ≥ 1.1e04 – – 5.09e05 2.46e11 1.30e13 0 3.33e12 10 152 1594

Table 1. Approximate model counting results on the unweighted benchmarks. ‘–’ in the Sam-
pleCount column indicates that it found no solutions with its cutoff set to 100000. In the Cox
columns, ‘–’ indicates that the Wilk-Shapiro test failed. Bold font indicates the best correct lower
and upper bounds when the exact count is known.

the true count, but on w.3.100 the true count is contained within the estimated interval.
Another advantage of the Cox method is that all but two lower bounds it generated
are correct, and these are significantly higher than SampleCount’s lower bounds. This
suggests that the Cox technique can be best applied to generation of lower bounds. Sim-
ilarly, the upper bounds derived using the Central Limit Theorem analysis are all lower
than the true count except for the w.3.100 instance. The CLT lower bounds are mostly
about an order of magnitude smaller than the Cox lower bounds, unless no lower bound
is given, which occurred in nine of the 17 instances. The runtimes for our method and
SampleCount are comparable, with each technique doing better on different instances.

For the weighted case, we compare our technique against IJGPSampleSearch [11],
on the probability of evidence, P(e), instances from the Uncertainty in Artificial Intelli-
gence 2006 approximate inference competition [3]. The exact probability of evidence,
and other characteristics of these instances including the number of Bayes net nodes,
the size of the largest variable domain and the number of evidence variables, are shown
in Table 2. We encoded the Bayes nets into weighted CNF using the encoding of [22],
and we can see from the table that most problems are infeasible for Cachet within the
5000s timeout. The results of the approximate methods are shown in Table 3. We do not
show the results for instances where our method could not generate at least one sample
within the 5000s timeout. We ran our distributional importance sampling method until
either 1000 samples were generated or the 5000s time limit was reached. The number
of samples is shown in the last column of the table. We then ran IJGPSampleSearch
for the same time as our method had run. This time is shown in the third column of
the table. IJGPSampleSearch produces an estimate without guarantees, and this value
is shown in the ‘IJGPSS P(e)’ column. The next five columns show the lower and upper
bounds generated by the confidence measure techniques in Section 4 given our samples
generated by distributional importance sampling. The estimates using Cox’s method are



Instance True Cachet Instance True Cachet
(N, |D|, |E|) P(e) Time (s) (N, |D|, |E|) P(e) Time (s)
BN 0 (100,2,26) 1.28e−009 36 BN 46 (499,2,10) 1.92e−003 711
BN 1 (100,2,18) 6.65e−007 – BN 69 (777,36,78) 5.28e−054 –
BN 2 (100,2,22) 3.02e−008 – BN 70 (2315,36,159) 2.00e−071 N/A
BN 3 (100,2,36) 2.76e−013 200 BN 71 (1740,36,202) 5.12e−111 N/A
BN 4 (100,2,51) 3.59e−018 38 BN 72 (2155,36,252) 4.21e−150 N/A
BN 5 (125,2,55) 1.84e−019 409 BN 73 (2140,36,216) 2.26e−113 N/A
BN 6 (125,2,71) 4.29e−026 83 BN 74 (749,36,66) 3.75e−045 –
BN 7 (95,2,30) 9.63e−008 1107 BN 75 (1820,36,155) 5.88e−091 N/A
BN 8 (100,2,9) 4.08e−003 – BN 76 (2155,36,169) 4.93e−110 N/A
BN 9 (105,2,13) 2.71e−004 – BN 77 (1020,45,135) 6.88e−079 –
BN 10 (85,2,17) 6.24e−006 362 BN 78 (54,2,10) 1.83e−003 5
BN 11 (105,2,46) 7.96e−018 4062 BN 80 (360,2,50) 1.31e−003 723
BN 12 (90,2,11) 2.46e−004 – BN 82 (360,2,50) 5.57e−007 2254
BN 13 (125,2,9) 4.78e−003 – BN 84 (360,2,50) 1.81e−001 4944
BN 14 (115,2,30) 9.66e−010 – BN 86 (422,2,50) 4.11e−001 –
BN 15 (120,2,19) 1.99e−006 – BN 88 (422,2,50) 7.61e−001 –
BN 16 (2127,6,100) 8.33e−001 – BN 92 (422,2,50) 8.06e−001 –
BN 18 (2127,6,100) 8.21e−001 – BN 94 (53,50,6) 4.49e−011 –
BN 42 (880,2,10) 4.31e−003 277 BN 96 (54,50,5) 2.30e−009 –
BN 43 (880,2,10) 4.90e−003 942 BN 98 (57,50,6) 2.14e−011 –
BN 44 (880,2,10) 2.05e−004 17 BN 100 (58,50,8) 1.89e−014 –
BN 45 (880,2,10) 1.28e−002 1180 BN 102 (76,50,15) 1.96e−026 –

Table 2. The exact probability of evidence for UAI’06 competition Bayes nets. The number of
nodes, maximum domain size of a variable, and number of evidence variables are given by (N,
|D|, |E|) for each instance. Cachet was run with a 5000 second timeout. ‘N/A’ in the Cachet
columns indicates that Cachet crashed.

omitted for cases where the Wilk-Shapiro test failed. The prefix sizes used for the dis-
tributional samples are shown in column ‘|Vp| % of N ’ as a percentage of the number
of Bayes net variables.

The Markov lower bounds generated by our distributional samples are all correct,
except for the BN 80 instance, where the true probability of evidence is 1.31e−3 and the
estimated lower bound is 1.36e−3. The lower bounds produced by Cox’s methods are all
higher than the estimate returned by IJGPSampleSearch, but many are also larger than
the true count so this estimation method may be misleading. However, the lower bounds
produced by the Central Limit Theorem analysis are all correct in the sense that they
are lower than the true probability of evidence. Additionally, the Central Limit Theorem
lower bounds are significantly higher than the Markov inequality ones, indicating that
the CLT analysis might be better for lower bound estimation than the Markov inequality.
In 14 of the 44 cases, the CLT gives no useful lower bound(see e.g. BN 2). In 21 of
the 44 instances, the CLT upper bound is also correct, which shows that this method
of generating an interval estimate can be useful for approximating the probability of
evidence. But in general we see that the estimates most often error on the low side.

7 Conclusion and Future Work

In this paper we have investigated an approximation technique applicable to weighted
model counting. The method exploits SAT based techniques to improve sampling in two
ways. First, it employs a SAT solver to allow samples to be generated from a backtrack
free distribution. This guides the sampling process away from zero weight samples,



WAC
True Time IJGPSS Markov Cox CLT |Vp|

Instance P(e) (s) P(e) LB LB UB LB UB % N M
ALARM

BN 0 1.28e−009 20 8.88e−012 5.40e−0018 6.02e−009 5.38e−008 2.32e−010 1.88e−009 60 1000
BN 1 6.65e−007 29 4.21e−009 5.85e−0015 – – 1.39e−007 4.22e−007 65 1000
BN 2 3.02e−008 41 3.74e−011 2.43e−0018 – – 0 4.04e−008 60 1000
BN 3 2.76e−013 27 5.80e−014 5.85e−0020 1.15e−013 4.38e−013 0 6.71e−013 45 1000
BN 4 3.59e−018 31 8.44e−019 1.49e−0023 3.12e−018 9.04e−018 1.62e−018 5.53e−018 50 1000
BN 5 1.84e−019 43 7.83e−021 1.09e−0029 – – 7.94e−021 3.32e−020 65 1000
BN 6 4.29e−026 62 3.70e−027 2.99e−0031 3.44e−026 9.01e−026 9.35e−027 7.29e−026 50 1000
BN 7 9.63e−008 36 2.26e−011 1.07e−0015 – – 2.81e−008 1.22e−007 50 1000
BN 8 4.08e−003 30 6.53e−006 6.20e−0016 2.01e−002 5.48e−001 3.65e−005 1.21e−003 75 1000
BN 9 2.71e−004 33 2.49e−006 1.99e−0015 5.49e−004 6.52e−003 0 2.18e−003 70 1000
BN 10 6.24e−006 24 2.71e−006 1.53e−0015 – – 1.79e−006 7.66e−006 55 1000
BN 11 7.96e−018 44 3.60e−021 2.92e−0026 – – 2.39e−018 7.89e−018 70 1000
BN 12 2.46e−004 46 6.38e−007 1.51e−0014 4.75e−004 5.75e−003 0 3.28e−004 70 1000
BN 13 4.78e−003 68 2.55e−007 1.24e−0017 – – 9.83e−005 5.77e−004 85 1000
BN 14 9.66e−010 37 2.41e−012 6.27e−0018 1.53e−009 9.90e−009 0 3.52e−009 60 1000
BN 15 1.99e−006 62 2.85e−011 9.04e−0018 7.22e−006 1.42e−004 0 4.11e−006 75 1000
BN 16 8.33e−001 3045 8.85e−070 1.95e−2049 – – 9.04e−1775 2.27e−1774 65 380
BN 18 8.21e−001 2645 6.61e−065 1.73e−1906 – – 1.06e−1704 1 60 130

ISCAS85
BN 42 4.31e−003 89 3.82e−007 5.56e−0009 – – 2.19e−003 6.68e−003 5 1000
BN 43 4.90e−003 50 4.00e−004 2.22e−0007 – – 2.82e−003 7.66e−003 5 1000
BN 44 2.05e−004 47 4.12e−005 1.48e−0008 – – 1.03e−004 2.08e−004 5 1000
BN 45 1.28e−002 52 7.26e−004 1.39e−0009 – – 2.17e−003 9.93e−003 5 1000
BN 46 1.92e−003 34 2.49e−004 2.43e−0004 – – 1.68e−003 1.99e−003 10 1000

LINKAGE
BN 69 5.28e−054 1997 1.87e−089 1.58e−0121 5.60e−054 2.37e−043 0 1.44e−078 55 1000
BN 70 2.00e−071 5340 1.03e−118 1.02e−0243 4.29e−052 4.31e−011 8.86e−172 8.86e−172 45 1000
BN 71 5.12e−111 4213 1.81e−210 6.09e−0266 3.91e−112 4.32e−083 8.92e−195 8.92e−195 85 1000
BN 72 4.21e−150 5000 7.93e−182 2.52e−0291 – – 5.29e−246 3.14e−245 35 77
BN 73 2.26e−113 5279 8.65e−145 3.56e−0296 8.67e−082 2.24e−036 4.94e−219 1.24e−218 70 1000
BN 74 3.75e−045 1486 5.58e−145 4.98e−0185 6.89e−011 1 0 1.05e−110 70 1000
BN 75 5.88e−091 3516 1.37e−179 2.89e−0238 8.54e−093 2.99e−063 3.18e−172 3.18e−172 55 1000
BN 76 4.93e−110 4994 2.71e−106 8.86e−0321 6.65e−117 2.83e−056 1.62e−247 4.13e−247 65 550
BN 77 6.88e−079 3668 9.31e−138 6.16e−0177 1.15e−067 1.28e−046 0 9.15e−127 60 1000

D-QMR
BN 78 1.83e−003 28 2.02e−004 8.19e−0006 1.91e−003 2.80e−003 1.76e−003 2.37e−003 70 1000
BN 80 1.31e−003 680 1.36e−003 8.80e−0107 – – 0 2.34e−047 45 1000
BN 82 5.57e−007 1062 4.14e−007 3.58e−0161 – – 5.86e−093 2.02e−092 70 1000
BN 84 1.81e−001 911 2.30e−003 7.86e−0101 – – 0 4.41e−043 45 1000
BN 86 4.11e−001 4962 5.92e−010 4.55e−0236 – – 0 2.33e−128 40 65
BN 88 7.61e−001 5048 1.25e−003 6.23e−0259 – – 0 3.94e−150 45 110
BN 92 8.06e−001 5230 9.55e−008 1.25e−0234 – – 0 3.20e−155 45 85

RANDOM
BN 94 4.49e−011 595 1.02e−013 2.22e−0020 – – 1.57e−011 5.53e−011 85 1000
BN 96 2.30e−009 371 3.86e−012 4.73e−0023 – – 8.61e−011 7.94e−009 90 1000
BN 98 2.14e−011 577 3.13e−014 5.06e−0019 – – 7.40e−012 4.61e−011 85 1000
BN 100 1.89e−014 759 1.36e−017 2.22e−0020 – – 6.59e−015 2.40e−014 70 1000
BN 102 1.96e−026 4975 2.59e−030 9.34e−0038 1.98e−025 3.31e−024 4.09e−027 5.04e−026 70 830

Table 3. Probability of evidence estimates for the UAI’06 competition Bayes nets. All methods
were run for the same amount of time. ‘–’ in the Cox columns indicates that the Wilk-Shapiro
test for normality failed. The best correct lower and upper bounds are shown in bold.



which would otherwise increase the variance of the sample data. Second, it employs
#SAT solvers to “complete” the samples. That is, our technique samples only a subset
of the variables, and uses a #SAT solver to sum out the remaining variables. This tech-
nique, known as distributional sampling, generally requires a technique for summing
out the unset variables in the sample. Our approach shows that a #SAT solver can be
an effective tool for this purpose. In addition to our sampling technique we have pro-
posed the use of the Central Limit Theorem for providing confidence intervals on the
estimates. These intervals proved to be quite useful in our experiments with weighted
model counting.

Although the unweighted model counting case is simply a special case of the weighted
case, out technique currently seems to be more applicable to weighted model counting,
exhibiting promising performance on the important problem of computing the proba-
bility of evidence (from this conditional probabilities can be computed).

Much work remains to improve the approach. First our current technique for choos-
ing the prefix variables is quite primitive, techniques that ensure that the variables are
“balanced,” like those employed in SampleCount [14] should help our performance
on the unweighted case and perhaps also on the weighted case. In some problem in-
stances it is hard to test the backtrack free distribution, and various possibilities exist
for addressing this problem, including using local search to test satisfiability rather than
Minisat, and more efficient reuse of previous SAT tests, e.g., [10]. In addition, work can
be done on improving the confidence intervals. In particular, a deeper understanding of
when these different error estimates are applicable is an important open problem that
needs to be addressed.
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