
Solving MAXSAT by Solving a Sequence of

Simpler SAT Instances

Jessica Davies and Fahiem Bacchus

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, M5S 3H5
{jdavies,fbacchus}@cs.toronto.edu

Abstract. Maxsat is an optimization version of Satisfiability aimed at
finding a truth assignment that maximizes the satisfaction of the theory.
The technique of solving a sequence of SAT decision problems has been
quite successful for solving larger, more industrially focused Maxsat in-
stances, particularly when only a small number of clauses need to be
falsified. The SAT decision problems, however, become more and more
complicated as the minimal number of clauses that must be falsified in-
creases. This can significantly degrade the performance of the approach.
This technique also has more difficulty with the important generalization
where each clause is given a weight: the weights generate SAT decision
problems that are harder for SAT solvers to solve. In this paper we intro-
duce a new Maxsat algorithm that avoids these problems. Our algorithm
also solves a sequence of SAT instances. However, these SAT instances
are always simplifications of the initial Maxsat formula, and thus are
relatively easy for modern SAT solvers. This is accomplished by moving
all of the arithmetic reasoning into a separate hitting set problem which
can then be solved with techniques better suited to numeric reasoning,
e.g., techniques from mathematical programming. As a result the perfor-
mance of our algorithm is unaffected by the addition of clause weights.
Our algorithm can, however, require solving more SAT instances than
previous approaches. Nevertheless, the approach is simpler than previous
methods and displays superior performance on some benchmarks.

1 Introduction

Maxsat is an optimization version of Satisfiability (SAT) that is defined for
formulas expressed in Conjunctive Normal Form (CNF). Whereas SAT tries to
determine whether or not a satisfying truth assignment exists, Maxsat tries
to find a truth assignment that maximizes the satisfaction of the formula. In
particular, if each clause of the CNF formula is given a weight, Maxsat tries to
find a truth assignment that maximizes the sum of the weights of the clauses it
satisfies (or equivalently minimizes the weight of the clauses it falsifies).

Various special cases can be defined. With only unit weights, Maxsat be-
comes the problem of maximizing the number of satisfied clauses. If some of the
clauses must be satisfied (hard clauses) they can be given infinite weight, while
the other clauses are given unit weight indicating that they can be falsified if

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 225–239, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

226 J. Davies and F. Bacchus

necessary (soft clauses). In this case we have a Partial Maxsat problem. If
we allow non-unit weights, but no hard clauses, we have a Weighted Maxsat
problem. Finally, with non-unit weights and hard clauses we have a Weighted
Partial Maxsat problem.

In this paper we provide a new approach for solving Maxsat problems that
can be applied to any of these special cases. Our algorithm uses the approach
of solving Maxsat by solving a sequence of SAT tests. Recent international
Maxsat Evaluations have provided empirical evidence that the sequence of SAT
tests approach tends to be more effective on the larger more industrially focused
problems used in the evaluation. In contrast, the competitive approach of using
branch and bound search seems to traverse its search space too slowly to tackle
these larger problems effectively.

Previous works employing a sequence of SAT tests have used various
techniques to convert the optimization problem into a sequence of decision prob-
lems, each of which is then encoded as a SAT problem and solved with a modern
SAT solver. Letting W be the sum of the weights of the soft clauses, the typ-
ical decision problem used is “are W − wt soft clauses along with all of the
hard clauses satisfiable.” Typically wt starts off at zero and is increased to the
next feasible value every time the answer to the decision problem is no. The
solution to the Maxsat problem is the smallest value of wt for which the de-
cision problem becomes satisfiable. This approach is very successful when only
a few decision problems must be posed before a solution is found. However,
each SAT decision problem is harder to solve than the previous, and perfor-
mance can be significantly degraded as more and more decision problems must
be solved.

In our approach, on the other hand, we utilize a sequence of SAT problems
that become progressively easier. In particular, the SAT solver is only ever asked
to solve problems that are composed of a subset of the clauses of the original
Maxsat problem. Our approach moves the arithmetic optimization component
of the Maxsat problem off into a different solver that is more suitable for such
reasoning. Modern SAT solvers are based on resolution, and hence can have
difficulties with inferences that require counting and other arithmetic reasoning.
By separating the two components of satisfiability and optimization present in
Maxsat problems our approach can more effectively utilize the strengths of
a SAT solver as well as exploiting the strengths of other solvers, like integer
programming solvers, that are known to provide powerful arithmetic reasoning.

In the rest of the paper we first present some necessary background. After this
we prove a simple theorem from which we obtain our new algorithm, prove its
correctness, and then provide some further insights which allow us to improve
our algorithm. The algorithm we present is very simple, but there are some issues
that arise when implementing it. We discuss some of these next, followed by a
discussion of the most closely related work. We then present various empirical
results demonstrating that our approach is viable, and finally we close with some
conclusions.

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 227

2 Background

A propositional formula in CNF is a conjunction of clauses, each of which is
a disjunction of literals, each of which is a propositional variable or the nega-
tion of a propositional variable. Given a CNF formula a truth assignment is an
assignment of true or false to all of the propositional variables in the formula.

A Maxsat problem is specified by a CNF formula F along with a real valued
weight for every clause in the formula (previous works have often required the
weights to be integer but we do not require such restrictions in our approach).
Let wt(c) denote the weight of clause c. We require that wt(c) > 0 for every
clause. (Clauses with weight zero can be removed from F without impact).

Some clauses might be hard clauses, indicated by them having infinite weight.
Clauses with finite weight are called soft clauses. We use hard(F) to indicate the
hard clauses of F and soft(F) the soft clauses. Note that F = hard(F)∪soft(F).

We define the function cost as follows: (a) if H is a set of clauses then cost(H)
is the sum of the clause weights in H (cost(H) =

∑
c∈H wt(c)); and (b) if π is a

truth assignment to the variables in F then cost(π) is the sum of the weights of
the clauses falsified by π (

∑
{c | π �|=c} wt(c)).

A solution to F is a truth assignment π to the variables of F with minimum
cost. (Equivalently π maximizes the sum of the weights of the satisfied clauses).
We let mincost(F) denote the cost of a solution to F .

For simplicity, in our formal results we will assume that hard(F) is satisfiable
and that F is unsatisfiable. It is straightforward to extend our formal results to
deal with these corner cases, but doing so is a distraction from the core ideas.
Furthermore, from a practical point of view both conditions can be easily tested
with a SAT solver and if either is violated we immediately know mincost(F): if
hard(F) is unsatisfiable then mincost(F) = ∞ and any truth assignment is a
“solution”; and if F is satisfiable then mincost(F) = 0 and the SAT solution is
also an Maxsat solution.

A core κ for a Maxsat formula F is a subset of soft(F) such that κ∪hard(F)
is unsatisfiable. That is, all truth assignments falsify at least one clause of κ ∪
hard(F). Cores can be fairly easily extracted from modern SAT solvers.

Given a set of cores K a hitting set, hs , of K is a set of soft clauses such
that for all κ ∈ K we have that hs ∩ κ �= ∅. Since every core κ is a set of soft
clauses it is not restrictive to also force hs to be a set of soft clauses. We say
that hs is a minimum cost hitting set of K if it is (a) a hitting set and (b)
cost(hs) ≤ cost(H) for every other hitting set H of K.

There have been two main approaches to building Maxsat solvers. The first
approach is to utilize the logical structure of the CNF input to enable the com-
putation of lower-bounds during a branch and bound search, e.g., [7,11]. The
second approach is to reduce the problem to solving a sequence of SAT prob-
lems. In previous work (see Section 4) these SAT problems typically encode the
decision problem: “is mincost(F) = k.” Starting with k = 0, when the answer
from the SAT solver is no (i.e., the formula is unsatisfiable), the next lowest pos-
sible value k+ for k is computed from the core returned by the SAT solver. The
next SAT problem then encodes the decision problem “is mincost(F) = k+”.

228 J. Davies and F. Bacchus

Recent Maxsat Evaluations [3] have indicated that these two approaches have
different coverage. That is, on some problems the branch and bound approach is
significantly better, while on other problems the sequence of SAT problems ap-
proach is significantly better. In previous work we had investigated using clause
learning to improve the lower bounds computed by a branch and bound solver
[5]. In working to improve the performance of this lower bounding technique,
related ideas were uncovered that lead to a new approach to solving Maxsat
using a sequence of SAT problems. Since this approach was likely to solve a dif-
ferent set of problems than our branch and bound solver we implemented these
ideas in a new solver. This paper reports on our new approach.

3 Solving Maxsat with Simpler SAT Instances

The approach we present in this paper involves solving Maxsat by solving a
sequence of SAT problems. In contrast to prior approaches, however, the SAT
problems we need to solve become simpler rather than more complex. In partic-
ular, the various encodings of the decision problem mincost(F) = k that have
been used in previous work involve an increasing amount of arithmetic reasoning
or involve increasing the size of the theory. For example, in the recent approach
of [2] the decision problems contain an increasing number of pseudo-boolean
constraints (linear constraints over boolean variables). Counting and arithmetic
reasoning is often difficult for a SAT solver since such solvers are based on reso-
lution. There are a number of known examples, e.g., the Pigeon Hole Principle,
where resolution requires an exponential number of steps to reach a conclusion
that can be quickly deduced by, e.g., reasoning directly with linear equations.

In our approach we split the problem into two parts. In one part we compute
minimum cost hitting sets, while in the other part we test the satisfiability of
subsets of the original problem. In this way we move the arithmetic reasoning
into the hitting set solver, allowing the SAT solver to deal with only the logi-
cal/satisfiability structure of the original problem. Furthermore, the sequence of
satisfiability problems that have to be solved can only become easier. However,
the hitting set computations can and do become harder. Our thesis is that by
splitting the problem in this manner we can more effectively exploit both the
strengths of modern SAT solvers as well the strengths of solvers that are effec-
tive at performing the arithmetic reasoning required, e.g., integer programming
solvers like CPLEX. Our empirical results provide some evidence in support of
our thesis, but also indicate that there is a rich design space in exactly how best
to perform this split between satisfiability testing and hitting set computations
that remains to be more fully explored.

Our approach is based on a simple theorem.

Theorem 1. If K is a set of cores for the Maxsat problem F , hs is a mini-
mum cost hitting set of K, and π is a truth assignment satisfying F − hs then
mincost(F) = cost(π) = cost(hs).

Proof: mincost(F) ≤ cost(π) as mincost(F) is the minimum over all possible
truth assignments. cost(π) ≤ cost(hs) as the clauses π falsifies are a subset of hs

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 229

Algorithm 1. Algorithm 1 for Solving Maxsat

Maxsat-solver-1
(F)

1

K = ∅2

while true do3

hs = FindMinCostHittingSet(K)4

(sat?,κ) = SatSolver(F − hs)5

; // If SAT, κ contains the satisfying truth assignment.
; // If UNSAT, κ contains an UNSAT core.
if sat? then6

break ; // Exit While Loop7

// Add new core to set of cores
K = K ∪ {κ}8

return
(
κ, cost(κ)

)
9

(π satisfies all clauses in F−hs). On the other hand mincost(F) ≥ cost(hs). Any
truth assignment must falsify at least one clause from every core κ ∈ K. Thus
for any truth assignment τ , cost(τ) must include at least the cost of a hitting set
of K. This cannot be any less than cost(hs) which has minimum cost.

Theorem 1 immediately yields the simple algorithm for solving Maxsat shown
as Algorithm 1. The algorithm starts off with an empty set of cores K. At each
stage it computes a minimum cost hitting set hs via the function “FindMin-
CostHittingSet” and calls a SAT solver to determine if F − hs is satisfiable. If
it is the SAT solver returns (true, κ) with κ set to a satisfying assignment for
F−hs , otherwise the SAT solver returns (false, κ) with κ set to a core of F−hs .
New cores are added to K, while satisfying assignments cause the algorithm to
terminate.

Observation 1. Algorithm 1 correctly returns a solution to the inputted
Maxsat problem F . That is, it returns a truth assignment κ for F that achieves
mincost(F).

Proof: First we observe that Algorithm 1 only returns when it breaks out of
the while loop, and this occurs only when the current F −hs is satisfiable. Since
in this case hs is a minimum cost hitting set of a set of cores and κ is a truth
assignment satisfying F−hs, we have by Theorem 1 that cost(κ) = mincost(F).
This shows that the algorithm is sound.

Second, to show that the algorithm is complete we simply need to observe that
it must terminate. Notice, that since F is a finite set of clauses, the set of cores
of F must also be finite. Each iteration of the while loop computes a new core
of F and adds it to K. This core cannot be the same as any previous core, hence
the while loop must eventually terminate. Consider the hitting set hs computed
at line 4 prior to the computation of κ at line 5. κ ∩ hs = ∅ since κ ⊆ (F − hs).
However, for any previously computed core κ− we have that κ− ∩ hs �= ∅ since
hs is a hitting set of all previous cores. Hence for all previous cores κ− we have
that κ �= κ−.

230 J. Davies and F. Bacchus

3.1 Realizable Hitting Sets

In this section we show that the hitting sets considered by Algorithm 1 can be
further constrained. This can benefit both the time spent calculating the hitting
sets, and the overall number of iterations or SAT solving episodes.

Definition 1. A hitting set H (i.e., a set of clauses) is realizable in a Maxsat
problem F if there exists a truth assignment τ such that (a) for each clause
c ∈ H, τ �|= c, and (b) τ |= hard(F). Otherwise H is said to be unrealizable.

An example of an unrealizable hitting set is one that contains clauses c1, c2 with
a variable x ∈ c1 and ¬x ∈ c2, since all truth assignments satisfy either c1 or c2.
Next, we show that Algorithm 1 does not gain anything by encountering such
unrealizable minimum hitting sets.

Corollary 1 (Of Theorem 1). Let K be a set of cores of F and hs be a
minimum cost hitting set of K. If hs is unrealizable, then F −hs is unsatisfiable.

Proof: For contradiction, suppose π |= F − hs . Then π |= hard(F) and
since hs is unrealizable, π satisfies some clause in hs . So Fπ the set of clauses
falsified by π (a) is a strict subset of hs and (b) is a hitting set of K. But then
cost(Fπ) < cost(hs) which contradicts the fact that hs is a minimum cost hitting
set of K.

Corollary 1 means that any time line 5 of Algorithm 1 returns an unrealizable
hs , at least one more iteration of the while loop will be required. Yet in fact,
there might be enough information already in the set of cores K to terminate
right away. To see this, remember the aim in solving Maxsat is to find a truth
assignment of minimum cost. Let π be any truth assignment and let Fπ =
{c|π �|= c} be the set of clauses falsified by π. Given a set of cores K we know
that π must falsify at least one clause from each core in K. This means that
we can partition Fπ into two sets, hsπ a hitting set of K, and Fπ − hsπ the
remaining falsified clauses. This also partitions the cost of π into two components,
cost(π) = cost(hsπ) + cost(Fπ − hsπ).

Theorem 1 says that if cost(hsπ) is minimum (less than or equal to the cost of
any hitting set of K), and cost(Fπ −hsπ) is zero (i.e., Fπ−hsπ = ∅), then π must
be a minimum cost truth assignment as no other truth assignment can achieve a
lower cost. Looking more closely, however, we can see that the first condition is
more stringent than necessary. We do not need hsπ to be a minimum cost hitting
set of K, we only need that cost(hsπ) ≤ cost(hsτ) for all other truth assignments
τ . We will then have that cost(π) = cost(hsπ)+0 ≤ cost(hsτ)+cost(Fτ −hsτ) =
cost(τ) for all other truth assignments τ . That is, π will be a solution. Going
even further we see that we do not need to consider all truth assignments τ .
If τ falsifies a hard clause of F it will immediately have cost ∞, and thus will
necessarily be at least as expensive as π.

Realizable hitting sets are relevant because the minimum cost hitting set of
K might not be realizable. In particular, given the current set of cores K in
Algorithm 1, there might be some truth assignment π which satisfies F − hsπ

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 231

Algorithm 2. Algorithm 2 for Solving Maxsat

Maxsat-solver-2
(F , COND

)
1

; // COND must be satisfied by all hitting sets realizable in F .
Identical to Algorithm 1 except we replace
hs = FindMinCostHittingSet(K)
by
hs = FindMinCostHittingSetSatisfyingCondition(K,COND)

(i.e., Fπ − hsπ = ∅) and for which cost(hsπ) ≤ cost(hsτ) for any other truth
assignment τ where τ |= hard(F). This means that (a) hsπ is a minimum cost
realizable hitting set of K, (b) if we pass F −hsπ to the SAT solver it will return
π (or some equally good truth assignment) as a satisfying assignment, and (c)
we have solved F .

However, hsπ might not be a minimum cost hitting set of K. There might be
another hitting set hs that has minimum cost that is lower than the cost of hsπ,
but is unrealizable. In Algorithm 1, hs would be selected and the SAT solver
invoked with F − hs . This will necessarily cause another core to be returned,
and Algorithm 1 will then have to go through another iteration.

Corollary 1 indicates that we can improve on Theorem 1 and Algorithm 1
by computing minimum cost realizable hitting sets rather than unconstrained
minimum cost hitting sets. Realizability requires a SAT test so it can be ex-
pensive. Hence, we improve Theorem 1 and Algorithm 1 in a more general way.
In particular, we can search for a minimum cost hitting set that satisfies any
condition that is satisfied by all realizable hitting sets. For example, realizability
is one such condition. A simpler condition that is easy to test is to ensure that
no clauses in the hitting set contain conflicting literals: this condition is also
satisfied by all realizable hitting sets.

Theorem 2. If K is a set of cores for the Maxsat problem F , COND is a
condition satisfied by all hitting sets that are realizable in F , hs is a hitting
set of K that satisfies COND and has minimum cost among all hitting sets
of K satisfying COND, and π is a truth assignment satisfying F − hs then
mincost(F) = cost(π) = cost(hs).

Proof: mincost(F) ≤ cost(π) ≤ cost(hs) by exactly the same argument as for
Theorem 1. Furthermore mincost(F) ≥ cost(hs). Any truth assignment that
satisfies hard(F) must falsify a hitting set of K that satisfies COND . Thus for
any truth assignment τ , cost(τ) must include at least the cost of a hitting set
of K that is at least as great as cost(hs): cost(hs) is minimum among all hitting
sets of K satisfying COND .

The improved version of Algorithm 1 is shown as Algorithm 2. Algorithm 2 takes
as input a condition satisfied by all hitting sets that are realizable in F . It now
searches for a minimum cost hitting set that satisfies this condition. This can
potentially cut down the number of iterations of the while loop, reducing the
number of cores that have to be generated.

232 J. Davies and F. Bacchus

Observation 2. Algorithm 2 correctly returns a solution to the inputted
Maxsat problem F .

Proof: The proof that Algorithm 1 is correct applies using Theorem 2 in place
of Theorem 1.

Finally, we close this section with a brief comment about complexity. The worst
case complexity of solving Maxsat with a branch and bound solver is 2O(n)

where n is the number of variables. However, the worst case complexity of our
algorithm is worse. There are 2O(m) possible cores where m is the number of
clauses. This provides a worst case bound on the number of iterations executed
in the algorithm. Each iteration requires solving a SAT problem of 2O(n) and
a hitting set problem of 2O(m) (one has to examine sets of clauses to find a
hitting set). This leaves us with 2O(m) × 2O(m) = 2O(m) as the worst case com-
plexity. Typically the number of clauses m is much larger than the number of
variables n.

However, from a practical point of view we only expect our algorithm to work
well when the number of cores it has to compute is fairly small. The empirical
question is whether or not this tends to occur on problems that arise in various
applications.

3.2 Implementation Techniques

There are two issues to be addressed in implementing our algorithm. First is the
use of a SAT solver to compute new cores, and second is the computation of
minimum cost hitting sets.

Extracting Cores. We use MiniSat-2.0 to compute cores and satisfying assign-
ments. There is a simple trick that can be employed in MiniSat to make extract-
ing cores easy. Following previous work we add a unique “relaxation variable”
to each clause of soft(F). So soft clause ci becomes ci ∪ {bi} where bi appears
nowhere else in the new theory. The hard clauses of F are unchanged. If bi is set
to true, ci becomes true and imposes no further constraints on the theory. If bi is
set to false, ci is returned to its original state. To solve F − hs we set the b vari-
ables associated with the clauses in hs to true, and all other b variables to false.
These b variable assignments are added as “assumptions” in MiniSat. MiniSat
then solves the remaining problem F − hs and if this is UNSAT it computes a
conflict clause over the assumptions—the set of assumptions that lead to failure.
The true b variables do not impose any constraints so they cannot appear in the
conflict clause. Instead, the conflict claused contains the set of false b variables
that caused UNSAT. The core is simply the set of clauses associated with the b
variables of the computed conflict.

An important factor in the performance of our algorithm is the diversity of the
cores returned by the SAT solver. In the first phase, we compute as many disjoint
cores as possible. The hitting set problems for disjoint cores are easy, and the cost
of the minimum cost hitting set increases at each iteration. Typically, however,
it is necessary to continue beyond this disjoint phase. Nevertheless we want the

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 233

SAT solver to return a core that is as different as possible from the previous cores.
To encourage this to happen we employ the following two techniques in the SAT
solver. (1) Although it can be shown to be sound to retain learnt clauses and
reuse them in subsequent SAT solving calls, we found that doing so reduces the
diversity of the returned core. Hence we removed all previously learnt clauses at
the start of each SAT call. (2) We inverted the VSIDS scores that were computed
during the previous SAT call. The VSIDS score makes the SAT solver branch
on variables appearing most frequently in the learnt clauses of the previous SAT
call. By inverting these scores the SAT solver tends to explore a different part
of the space and tends to find a more diverse new core. Finally, it is also useful
to obtain cores that are as small as possible (such cores are more constraining
so they make the hitting set problem easier to solve). So after computing a core
κ we feed it back into the SAT solver to see if a subset of κ can be detected to
be UNSAT. We continue to do this until κ cannot be minimized any further.

Computing a minimal cost hitting set. We employed two different techniques
for computing minimal cost hitting sets. The first technique is to encode the
problem as an integer linear program (ILP) and invoke an ILP solver to solve it.
In our case we utilized the CPLEX solver. The minimal cost hitting set problem
is the same as the minimum cost set cover problem and standard ILP encodings
exist, e.g., [13]. We used the encoding previously given in [5]. Briefly, for each
clause ci appearing in a core there is a 0/1 variable xi; for each core there is the
constraint that the sum over the xi variables of the clauses it contains is greater
or equal to 1; and the objective is to minimize the sum of wt(ci) × xi. Using
CPLEX worked well, but it is not clear how to solve for minimal cost realizable
hitting sets—to do so would seem to require adding the satisfiability constraints
of the hard clauses to the ILP model, and it is well known that ILP solvers are
not very effective at dealing with these highly disjunctive constraints.

The second approach we used was our own branch and bound hitting set
solver. We utilized a dancing links representation of the hitting set problem [9],
and at each node branched on whether or not a clause was to be included or
excluded from the hitting set. The main advantage of the dancing links repre-
sentation is that it allowed us to simplify the representation after each decision.
We performed two types of simplification. First, we simplified the representa-
tion to account for the decision made (e.g., if we decide to include a clause ci

we could remove all cores that ci hit from the remaining hitting set problem).
These simplifications are well described by Knuth in [9]. Second, we use the
simplifications provided in [14] to further reduce the remaining problem. These
latter simplifications involve two rules (a) if a core κ1 has now become a subset
of another core κ2 we know that in hitting κ1 we must also hit κ2 so κ2 can be
removed; and (b) if a clause c1 now appears in a subset of the cores that another
clause c2 appears in and wt(c1) ≥ wt(c2) we know that we can replace c1 with
c2 in any hitting set so c1 can be removed. These simplifications take time but
overall in our implementation we found that they yielded a net improvement in
solving times.

234 J. Davies and F. Bacchus

We additionally experimented with various lower bounds in the hitting set
solver. In particular, we tried both of the simple to compute lower bounds given
in [5]. Eventually, however, we found that a linear programming relaxation, al-
though more expensive, yielded sufficiently superior bounds so as to improve the
overall solving times. This LP relaxation was simply the current reduced hitting
set problem encoded using the ILP encoding specified above with the integrality
constraints removed. We used CPLEX to solve the LP.

We found that our branch and bound solver did not solve the hitting set
problem as efficiently as CPLEX with the ILP encoding. However, with it we were
able to implement the realizability condition forcing the solver to find a minimum
cost realizable hitting set. This was accomplished by making additional calls to
a SAT solver. At each node of the search tree, we performed the following test.
If H was the set of clauses currently selected by the branch and bound solver to
be in the hitting set, then we applied unit propagation to the theory containing
all of the hard clauses of F along with the negation of every literal in every
clause in H . If unit propagation revealed an inconsistency, we backtracked from
the node since it could not lead to a realizable hitting set. Whenever branch and
bound found a better-cost hitting set, we used the complete SAT test to check
if it was realizable. Enforcing realizability also forced us to turn off the second
simplification rule given above: removing a clause ci because it is subsumed by
another clause cj is no longer valid as ci rather than cj might be needed for the
hitting set to be realizable.

With the addition of realizability we found that our branch and bound hitting
set solver was much more competitive with CPLEX on some problems. There are
still a number of other improvements to our branch and bound that remain to be
tested, including OR-Decomposition [8], caching, and alternate lower bounding
techniques like Lagrangian relaxation [15].

4 Related Work

The main prior works utilizing a sequence of SAT tests to solve Maxsat began
with the work of Fu and Malik [6], and include SAT4J [4], WPM1, PM2, and
WPM2 [1,2], and Msuncore [12]. As mentioned above there has also been work
on branch and bound based solvers but such solvers are not directly comparable
with the sequence of SAT solvers: each type of solver is best suited for different
types of problems.

All of the sequence of SAT solvers utilize relaxation variables added to the
soft clauses of F as described in Section 3.2, along with arithmetic constraints
on which of these relaxation variables can true. Let soft(F) = {c1, . . . , ck} and
the corresponding relaxation variables be {b1, . . . , bk}. SAT4J adds to F the
constraint

∑i=k
i=1 wt(ci)bi < UB encoded in CNF where UB is the current upper

bound on mincost(F). If this theory (with the numeric constraint encoded into
SAT) is satisfiable UB is decreased and satisfiability retested until the theory
transitions from SAT to UNSAT.

The other algorithms, like our approach, work upwards from UNSAT to SAT.
And like SAT4J they add arithmetic constraints on the b variables as more

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 235

cores are discovered. PM2 works only with unweighted clauses. At each iteration
that produces a core, PM2 increments the upper bound on the total number
of b variables that can be true. PM2 also uses the cores to derive lower bounds
on different subsets of b variables. In the case of WPM2, each SAT test that
returns UNSAT yields a core. This core is widened to include all previous cores
it intersected with, and then an arithmetic constraint is added saying that the
sum of the b variables in the widened core must have an increased weight of
true b variables. Simultaneously another arithmetic constraint is added placing
an upper bound on the weight of true b variables in the widened core. These
constraints are formulated in such a manner that when the theory transitions
from UNSAT to SAT, mincost(F) has been computed.

The arithmetic constraints used in WPM1 and Msuncore are simpler. How-
ever, the theory is becoming more complex as the approach involves duplicating
clauses. In particular, all of the clauses of the discovered core are duplicated. One
copy gets a new b variable and a clause weight equal to the minimum weight
clause of the core, while the other copy has the same weight subtracted from it.
Finally, a new constraint is added to make the new b variables sum to one.

In contrast to these approaches the approach we present here involves a se-
quence of simpler SAT problems. There are no arithmetic constraints added to
the SAT problem and no clauses are duplicated. Instead, the arithmetic con-
straints specifying that at least one clause from every core needs to be falsified
are dealt with directly by the minimum hitting set solver. In addition, none of
the previous approaches have looked at the issue of making sure that the relaxed
clauses (i.e., the clauses with turned on b variables) are realizable.

Another closely related work is [5]. Although this work was focused on a
branch and bound method, it also utilized the deep connection between hitting
sets and Maxsat solutions that we were able to further exploit here.

5 Empirical Results

We investigated the performance of our proposed algorithms on a variety of
industrial and crafted instances, covering all weight categories: unweighted (MS),
partial (PMS), weighted (WMS) and weighted partial (WPMS) Maxsat. Our
results suggest that our approach can solve 17 problems that have not been
solved before, and can reasonably handle a variety of Maxsat problems. We
also present results on problems with diverse weights, to further illustrate the
advantages of our approach.

We ran experiments with all available Maxsat solvers that use a sequence
of SAT problem approach: Msuncore, WBO [12], PM2, WPM1, WPM2 [1,2],
SAT4J [4], and Qmaxsat [10].

In order to evaluate the effectiveness of our approach on industrial instances,
we ran tests on all 1034 unsatisfiable Industrial instances from the 2009 Maxsat
Evaluation [3], as well as the 116 unsatisfiable WMS instances from the Crafted
category. All experiments were conducted with a 1200 second timeout and 2.5GB
memory limit, on 2.6GHz AMD Opteron 2535 processors.

236 J. Davies and F. Bacchus

In Table 1, we report the number of instances solved and the total runtime
on solved instances, by benchmark family. Results are shown for SAT4J, WPM1
and WPM2, since these three solvers represent all existing algorithms that use
a sequence of SAT approach and can handle weighted clauses (WPM1 solved
more instances overall than Msuncore and WBO). The last two columns show
our results for a version of our solver that implements Algorithm 1 and uses
CPLEX to solve the ILP formulation of the hitting set problem. Although we
don’t solve the most problems overall, the families where we do perform best
are highlighted in bold. In general, Algorithm 2 solved fewer problems than
Algorithm 1 so its results are omitted from this table.

However, there were four benchmark families in which enforcing the realiz-
ability condition paid off. In particular, Algorithm 2 solved 44 instances that
Algorithm 1 could not solve. These instances are shown in Table 2, which lists
the number of instances solved, their average optimum, the average number of
iterations Algorithm 1 performed before the timeout, and the number of iter-
ations and runtime for Algorithm 2. We observe that the number of iterations
that Algorithm 2 requires to solve the problem is usually significantly fewer than
Algorithm 1 performs. This demonstrates that constraining the hitting sets to
be realizable can reduce the number of iterations, on some problems.

Table 1. The number of instances solved, and total runtime on solved instances for
the 2009 Maxsat Evaluation industrial and WMS crafted instances

SAT4J WPM1 WPM2 Alg1:CPLEX
Family # # Time # Time # Time # Time

ms/CirDeb 9 7 600 9 178 8 1051 9 395

ms/Sean 108 27 2890 86 6952 73 7202 73 6775

pms/bcp-fir 59 10 38 55 1470 48 2379 21 1873

pms/bcp-simp 138 132 415 131 796 137 1272 131 1326

pms/bcp-SU 38 9 591 13 1596 21 5299 19 3287

pms/bcp-msp 148 96 698 24 731 69 3282 5 2085

pms/bcp-mtg 215 199 1280 181 2651 215 172 102 2384

pms/bcp-syn 74 24 2851 33 731 34 511 60 2761

pms/CirTrace 4 4 2013 0 0 4 1193 0 0

pms/HapAsbly 6 0 0 2 771 5 143 5 85

pms/pbo-logenc 128 128 4229 72 5535 72 8799 78 856

pms/pbo-rtg 15 15 3236 15 16 15 131 14 453

pms/PROT 12 3 876 1 22 3 486 1 9

wpms/up-10 20 20 71 20 109 20 525 20 62

wpms/up-20 20 20 74 20 119 20 601 20 78

wpms/up-30 20 20 77 20 124 20 658 20 146

wpms/up-40 20 20 76 20 134 20 731 20 94

wms/KeXu 34 8 3774 1 395 16 1978 10 1342

wms/RAM 15 4 186 2 326 2 208 1 2

wms/CUT-DIM 62 2 0 4 0 3 0 4 847

wms/CUT-SPIN 5 1 7 0 0 0 0 1 132

Total 1150 749 23990 709 22665 805 36631 614 25002

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 237

Table 2. Results on instances Algorithm 2 can solve within 1200 s but Algorithm 1
cannot

Avg Alg1:CPLEX Alg2:B&B
Family # OPT Iter Iter Time

ms/Sean 4 1 13 67 434

pms/bcp-msp 26 99 460 121 204

pms/bcp-mtg 13 8 2198 757 258

pms/bcp-syn 1 6 80 53 295

Table 3. Detailed results on newly solved instances, from the industrial PMS bcp-syn
family. ‘-’ in the Time columns indicates timeout.

Alg1:CPLEX Alg1:B&B Alg2:B&B
Instance OPT Iter |Core| MxN HS Time Iter Nodes HS Time Iter Nodes HS Time

saucier.r 6 80 2885 40x2167 15 - 3 1195 - 53 5 5 295

1 1 10 15 10 89 12 44x77 0 26 86 10 0 40 85 11 0 39

1 1 10 10 12 95 10 47x75 0 44 93 10 0 78 93 12 1 117

300 10 20 17 96 14 48x147 1 148 94 14 1 142 97 17 1 152

300 10 14 19 93 11 46x130 0 35 89 12 0 46 88 16 0 37

300 10 15 19 99 12 49x144 0 62 95 13 1 106 96 17 1 134

300 10 10 21 95 9 47x119 0 13 95 14 0 47 95 18 0 42

ex5.r 37 285 28 132x294 0 116 281 24 4 1187 260 46 5 -

ex5.pi 65 304 25 137x267 0 72 301 23 3 924 271 50 2 511

pdc.r 94 413 10 176x212 0 14 408 19 0 99 389 86 1 537

test1.r 110 278 6 119x176 0 3 277 9 0 17 271 85 0 67

rot.b 115 626 23 288x453 0 304 363 40 4 - 345 91 4 -

bench1.pi 121 330 8 149x290 0 25 331 28 1 298 328 113 1 264

max1024.r 245 747 5 323x377 0 153 734 28 1 1016 635 179 2 -

max1024.pi 259 724 5 310x358 0 200 720 25 2 - 663 187 2 -

prom2.r 278 935 6 385x498 0 61 968 21 0 717 733 225 2 -

prom2.pi 287 914 6 372x484 0 40 966 26 1 846 747 249 2 -

Average 100 364 180 159x368 1 82 347 18 71 397 308 83 2 200

In Table 3 we present more detailed results on 17 instances amoung those in
Table 1. These were selected based on the fact that none of the competing solvers
were able to solve them, and furthermore, they weren’t solved by any other
solver in the 2009 and 2010 Maxsat Evaluations. We report results of using
Algorithms 1 and 2 with our B&B solver for the hitting set problem, as well as
Algorithm 1 with CPLEX for the hitting set. For each version of our solver, and
each instance, we list the number of iterations (i.e. SAT episodes), the average
time to solve the hitting set problems (columns ‘HS’), and the total runtime.
We also report some information about the size of the hitting set problems
encountered. Column ‘|Core|’ reports the average number of clauses in the cores.
Column ‘MxN’ reports the average dimensions of the hitting set problem given
to CPLEX after the simplification rules have been applied. The ‘Nodes’ columns
give the average number of nodes searched by B&B while solving the hitting
set problems. The time the SAT solver takes to generate each core is always

238 J. Davies and F. Bacchus

Table 4. The number of iterations and runtimes (s) for an industrial WPMS instance
as the number k of distinct weights is increased. ‘-’ indicates failure to solve within
1200 s.

SAT4J WPM1 WPM2 WBO Alg1:CPLEX
k Opt Iter Time Iter Time Iter Time Iter Time Iter Time

1 101 1 3 101 2 102 13 80 4 199 4

2 149 1 - 112 3 133 16 80 4 191 3

4 250 1 - 122 3 140 17 79 4 227 3

8 441 1 - 128 4 163 20 80 2 190 2

10 554 2 - 129 4 175 24 80 4 193 3

16 750 1 - 125 5 3751 - 80 3 161 2

32 1621 3 - 127 7 3066 - 79 2 218 4

64 2857 1 - 126 8 3104 - 80 4 172 3

100 4667 1 - 122 16 95 - 80 4 247 5

128 5994 1 - 126 17 3900 - 79 3 192 2

1000 47187 1 - 128 125 1644 - 80 2 193 3

10000 480011 4 763 127 1069 3074 - 80 3 182 2

100000 5057882 1 - 47 - 3108 - 80 4 184 3

less than 0.02s, so this is not included in the table. Our algorithms seem to be
particularly suited to these problems. All three versions of our solver do well,
whereas all previous Maxsat methods fail. This is somewhat surprising since
all of the instances are of the PMS type, with no clause weights. However, most
of these instances have quite large optimums and therefore require many clauses
to be relaxed. This is challenging for prior sequence of SAT approaches, even
though the cores of the original Maxsat theory are quite small. Our approach
is able to succeed on these instances because it better exploits the SAT solver’s
ability to very quickly generate many cores of the original theory.

Sequence of SAT solvers are well suited to industrial problems, which are very
large but easily refuted by existing SAT solvers. However, their performance can
be adversely affected by the distribution of weights on the soft clauses. At the
moment, most of the industrial WPMS benchmark problems have a very small
number of distinct weight values. Many real-world applications will require a
greater diversity of weights.

In order to investigate our solver’s performance on problems with diverse
weights, we created a new set of WPMS instances by increasing the diversity of
weights on an existing benchmark instance. We selected an industrial problem
that is easy for sequence of SAT solvers, the Linux Upgradeability family in the
WPMS Industrial category of the 2009 Max-SAT Evaluation. Note that all in-
stances in this family already have the same underlying CNF, just different weights.
We generated 13 new instances for an increasing number k ∈ {20, 21, ..., 26} ∪
{101, 102, ..., 106} of distinct weights. Given k, the weight for each soft clause was
randomly chosen (with replacement) from the set {1, 2, ..., k}. The number of it-
erations and the runtime on each instance is shown in Table 4. We see that WBO
and our solver are immune to this type of weight diversification. Their number of
SAT solving episodes and their runtimes remain steady as the number of distinct

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 239

weights is increased. Although the number of iterations required by WPM1 also
doesn’t increase with k, the runtimes do increase. We observe that both the num-
ber of iterations required, and the runtimes increase significantly for WPM2.
SAT4J also has difficulty with these problems.

6 Conclusion

We have presented a new approach to solving Maxsat via a sequence of SAT
problems. We proposed to separate the arithmetic reasoning from the satisfia-
bility testing, allowing the sequence of SAT problems to be simpler rather than
more difficult as in previous approaches. The new technique is competitive with
previous solvers, and is able to solve some problems previous approaches could
not solve. It is also a very simple approach that opens the door for many future
improvements.

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: Proceedings of Theory and Applications of Satisfiability
Testing (SAT), pp. 427–440 (2009)

2. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat.
In: Proceedings of the AAAI National Conference (AAAI), pp. 3–8 (2010)

3. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The First and Second Max-SAT
Evaluations. JSAT 4(2-4), 251–278 (2008)

4. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 56–59 (2010)
5. Davies, J., Cho, J., Bacchus, F.: Using learnt clauses in maxsat. In: Cohen, D. (ed.)

CP 2010. LNCS, vol. 6308, pp. 176–190. Springer, Heidelberg (2010)
6. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Theory and Ap-

plications of Satisfiability Testing (SAT), pp. 252–265 (2006)
7. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat

solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)
8. Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization

problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 478–492. Springer,
Heidelberg (2008)

9. Knuth, D.E.: Dancing links. In: Proceedings of the 1999 Oxford-Microsoft Sympo-
sium in Honour of Sir Tony Hoare, pp. 187–214. Palgrave, Oxford (2000)

10. Koshimura, M., Zhang, T.: Qmaxsat, http://sites.google.com/site/qmaxsat
11. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds

in maxsat. Constraints 15(4), 456–484 (2010)
12. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean

optimization. In: Proceedings of Theory and Applications of Satisfiability Testing
(SAT), pp. 495–508 (2009)

13. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)
14. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceed-

ings of Algorithms and Experiments (ALEX 1998), pp. 1–8 (1998)
15. Wolsey, L.A.: Integer Programming. Wiley, Chichester (1998)

http://sites.google.com/site/qmaxsat

	Solving MAXSAT by Solving a Sequence of Simpler SAT Instances
	Introduction
	Background
	Solving Maxsat with Simpler SAT Instances
	Realizable Hitting Sets
	Implementation Techniques

	Related Work
	Empirical Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

