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Abstract. We investigate the dynamic variable ordering (DVO) technique com-
monly used in conjunction with tree-search algorithms for solving constraint sat-
isfaction problems. We first provide an implementation methodology for adding
DVO to an arbitrary tree-search algorithm. Our methodology is applicable to a
wide range of algorithms including those that maintain complicated information
about the search history, like backmarking. We then investigate the popular re-
ordering heuristic of next instantiating the variable with the minimum remaining
values (MRV). We prove some interesting theorems about the MRV heuristic
which demonstrate that if one wants to use the MRV heuristic one may as well
use it with forward checking. Finally, we investigate the empirical performance
of 12 different algorithms with and without DVO. Our experiments and theoret-
ical results demonstrate that forward checking equipped with dynamic variable
ordering is a very good algorithm for solving CSPs.

1 Introduction

Despite being in the class of NP-complete problems, many practical constraint satis-
faction problems (CSPs) can be solved by tree-search algorithms that are derivatives or
variants of backtracking. Naive backtracking (BT) is not a particularly useful method
as the class of problems that it can solve within practical resource limits is small. A
number of improvements to BT have been developed in the literature. None of these
improvements can, of course, escape from behaving badly on certain inputs, given that
NP �� P. Nevertheless, these improvements are often able to solve wider, or perhaps
different, classes of problems.

Tree-search algorithms try to construct a solution to a CSP by sequentially instan-
tiating the variables of the problem. The order in which the algorithm instantiates the
variables is known to have a potentially profound effect on its efficiency, and various
heuristics have been investigated for choosing good orderings. Dynamic variable order-
ing (DVO), is an even more effective technique [Pur83]. With DVO the order in which
the variables are instantiated during tree-search can vary from branch to branch in the
search tree. In this paper we will study in more detail dynamic variable ordering, in the
context of binary constraint satisfaction problems.
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on here was supported by the Canadian Government through their IRIS project and NSERC
programs.



The first issue we address is how the various CSP tree-search algorithms can be
modified so as to utilize dynamic variable ordering. It is not immediately obvious how
to do this, as some of these algorithms, e.g., backmarking (BM), maintain complicated
information about the search history. How can the integrity of this information be main-
tained when the variable ordering is changing from path to path? Our first contribution
is to describe a systematic methodology for modifying a tree-search algorithm so that
it can use DVO. This methodology is described in Section 2, where we also present a
brief description of the components of a CSP.

Given an algorithm capable of using DVO, the next question is how do we dy-
namically select the variable ordering. In Section 3 we examine the most popular DVO
heuristic: instantiate next the variable that has the fewest values compatible with the
previous instantiations. We call this heuristic the minimum remaining values heuristic
(MRV). It turns out that MRV has some very strong properties, and we prove some key
results about MRV in this section.

Our theoretical examination of the MRV heuristic does not tell the entire story,
so we turn next to experimental evaluations to gather more information. In Section 4,
we show the results of some of the experiments we have run using 12 different CSP
algorithms with and without DVO using the MRV heuristic. Our experiments allow us
to make a number of additional observations about the effectiveness of these algorithms
and the effect of DVO using the MRV heuristic. Finally, we close with a summary of
the main conclusions arising from our study.

2 A methodology for adding DVO

We assume some familiarity with CSPs in this paper (see, e.g., [Mac87]), but the basics
can be easily described. Here we give a description of CSPs that is designed to make
our subsequent description of the mechanics of certain CSP algorithms easier.

A binary CSP is a finite set of variables, each with a finite domain of potential
values, and a collection of pairwise constraints between the variables. The goal is to
assign a value to each variable so that all of the constraints are satisfied. Depending
on the application the goal may be to find all consistent solutions, or to find just one.
Formally:

Definition 1. A binary constraint satisfaction problem � consists of:

– A finite collection of N variables, V���� � � � �V�N �.
– For each variable V �i�, a finite domain D��� containing #D�i� values: D�i� � fv�i� ��,

v�i� ��, � � � , v�i� #D�i��g.
– For each pair of variables fV �i��V�j�g, a constraint C�i� j� between V �i� and V �j�

which is simply a subset (not necessarily proper) of D�i� � D�j�. The constraints
must be symmetric, i.e., �x� y� � C�i� j� iff �y� x� � C�j� i�.

The assignment of the value v � D�i� to the variable V �i� is written V �i� � v. If
�v� v�� � C�i� j� we say that the pair of assignments fV �i�� v�V �j�� v�g is consis-
tent. A partial solution for � is a set of assignments such that every pair in the set is
consistent. A solution to � is a partial solution that contains an assignment for every
variable.



Tree-search algorithms generate search trees during their operation. The search tree
consists of nodes which we take in this paper to be an assignment of a particular value to
a particular variable. Each node in the search tree has an associated depth. Tree-search
algorithms explore paths in the search tree. At any point during search the current path
consists of a series of nodes from the root to the current node, and a set of as yet
uninstantiated variables. We use the following notational conventions:

– Nd�i� denotes the node at depth i in the current path.
– Nd�i��Var denotes the index of the variable assigned at node Nd�i�. Hence, V �Nd�i��Var�

is the variable itself.�

– Nd�i��val denotes the value assigned to the variable associated with node Nd�i�. It
should be a member of this variable’s domain; i.e., we should have Nd�i��val �
D�Nd�i��Var�.

– Incon�Nd�i��Nd�j�� denotes that the assignments associated with the i’th and j’th
nodes are inconsistent. This corresponds to the condition:

�Nd�i��val�Nd�j��val� �� C�Nd�i��Var�Nd�j��Var�

– Finally, we consider Nd�Var and Nd�val to be fields that can be assigned to.

With this notation we can now describe our methodology for adding dynamic vari-
able ordering to any particular tree-search algorithm quite easily. The methodology is
very simple. All that is required is to maintain a clear distinction between the nodes of
the search tree and the variables. Both the nodes of the current path Nd�i� and the vari-
ables V �j� are indexed sets. When a static ordering is used there is a constant mapping
between the depth of a node and the index of the variable that is assigned at that node.
This often leads to a blurring of the distinction between the node index (the node’s
depth) and the variable index. With DVO there is no longer a static mapping between
these two indices, and a failure to distinguish between them leads to confusion.

Once this distinction is maintained it becomes relatively straightforward to modify a
tree-search algorithm to allow it to use DVO. One need only be careful about whether or
not each step of the algorithm is indexing a node or a variable. A few examples should
make the mechanics of the methodology clear.

First, consider simple backtracking (BT). In BT we assign a variable at the current
node, selecting the variable to be assigned from the current set of uninstantiated vari-
ables. We then test the consistency of this assignment against the assignments of the
previous nodes. This occurs with both static and dynamic variable orderings, but with
a static order one might be tempted to state this as “test the assignment of the current
variable against the assignments of the previous variables”, a notion that does not apply
in the dynamic case.

Second, consider forward checking (FC). In FC we do not check the assignment of
the current node against the previous nodes, rather we use it to prune the domains of the
as yet uninstantiated variables. FC needs to maintain information about when domain
values are pruned, so that it can correctly restore those values when backtracking. Our

� We let Nd�i��Var be an index instead of a variable so that it can also index into the variable’s
domain D�Nd�i��Var� and the variable’s domain size #D�Nd�i��Var�.



methodology mandates that we be careful about the difference between nodes and vari-
ables. Clearly, the domain values are associated with the variables, but the pruning of
the values arises from particular nodes (specifically, from the assignment made at those
nodes).

A common way of implementing FC is to associate with each variable an array of
flags, one for each domain value. Let Domain be a two-dimensional array such that
Domain�i� k� contains the flag for the k-th value of the i-th variable. If this flag is set
to 0 it indicates that this value has not yet been pruned, while if the flag is set to some
number j it indicates that this value has been pruned by the node at depth j. Thus the
Domain array is indexed by a variable-value pair, but it stores a node index. When we
change the assignment associated with the node at level j, we can scan the Domain

array restoring all variable values that were pruned by that node. In the context of a
static ordering, the Domain�i� k� array is commonly described as storing the variable
that pruned the k-th value of the i-th variable.

One of the most powerful demonstrations of the simplicity of our methodology
comes from its application to Gashnig’s backmarking (BM) algorithm [Gas77]. BM
is one of the more complex tree-search algorithms, and implementing DVO with BM
seems to be difficult because of all of the bookkeeping information that BM maintains.
In fact, some authors have mistakenly claimed that BM and dynamic variable ordering
are incompatible [Pro93].�

BM is standardly described in a manner that confuses between nodes and variables.
A standard description that relies implicitly on a static ordering is as follows. When an
assignment V �i� � k of V �i� is made, BT checks the consistency of this assignment
against all of the previous assignments fV���� s�� � � � �V�i���� si��g, where si are
the values assigned in the current path. If any of these consistency checks fail, BM takes
the additional step of remembering the first point of failure in an array Mcl�i� k� (the
maximum check level array). This information is used to save subsequent consistency
checks. Say that later we backtrack from V �i� up to V �j�, assign V�j� a new value, and
then progress down the tree, once again reaching V �i�. At V �i� we might again attempt
the assignment V �i� � k. The assignments fV��� � s�� � � � �V�j��� � sj��g have
not changed since we last tried V�i�� k, so there is no point in repeating these checks.
Furthermore, if V �i� � k had failed against one of these assignments, we need not
make any checks at all; the assignment will fail again, so we can immediately reject it.
To realize these savings, Mcl is by itself insufficient. We also need to know how far up
the tree we have backtracked since last trying to instantiate V�i�, so that we know what
checks we can save given the information in Mcl. Hence, BM uses an additional array
Mbl (the minimum backtrack level) which for each variable keeps track of how far we
have backtracked since trying to instantiate this variable. (In the example above, Mbl�i�
will store the information that we have only backtracked to V �j� since last visiting V �i�).

To apply our methodology we must distinguishbetween nodes and variables. Clearly,
Mcl�i� k� is not the deepest variable, but rather the deepest node that the assignment
V �i� � k checked against. And similarly, Mbl�i� is the shallowest node whose assign-

� It is worth noting that Haralick and Elliot [HE80] had in fact implemented DVO with BM and
reported on its empirical performance. However, they never described the manner in which
BM was altered to accommodate DVO.



ment has been changed since the i-th variable was the variable associated with the cur-
rent node. So Mcl and Mbl are both indexed by variable indices, but store node indices.
This distinction allows us implement a correct version of BM that can use dynamic vari-
able ordering. Figure 1 gives the resulting algorithm in more detail. To our knowledge,
a DVO version of BM has not previously appeared in the literature.

procedure BM(i)
%Tries to instantiate node at level i
%Then recurses

Cur � NextVar��
Nd�i��Var� Cur
for k � � to #D[Cur]

Nd�i��val� v�Cur� k�
if Mcl�Cur� k� � Mbl�Cur� then

ok� true
for j � Mbl�i� to i� � and while ok

Mcl�Cur� k�� j

if Incon�Nd�i��Nd�j��) then
ok� false

if ok then
V�Cur�� v�Cur� k�
if i � N then

print V���� � � � �V�N �
else

BM(i� �)
Mbl�Cur�� i��
Restore(i)

procedure Restore(i)
%Updates Mbl

for j � � to N

if Mbl�j� � i then
Mbl�j�� i��

Fig. 1. Backmarking with dynamic variable ordering

In the code the procedure NextVar�� returns the index of the next variable to be
assigned. It computes which of the uninstantiated variables should be assigned next
by some heuristic measure. Backmarking is invoked, after initialization, with the call
BM(1) and it will subsequently print all solutions. The only differences between this
code and the standard static order BM algorithm are (1) a dynamic choice of the variable
to instantiate next, (2) the indirection of consistency checks through the node structures,
and (3) the restore function must scan all variables, not just V �i� to V �N � (these may not
be the uninstantiated variables at this point in the search tree).

A large number of tree-search algorithms have been implemented by Manchak and
van Beek as a library of C routines [MvB94]. These include the traditional algorithms
of backtracking (BT) [BE75], backjumping (BJ) [Gas78], backmarking (BM) [Gas77],
and forward checking (FC) [HE80]. They have also implemented all of Prosser’s hy-
brid algorithms [Pro93], conflict-directed backjumping (CBJ), backmarking with back-
jumping (BMJ), backmarking with conflict-directed backjumping (BM-CBJ), forward
checking with backjumping (FC-BJ), and forward checking with conflict-directed back-
jumping (FC-CBJ); Dechter’s graph-based backjumping (GBJ) [Dec90]; forward check-
ing that uses full arc consistency to prune the future domains (FCarc); and forward



checking that uses full path consistency to prune the future domains (FCpath).
We have applied our methodology to all of these algorithms, implementing a DVO

version of each. In Section 4 we will report on the performance of these algorithms with
and without DVO.

3 The MRV Heuristic

In the previous section we demonstrated how a tree-search algorithm can be modified so
as to use DVO. It has long been known that DVO can yield a considerable performance
speedup [HE80]. However, the notion of using DVO is quite distinct from the method by
which the ordering is chosen. In previous work attention has focused almost exclusively
on the heuristic of choosing at every point in the search, the next variable to be that
which has the minimal number of remaining values, i.e., the minimal number of values
compatible with all of the previous assignments [HE80, Pur83, DM94]. We call this the
minimum remaining values heuristic (MRV). Previous authors have called this heuristic
dynamic variable ordering [FD94], and dynamic search rearrangement [Pur83]. But
such names tend to confuse the specific heuristic MRV with the general technique DVO.
As we will see in this section, MRV has some very particular properties that might not
be shared by other ordering heuristics.

An immediate question is how do we implement MRV in a domain independent
manner? First, we should note that for algorithms that do all of their constraint checks
backwards against previous assignments, computing the MRV heuristic will require
additional constraint checks. If all we have access to is the set of constraint relations,
then there is an obvious but inefficient strategy. The tree-search algorithm calls the
MRV procedure when it has descended to the next level and needs to choose a variable
to assign at this level.� When it is invoked, the MRV procedure can check each value
in the domain of each uninstantiated variable to see if that value is consistent with the
current set of assignments. By cycling through all the values in the variable domains it
can count the number of remaining compatible values each variable has, and return a
variable with the minimum such number.

However, as pointed out by Dechter and Meiri [DM94], with this implementation
computing the MRV heuristic will consume many redundant constraint checks. For
example, consider the following scenario. We make the assignment V���� � at Nd���.
Then we call MRV and it discovers that V ���� � is incompatible with this assignment,
but it also finds that V ��� is the variable with fewest remaining values. The tree-search
algorithm then makes the assignment V ���� � at Nd���. Upon calling MRV again, our
naive strategy will again check V���� � against V���� �, even though it had already
determined at a previous level that this pair was incompatible. This constraint check is
redundant.

A superior implementation strategy for MRV is to use the same procedure as FC.
Basically, we allow the MRV procedure to maintain a set of pruned domains for all
the uninstantiated variables. Whenever the tree-search algorithm instantiates a variable,
it can call MRV to allow it to prune the remaining variable domains using the new

� For example, in the BM code of Figure 1, the call to NextVar�� is a call to a procedure that
computes the MRV heuristic.



instantiation. And whenever the tree-search algorithm uninstantiates a variable it can
call MRV to allow it to restore the values pruned by that instantiation. Now the MRV
procedure can simply count the number of remaining elements in each of the pruned
domains to determine the next variable. In the example above, when we make the as-
signment V ���� �, MRV will prune the value � from the domain of V���. Hence, when
we make the next assignment V��� � �, MRV does not have to do any checks against
V��� � �: that value has been pruned from V ���’s domain. Note that the tree-search
algorithm is still using MRV as a heuristic. In particular, the structures containing the
pruned domains remain local to the MRV procedure. All the MRV procedure does is to
return the next variable, it communicates no other information to the tree-search algo-
rithm. Let us call the MRV heuristic computed using the forward checking procedure
MRVFC.

In FC algorithms, on the other hand, the pruned domains are maintained as part of
the algorithm itself. For these algorithms, the MRV procedure does not need to do any
extra constraint checks. It can simply count the number of values in the pruned domains,
and rely on the FC algorithm to maintain these structures.

Since MRVFC is computed using the same procedure used by forward checking it
should not be too surprising that there is a close relationship between tree-search algo-
rithms that use MRVFC and FC itself. This relation is characterized by the following
theorems. Let checks�A� be the number of constraint checks performed by algorithm
A. This is actually a function from problem instances to number of constraint checks.
When we write checks�A� � checks�B� we mean that the “�” relation holds for all
problem instances, similarly for the other binary relations.

Theorem 2. MRV makes standard backjumping redundant.� Specifically, we have

checks�BT	MRV� � checks�BJ	MRV�� and
checks�BM	MRV� � checks�BMJ	MRV��

Proof. Note that this theorem holds for the more general MRV, not only for MRVFC.
Backjumping operates when search hits a dead end. Say that the variable associated with
the dead end node is V�j�. Instead of stepping back to the previous node, backjumping
jumps back to the deepest previous node, say node i, that had a conflict with some value
of V �j�; i.e., none of the nodes deeper than i had any conflicts with V �j�. This means
that if the tree-search algorithm is using MRV, at the time that node i’s assignment was
made, V�j� must have had zero remaining compatible domain values. Hence, it must
have been chosen by MRV to be the next variable,� and the dead end must in fact have
occured at level i 	 �. That is, the backjump must have been simply a chronological
backstep, and the search process without backjumping would have been identical.

� This result is very closely related to (and, in fact, can be viewed as being a corollary of)
Kondrak’s result that FC visits fewer nodes than BJ [Kon94]. To see the similarly note that in
our proof FC would have detected a domain wipeout at node i and would never had descended
below that node.

� If there was more than one variable with zero remaining domain values, MRV would still have
chosen V�j�. Otherwise V�j� would not have been the variable associated with the dead end
node.



This theorem does not hold for more sophisticated forms of backjumping such as
CBJ, or GBJ. CBJ and GBJ do not perform standard backjumping. Rather they use a
backjumping technique that passes information further up the tree allowing multiple
backjumps. Prosser’s FC-BJ algorithm [Pro93] is presented as a combination of FC and
standard BJ, and one might suspect that the above theorem implies that checks�FC� �
checks�FC-BJ�. However, the backjumping in FC-BJ is not standard backjumping. Rather,
it can be considered to be a “one-step” version of CBJ. In particular, it uses information
gathered from a future variable (the variable whose domain has wiped out), plus infor-
mation from the current node to decide where to jump back to. Standard backjumping
only uses information from the current node in determining where to jump back to.
Hence, the theorem does not apply to FC-BJ either.

Theorem 3. The number of consistency checks performed by each of the algorithms
BT	MRVFC, BJ	MRVFC, BM	MRVFC, and BMJ	MRVFC, lie in the range

�checks�FC	MRV�� �KNchecks�FC	MRV���

where N is the number of variables and K is the maximum of the variable domain
sizes, and assuming that the MRV heuristics break ties in the same way,

Proof. To conserve space we provide only parts of the proof. Also in our discussion we
drop the 	MRVFC suffix on the algorithm names.

The key to understanding this theorem is to realize that the MRV heuristic acts much
like the domain wipeout (DWO) detection that FC performs. Recall that FC checks for-
ward from the current node and backtracks immediately if it detects that some future
variable has no remaining consistent values. Such a variable is said to have had a domain
wipeout. Now consider the search tree explored by FC. All leaf nodes are either solu-
tions or nodes where DWO was detected. At these DWO nodes any algorithm equipped
with MRV reordering would at the next level try to assign a value to a variable with
zero remaining compatible values. Hence, MRV will allow the algorithm to fail at the
very next level anyway.

BT and BM visit all of the nodes visited by FC [Kon94], and in the same order as
FC. (The ordering follows from our requirement that ties are broken identically). The
above argument can be made sufficiently precise to show that besides these nodes, BT
and BM (with MRV) visit at most K � � additional siblings of each of these nodes (the
assignments that were pruned by FC), and at the leaf nodes of FC’s search tree they can
descend at most one level deeper, visiting at most K additional children nodes. Hence,
we can identify three different types of nodes visited by BT and BM: (1) nodes also
visited by FC, (2) children nodes of a FC leaf node, and (3) siblings of FC nodes not
visited by FC.

With this in hand all we need to do is to examine the number of checks that BT
and BM perform at each type of node. Consider BT. For a node also visited by FC,
it must check that node’s assignment against all previous assignments, consuming at
most N checks. These checks must succeed (else FC would have pruned this value
and would never have visited this node). Hence, BT must descend to the next level and
it will invoke the MRVFC procedure. This procedure consumes the same number of
checks as FC’s forward checking phase. FC, on the other hand, consumes no checks



to determine the node’s consistency with the previous assignments (all of these checks
were performed earlier), and then it performs forward checking, consuming the same
number of checks as BT’s invocation of MRVFC. Hence, for these nodes BT performs at
most N more checks. For nodes that are children nodes of a FC leaf node, BT performs
at most N more checks. These checks must fail as the variable at this level (selected
by MRV) has no values compatible with the previous assignments. Every leaf node
in FC’s search tree can have at most K children, so BT can consume at most NK

additional checks in searching the children of FC leaf nodes. Note that because these
children nodes fail against previous assignments, BT does not need to compute the MRV
heuristic at these nodes. Finally, for nodes that are siblings of FC nodes not visited
by FC, BT will again perform up to N additional checks, and again will not need to
compute the MRV heuristic since some of these checks must fail. Each node in the FC
search tree can have at most K � � unvisited siblings. Putting this all together, we see
that the worst case are the FC leaf nodes. There BT can perform N more checks at the
node itself, NK more checks visiting its children, and N �K � �� more checks visiting
its unvisited siblings. This gives the �NK upper bound of the theorem. At no node does
BT perform fewer checks than FC (due to its MRV computation). This gives the lower
bound.

The result for BM follows the same argument. BM will save a number of checks
over BT, so for BM the upper bound becomes looser. Nevertheless, the lower bound is
clearly the same. The result for BMJ and BJ follow from Theorem 2.

Intuitively what is occuring here, is that in computing the MRV heuristic these al-
gorithms are forced to consume at least as many checks as FC. Plain BT may in certain
cases perform fewer checks than FC, but once we add MRVFC this is no longer possible.
Furthermore, MRVFC has the property of promoting future failures to the next variable.
This means that with MRV, algorithms like BT cannot consume an exponential amount
of extra checks prior to reaching the level at which a domain wipeout occurs. Plain BT,
on the other hand, often falls prey to this behavior. MRV makes the BT, BM, and BJ
search spaces very similar to that of FC	MRV.

Two obvious questions arise. First, since computing the MRV heuristic causes BT
and its variants to consume as many checks as FC, is it worthwhile? And second, why
have we placed such strong restrictions on the information that the MRV computation
can communicate to the tree-search algorithm?

The first question can only be answered experimentally. DVO using MRV is a
heuristic technique, and there is no guarantee its costs are worthwhile. Nevertheless,
the experimental evidence is unequivocal, DVO using MRV generates net speedups of
can be orders of magnitude in size. Significant performance gains occurred in all of
the experiments we performed, and such gains confirmed the results found in previous
work [HE80, Pur83, DM94].

As for the second question, indeed other information could be returned from the
MRV computation. For example, the MRV procedure could tell the algorithm about
pruned domain values, or about domain wipeout. However, if one follows this strategy
and starts to share more and more information between the MRV procedure and the
tree-search algorithm, one is lead naturally to a combined algorithm that is identical to
FC! In fact, our theorem shows that if one wants to do DVO with MRV, one may as



well adopt the FC algorithm from the onset. Unless, of course, one has a much more
efficient method of implementing MRV than MRVFC.�

Theorem 3 does not cover the algorithms that perform more sophisticated back-
jumping. One result that can be proved for these algorithms is the following (the proof
is omitted due to space considerations):

Theorem 4. The number of consistency checks performed by the algorithms CBJ 	
MRVFC, BM-CBJ	MRVFC lie in the range

�checks�FC-CBJ	MRV�� �KNchecks�FC-CBJ	MRV��

assuming that the MRV heuristics break ties in the same way, and that in the case
of DWO the MRVFC heuristics return as the next variable the first variable at which
FC-CBJ detected DWO.

4 Experiments

Our theoretical results give some valuable insight into the relative performance of vari-
ous CSP algorithms when equipped with DVO using the MRV heuristic. However, they
do not answer all of the questions. So we turn now to the results of a series of exper-
iments we ran using the 12 different algorithms mentioned in Section 2 (BT, BM, BJ,
FC, CBJ, BMJ, BM-CBJ, FC-BJ, FC-CBJ, FCarc, FCpath, and GBJ). We experimented
with these algorithms using both static and dynamic variable orderings, for a total of
24 different algorithms tested. The DVO equipped algorithms are all indicated with a
“var” suffix: BTvar, BMvar, etc. The MRV heuristic was used throughout, with the non-
FC algorithms using MRVFC. In our tests we included the number of constraint checks
consumed by the MRV computation.

Table 1 shows some of our experimental results. The columns “Z-1st”(Zebra first
solution) and “Z-all” (Zebra all solutions) are tests run on Prosser’s version of the Ze-
bra problem [Pro93] (which has 11 solutions). Prosser used 450 different static variable
orderings, of varying bandwidths, and computed the average number of consistency
checks required to find the first solution. We used the same orderings and repeated
Prosser’s original tests, extending them to test more algorithms and to test finding all
solutions. We also used these tests as a “sanity” check on our implementation: we
checked that we obtained exactly the same results as Prosser on the tests he performed,
and we checked the correctness of every solution found during all of the runs of each
algorithm.	

� It seems difficult to make significant improvements over MRVFC for a general, domain inde-
pendent, MRV computation. Furthermore, if any such improvements can be made they proba-
bly could be applied to improve FC as well. However, more efficient MRV computation might
be possible in specific domains,. One domain that springs to mind is n-Queens.

	 Of course, the algorithms using DVO will not show much variance when run using differ-
ent initial orderings (the difference are due to our method of tie-breaking which depends on
the initial order). Nevertheless, taking the average over all tests allows for a more reasonable
comparison.



Algorithm Z-1st Z-all Q-1st Q-all R1 R2 R3 R4
FC-CBJvar 0.5023 2.921 812.5 30206 2.268 15.06 10704 1152
FC-BJvar 0.5029 2.925 816.8 30216 2.318 15.08 10952 1159
FCvar 0.5037 2.928 817.0 30225 2.318 15.08 10954 1159
BM-CBJvar 0.8633 5.328 1298 (12) 3.127 21.50 13240 1460
BMvar 0.8673 5.357 1304 (10) 3.209 21.54 13452 1467
BMJvar 0.8673 5.357 1304 (10) 3.209 21.54 13452 1467
CBJvar 1.078 7.823 13060 (15) 3.297 26.84 17667 1911
GBJvar 1.078 7.854 13500 (16) 3.413 26.98 18262 1947
BJvar 1.095 7.933 13500 (17) 3.415 27.00 18290 1947
BTvar 1.095 7.933 13500 (17) 3.415 27.00 18290 1947
FCarcvar 1.624 5.786 13871 (19) 5.954 59.38 4082
FCarc 5.581 36.16 (18) (20) 8.517 84.97 12005
FC-CBJ 10.36 69.98 (15) 39671 12.32 70.01
FC-BJ 16.84 101.8 (16) 39742 19.54 71.97
BM-CBJ 25.47 160.1 (14) 35456 17.64 76.02
FC 35.58 182.0 (17) 40021 26.48 77.23
CBJ 63.21 397.3 (19) (13) 31.59 284.2
BMJ 125.5 557.2 (13) 35507 47.60 89.30
BM 396.9 1608 (12) 34944 64.38 114.9
BJ 503.3 2226 (20) (14) 143.3 410.8
FCpathvar 644.7 1472 (23) (23) 630.3 17482.3
GBJ 713.6 2889 (21) (21) 382.6 876.1
FCpath 844.5 3183 (24) (24) 634.5 17482.7
BT 3859 16196 (22) (22) 415.1 942.4

Table 1. Number of consistency checks (thousands) for various experiments

The columns “Q-1st” and “Q-all” are results from the n-Queens problem, for find-
ing the first and all solutions respectively. The “Q-1st” column shows the total number
of checks required to find the first solution for n-Queens summed over all n-Queen
problems of size 2–50.�
 Not all of the algorithms were able to solve up to 50-Queens
(within a limit of 40,000,000 checks). For these algorithms we show their relative rank-
ing in brackets. For example, BM was the best of the “failed” algorithms for finding the
first solution (its rank was (12) and 11 algorithms were able to solve all problems).��

For finding all solutions we ranged over n-Queen problems of size 2–13.
The columns labeled “R1” to “R4” show averages over 30 random problem in-

stances. We drew our problems from the range of 50% solvable classes given by Frost

�
 We took the sum over all the problems to smooth the variance that the static order algorithms
display. The static order algorithms find problems with even n more difficult than the sub-
sequent problem of size n � �. The DVO algorithms do not display this behavior, but their
variance is also quite high.

�� The rank of the algorithms that could not solve all problems was computed by first ranking by
the largest problem they were able to solve, and then ranking by the lowest number of checks
performed.



and Dechter [FD94]. These problem classes are defined by four parameters: N the num-
ber of variables; K the number of values in each variable’s domain; T the number of
incompatible value pairs in each non-trivial constraint (i.e., the tightness of each con-
straint); and C the number of non-trivial constraints. Our random problem generator
uses the same distribution as that described by Frost and Dechter. We ran other random
tests, but the experiments reported here have the following parameters: for R1, N � �
,
K � �, T � �, and C � ���; for R2, N � �
, K � �, T � ��, and C � ��; for
R3, N � 

, K � �, T � �, and C � ��; and for R4, N � �
, K � �, T � �, and
C � 


. Blank entries indicate that the algorithm was unable to solve the problems
within a limit of 40,000,000 checks.

Discussion. The most important result of our tests is that the three algorithms FC-
CBJvar, FC-BJvar, and FCvar prove themselves to one-two-three in all of the tests
we ran (including other random tests not reported here). FC-CBJvar seems to be the
fastest algorithm among those tested, and we know of only one other algorithm (an “on-
demand” version of FC recently developed by Bacchus and Grove [BG95]) that beats
it. However, the performance gain obtained by adding conflict directed backjumping
hardly seems worthwhile (in the tests we performed). A 5% gain over FCvar was the
largest we found in any of our tests (the table shows at most a 2% gain). Given the
simplicity of FCvar (it is FC with a simple domain counting implementation of MRV)
it would seem that this is the algorithm of choice.

In fact, a plausible argument can be given as to why adding CBJ to an algorithm
that already uses MRV is unlikely to yield much improvement. With MRV, variables
that have conflicts with past assignments (i.e., that have values eliminated from their
domain by these assignments) are likely to be instantiated sooner. Thus, MRV will
tend to cluster conflicted variables together. Hence, CBJ is unlikely to generate large
backjumps, and its savings are likely to be minimal.�� In essence what is happening
with plain backjumping (the table results for BTvar, BJvar and BMvar, BMJvar are as
predicted by Theorem 2) is also happening with CBJ, but to a lesser extent.

Our results also show that DVO using MRV is generally a great win. The only case
where static order algorithms beat their DVO counterparts is in the case of finding all
solutions to n-Queens. There, BM was the fourth best algorithm. Nevertheless, it was
still beaten by FCvar by about 15%. In the other tests the DVO algorithms display much
greater performance gains over their static order counterparts.

These performance gains show that the forward checking algorithm is a very pow-
erful CSP solution technique. Frost and Dechter suggest, in a recent paper [FD94], that
“FC should be recognized as a more valuable variable ordering heuristic than as a pow-
erful algorithm”. This claim misses the important features of FC. Our results show that
plain FC is a very good algorithm, but not always the best static order algorithm. In
n-Queens, for example, it is beat by BM. However, when equipped with dynamic vari-
able ordering it is clearly superior (empirically it beats all of the others except for its

�� Prosser (personal communication) has pointed out that CBJ might still yield significant benefits
when the variables have very different domain sizes (as the MRV heuristic may then be fooled
by this initial difference in domain sizes). In all of the tests we presented here the variables have
identical domain sizes. We hope to do some additional tests in the future to test this conjecture.



own variants, and our theoretical results also show its superiority to some of the other
algorithms). So in one sense the above claim is correct: FC with dynamic variable or-
dering is more valuable than plain FC. But the main feature of FC is that it is supports
a check-free implementation of MRV dynamic ordering.��

There is one final point that is worth making here. It has often been claimed that
static order FC performs the “optimal” amount of forward checking [Nad89]. Our re-
sults dispute this claim. Static order FCarc (which uses full arc consistency to prune the
future domains) often beats static order FC, in the Zebra and in many of the random
tests. However, with the extra edge provided by DVO, FC once again seems to be the
“right amount” of forward checking. FCpath, on the other hand, is definitely doing too
much forward checking in all of these tests.

In conclusion, in this paper we have (1) provided a methodology for implementing
dynamic variable ordering that can be applied to a range of CSP tree-search algorithms;
(2) have implemented a range of DVO algorithms and tested them empirically; and (3)
have provided some useful theoretical insights into the popular MRV heuristic. The
main practical lesson of our study is that forward checking with variable reordering is
both empirically and theoretically a very good algorithm for CSPs. Its main limitation
seems to be its application to very large but “easy” problems (i.e., problems were there
are an exponential number of solutions). For large problems the forward checking phase
of FC can be quite expensive. Guided “random” guesses in the solution space, e.g., the
GSAT technique [SLM92], seems to be a superior method for such problems. However,
FC with variable reordering (or some variant of FCvar) may well be the best algorithm
for small “hard” problems (i.e., problems with fewer variables and values that have only
a few solutions scattered in an exponentially sized search space).
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