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Abstract

It is well known that any non-binary discrete constraint sat-
isfaction problem (CSP) can be translated into an equivalent
binary CSP. Two translations are known: the dual graph trans-
lation and the hidden variable translation. However, there
has been little theoretical or experimental work on how well
backtracking algorithms perform on these binary representa-
tions in comparison to their performance on the correspond-
ing non-binary CSP. We present both theoretical and empiri-
cal results to help understand the tradeoffs involved. In partic-
ular, we show that translating a non-binary CSP into a binary
representation can be a viable solution technique in certain
circumstances. The ultimate aim of this research is to give
guidance for when one should consider translating between
non-binary and binary representations. Our results supply
some initial answers to this question.

Introduction
The lion’s share of work on constraint satisfaction problems
(CSPs) has restricted its attention to binary CSPs, where all
constraints are between two variables. This work has gener-
ated a great deal of knowledge about the theory and practice
of solving CSPs. Unfortunately, it is not always straightfor-
ward to generalize this knowledge to non-binary CSPs. The
well known fact that any non-binary discrete CSP can be
converted into an equivalent binary CSP is usually used as a
justification for restricting attention to binary CSPs. Implic-
itly, the assumption has been that when faced with a non-
binary CSP we can simply convert it into a binary CSP, and
then apply the best techniques for solving the binary equiv-
alent.

The field has not completely ignored the issue of non-
binary CSPs, however, as there has been work in both
the constraint programming and the traditional CSP com-
munities that addresses direct solution techniques for non-
binary CSPs. In particular, two of the most successful tech-
niques for solving binary problems, backtracking combined
with forward checking and backtracking combined with arc
consistency, have been generalized to the non-binary case
(Mac77; VH89).

Hence, there are at least two options when it comes to
dealing with non-binary CSPs: apply one of the standard
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translations to convert it to a binary CSP and then solve
it using binary CSP techniques, or apply one of the direct
solution techniques for non-binary CSPs. A potential ad-
vantage of translating to the binary is that much more is
known about solving binary CSPs: more useful heuristics
are known, more polynomial-time special cases have been
identified, and more algorithms are known�. On the other
hand it is unknown whether or not these techniques are use-
ful when applied to the CSPs that arise from translating non-
binary CSPs. Surprisingly little work has been done on ex-
amining the effectiveness of the translation technique, or on
comparing these two options. The work presented here ad-
dresses this problem.

There are at least two good reasons for looking more care-
fully at the issue of translating non-binary CSPs into binary
CSPs. First, non-binary CSPs appear quite frequently when
modeling real problems. In this case the issue is how to
solve these problems most efficiently, and as we show there
are certain cases where translating to the binary produces
significant performance gains and cases where it produces a
degradation in performance. The second reason is that, as
noted above, a common justification for focusing solely on
binary CSPs is the fact that non-binary CSPs can be trans-
lated into binary CSPs. Hence, it is important to study the
properties of these translations so as to better understand the
legitimacy of focusing on the binary case.

Two general methods are known for converting non-
binary CSPs to binary CSPs: the dual graph method and
the hidden variable method. The dual graph representa-
tion comes from the relational database community and was
introduced to the CSP community by Dechter and Pearl
(DP89). Earlier, Freuder (Fre78) had used an incremental
version of the method in an algorithm for finding all solu-
tions to a CSP. The hidden variable translation has an even
longer history. Rossi et al. (RPD89) credit Peirce (Pei33)
with first showing that binary relations have the same ex-
pressive power as non-binary relations. Peirce’s method for
representing non-binary relations with a collection of bi-
nary relations forms the foundation of the hidden variable
method. Dechter (Dec90) shows how to represent any non-
binary relation with binary relations using hidden variables

�For example, algorithms such as minimal forward checking
(DM94) and lazy arc consistency (SRGV96) are currently only ap-
plicable to binary CSPs.



that have bounded domain sizes. Rossi et al. (RPD89) dis-
cusses both the hidden and the dual conversion methods and
examined whether a non-binary CSP and its binary repre-
sentation are equivalent under various definitions of equiva-
lence.

We present both empirical and theoretical results that help
us understand the properties of the dual graph and hidden
variable representations. Our results compare the number of
nodes visited and the number of constraint checks executed
by the forward checking algorithm (FC), when applied to a
non-binary CSP and to its binary equivalents. The results
indicate that for most problems the non-binary representa-
tion is the most efficient representation. However, there is a
class of problems, when the constraints are tight or restric-
tive, for which the binary translations can be more efficient
by orders of magnitude. Also, we examine a specialized al-
gorithm for the hidden representation, which we call FC�.
This algorithm has the advantage that it provably never per-
forms more than a polynomial factor worse than FC on the
non-binary representation, and it can often perform expo-
nentially better.

The ultimate aim of this research is to provide guidance
for efficiently solving a CSP representation of a problem.
Given a problem, there is always the question of how to for-
mulate it as a CSP. Ideally, the problem is modeled in the
most natural way and the machine automatically solves it in
the most efficient way. When presented with a particular in-
stance of a non-binary CSP, should the machine convert it to
a binary representation before solving? To answer this ques-
tion we need a better understanding of the tradeoffs involved
in such a conversion.

Background
We first define constraint satisfaction problems (CSP) and
then briefly review backtrack search, the dual graph transla-
tion, and the hidden variable translation.

Definition 1 [CSPs] A constraint satisfaction problem con-
sists of a finite set of variables, V � fV�, . . . , Vng; for
each variable X � V a finite domain of values, Dom�X� �
fx�, . . . , xkg; and a finite collection of constraints, C �
fC��. . . ,Cmg. Each constraint C � C is a constraint over
some set of variables Vars�C�. The size of this set is known
as the arity of the constraint. Non-binary CSPs are CSPs
that contain constraints with arity greater than 2. Every con-
straint C can be viewed as being a subset of the product of
the domains of the variables in Vars�C� (i.e., C is the set of
tuples that satisfy the constraint).

We say that a set of assignments to variablesA � fX� �
x�,. . . , X� � x�g is consistent with a constraint C if (i) it
assigns a value to all of the variables of C (i.e., Vars�C� �
fX�� � � � � X�g) and (ii) the tuple of values assigned by A to
the variables of C is a member of C (i.e., the assignment
satisfies the constraint). A solution to a CSP is a set of as-
signments to all n variables fV� � v�, . . . , Vn � vng that
is consistent with each of the m constraints. The notation
kCk is used to denote the size of a set C.

Example 1 Consider the 3-SAT problem, �X��X��X�� �
��X��X��X�� � ��X���X��X�� � �X��X���X��.
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Figure 1: Binary CSP resulting from the dual method

In the non-binary CSP representation of the 3-SAT problem
there is a variable for each boolean variable X�, . . . , X�,
each variable has the domain of values f0, 1g, and there is a
3-ary constraint for each clause in the formula to ensure that
each clause evaluates to 1. For example, the constraint on the
first clause contains the tuples, RfX��X��X�g � f��� �� ��,
��� �� ��, ��� �� ��, ��� �� ��, ��� �� ��, ��� �� ��, ��� �� ��g,
where the tuple ��� �� �� does not appear in the constraint
since the assignment X� � �, X� � �, X� � � does not
satisfy the clause.

CSPs are often solved using a backtracking algorithm.
Here we restrict our attention to the widely used forward
checking backtracking algorithm (FC) (HE80; McG79),
which has been generalized to handle non-binary CSPs. Fol-
lowing Van Hentenryck (VH89) we say that a k-ary con-
straint, k � �, is forward checkable if k 	 � of its vari-
ables have been instantiated and the remaining variable is
uninstantiated. At a node in the search tree, the new vari-
able assigned at that node causes some (possibly empty)
set of constraints to become forward checkable. For each
newly forward checkable constraint, FC forward checks the
remaining unassigned variable. For each unpruned value of
that unassigned variable FC checks whether or not that value
along with the node’s assignments is consistent with the con-
straint, pruning those values that are inconsistent. If this pro-
cess causes the unassigned variable to have all of its domain
values pruned, FC backtracks.

We now present the dual graph and hidden variable trans-
lations for converting non-binary CSPs into binary ones. In
the dual translation, the constraints of the original prob-
lem become variables in the new representation. We re-
fer to these variables, which represent the constraints, as
c-variables and the original variables simply as variables.
The domain of each c-variable is exactly the set of tuples
that satisfy the original constraint and there is a binary con-
straint between two c-variables iff the original constraints
share some variables. The binary constraints prohibit pairs
of tuples in which shared variables receive different values.

Example 2 In the dual graph representation of the CSP in
Example 1, there are four variables Y�, . . . , Y�, one for each
3-ary constraint (or clause) in the original problem (see Fig-
ure 1). For example, the variable Y� corresponds to the non-
binary constraint RfX��X��X�g and the domain of Y� con-
tains the tuples (0, 0, 1), . . . , (1, 1, 1). The binary constraints
enforce that the ordinary variables appearing in more than
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Figure 2: Binary CSP resulting from the hidden method

one c-variable have the same value.

In the hidden representation, the set of variables includes
all of the variables of the original problem (with no changes
to their domains) plus a new set of “hidden” or h-variables
variables. For each constraint Ci in the original problem we
add an h-variableHi. The domain ofHi consists of a unique
identifier for every tuple in Ci. The new representation con-
tains only binary constraints, and these are constructed as
follows. For every h-variable Hi we impose a binary con-
straint between Hi and each of the variables in Vars�Ci�.
Say that Hi and Xk are thus constrained. Every value of Hi

corresponds to a tuple of values for the variables in Vars�Ci�
and thus defines a unique value for Xk. Hence the binary
constraint between Hi and Xk consists of a unique value for
Xk for every value of Hi. (Note that the constraint is not
functional in the other direction as a value for Xk may be
compatible with many values of Hi.)

Example 3 In the hidden variable representation of the CSP
in Example 1 there are ten variables: the six original vari-
ables X�� � � � � X� and four hidden variables, one for each
constraint in the original problem (see Figure 2). For ex-
ample, the constraint RfX��X��X�g has a corresponding h-
variable, H�, whose domain can be the set f�� �� � � � � �g (a
unique identifier for each of the seven tuples in the con-
straint). We can define a correspondence between the values
of H� and the tuples in RfX��X��X�g as follows:

� 
� ��� �� ��, � 
� ��� �� ��, � 
� ��� �� ��, 	 
� ��� �� ��,

 
� ��� �� ��, � 
� ��� �� ��, � 
� ��� �� ��.

We then impose a constraint between the pairs of variables
fX��H�g, fX��H�g, and fX��H�g, giving the binary con-
straints,

CfX��H�g � f��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� ��� 
�� ��� ��g,

CfX��H�g � f��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� ��� 
�� ��� ��g,

CfX��H�g � f��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� ��� 
�� ��� ��g.

For example, for CfX��H�g, the value 3 for H� corresponds
to the tuple ��� �� �� in which X� � �. Hence, H� � � is
only compatible with X� � �.

Theoretical Comparisons
We first consider the space requirements of the dual and hid-
den representations. Most CSP algorithms can deal with
constraints represented either intensionally, as a function, or

extensionally, as a list of compatible tuples or as a boolean
array that stores for each possible assignment to the con-
strained variables a flag indicating whether or not that as-
signment is compatible. However, the more effective back-
tracking algorithms, such as FC, use storage proportional
to the size of the domains of the variables to keep track of
which domain values have been pruned during search. This
means that when the dual and hidden representations “make
the constraints into variables” they require extra storage of
size equal to the total number of tuples in all of the con-
straints:

Pm

i�� kCik.

As well, the dual and hidden representations require ad-
ditional space to store their binary constraints. Fortunately,
the constraints in both can be represented as simple func-
tions, and thus impose only a small additional space require-
ment. For example, in the hidden representation, to check if
Hi � h is compatible with Xk � x, we simply find the
tuple of assignments corresponding to h and then check to
see if this tuple assigns x to Xk. The pair of assignments
are compatible if and only if this is the case. If the origi-
nal constraints are represented extensionally, as a list of sat-
isfying tuples, then this operation can be done in constant
time. However, if the original constraints are intensionally
represented we have a space-time tradeoff. We can convert
the intensional representation to an extensional one, and pay
the space required to store the list of satisfying tuples. Or
we can dynamically compute the tuple corresponding to h
by iterating over the possible assignments of the constrained
variables to find theh’th satisfying tuple. Since this has to be
done every time we check a constraint, it will usually not be
practical. Hence, we may also assume that we have an exten-
sional representation of the original constraints. Of course,
this will be an additional space requirement only when the
original constraints are represented intensionally.

We now show analytic bounds on the differences in the
number of nodes visited and consistency checks performed
by the FC algorithm applied to a non-binary CSP and to the
corresponding binary CSPs. For ease of exposition, we as-
sume that FC runs until all solutions have been found or it
is proven that no solution exists. One issue to address is
that of properly accounting for checking k-ary constraints.
Clearly, checking if a set of assignments fX� � x�, . . . ,
Xk � xkg satisfies an k-ary constraint must take at least
k operations. This is true whether or not the constraint is
represented intensionally as a function (where the function
must consider all k values), or extensionally as an boolean
array (where we will require k operations to index into an
k-dimension array). Hence, we will charge k constraint
checks for every check of an arity k constraint. To be con-
sistent with this measure we charge the check of a binary
constraint as 2 constraint checks (such a check requires at
least 2 operations). Note that our counts for binary con-
straint checks are thus twice what is traditionally counted
as a constraint check. This way of accounting for constraint
checks allows us to properly compare the fundamental oper-
ations performed when solving the non-binary CSP and the
corresponding binary CSPs.



Dual Graph Representation. The relative cost of FC on
the non-binary CSP and the dual CSP depends on the cardi-
nalities of the constraints and on the structure of the under-
lying constraint graph.

Example 4 shows that when the constraints have many
satisfying tuples, the dual can be exponentially worse in
terms of number of consistency checks. However, as Exam-
ple 5 shows, when the constraints have few satisfying tuples,
the dual can also be exponentially better. In such cases, FC
on the original may have to visit a large number of assign-
ments prior to being able to check a constraint, whereas FC
on the dual only examines assignments that are known to be
consistent with some constraint.

Example 4 Consider the non-binary CSP with n Boolean
variables X�� � � � � Xn and n constraints given by fX��
�X��X���X���X��X�� � � � ��X��� � ���Xn���Xng.
In this CSP, nodes in the backtrack tree for the dual represen-
tation have exponentially many children and there is exactly
one solution node. FC applied to this problem would visit n
nodes and perform O�n�� consistency checks, whereas FC
applied to the dual of this problem would visit n nodes and
perform O��n� consistency checks.

Example 5 Consider the non-binary CSP with n Boolean
variablesX�� � � � � Xn and n constraints given by fX��� � ��
Xn��� X� � � � ��Xn�� �Xn� � � � � X� � � � ��Xng; i.e., all
n possible ways of forming a conjunction of n	� variables.
In this CSP, nodes in the backtrack tree for the dual have a
single child and there is exactly one solution node. FC ap-
plied to this problem would visit �n�� nodes and perform
O�n�n� consistency checks, whereas FC applied to the dual
of this problem would visitn nodes and perform O�n�� con-
sistency checks.

When visiting a node in the search tree for the original
CSP, FC ensures that there exists a single extension of the
current set of assignments that satisfies all of the forward
checkable constraints. With FC on the dual, we have a dif-
ferent guarantee, that for every remaining constraint there
exists some extension of the current set of assignments (to
the original variables) that is consistent with it; there need
not be a single extension satisfying multiple constraints.
This means that FC on the original CSP checks for a stronger
condition on a smaller number of constraints, while FC on
the dual checks for a weaker condition on a larger set of con-
straints. An analysis of examples suggests that as the num-
ber of constraints m grows, it becomes increasingly likely
that FC on the original CSP will detect deadends in the
search earlier than FC on the dual, and that as m decreases,
the converse situation becomes increasingly likely. How this
works out in practice is an experimental question which we
examine in the next section.

Hidden Variable Representation. We now turn our atten-
tion to the hidden representation. First, we demonstrate that,
as with the dual, FC on the original CSP and FC on its hid-
den representation are incomparable: the algorithm can per-
form exponentially better or worse depending on the partic-
ular problem. Examples 6 and 7 illustrate this point.

Example 6 Consider a CSP containing the constraint C
over some set of variables fX�� X�� � � �g. Furthermore, say
that there is no tuple in C in which X� � � and X� � �. FC
applied to the non-binary CSP is unable to detect that every
node containing these assignments is a dead end: it can only
forward check on the constraint C when all but one of C’s
variables have been instantiated. On the other hand, FC ap-
plied to the hidden is able to detect all of these dead ends:
at every such node the h-variable corresponding to C will
experience a domain wipe out.

Example 7 Consider a CSP containing two constraints C�

andC� both over the set of variables fX�� X�� Xkg. Say that
C� � f��� �� ��� ��� �� ��g and C� � f��� �� ��, ��� �� ��g.
FC applied to the non-binary CSP is able to detect that every
node containing the assignments X� � � and X� � � is a
dead end: at such nodes the domain of Xk will experience a
domain wipe out when we forward check both C� and C�.
FC applied to the hidden, on the other hand, is unable to de-
tect a dead end at every such node: assignments to ordinary
variables can prune the domains of h-variables but not the
domains of other ordinary variables.

These two examples can be used to construct CSPs where
FC applied to the non-binary representation performs expo-
nentially better than FC applied to the hidden and vice versa.
There is a way, however, of improving FC on the hidden so
that it can still perform exponentially better but can only be
outperformed by a bounded amount. The intuition behind
the improvement comes from Example 7. When FC on the
hidden CSP visits a node in which X� � � and X� � �
it will reduce the domains of the two h-variables H� and
H� (corresponding to constraint C� and C� respectively) to
the singleton set f�g, where � corresponds to the first sat-
isfying tuple of the constraints. At this point if we continue
constraint propagation so that we restore arc-consistency be-
tween H� and Xk and between H� and Xk we would detect
the same dead end that FC on the non-binary does.

We can define the following enhancement to FC.

Definition 2 [FC�] FC� is a backtracking algorithm de-
signed to run on the hidden representation. It operates ex-
actly like FC, except that after forward checking prunes the
domain of any h-variable we additionally prune the domains
of any uninstantiated variables constrained by that h-variable
so as to remove values whose support has been lost. As usual
we backtrack if any future variable experiences a domain
wipe out.

This enhancement to FC is similar in spirit to those de-
veloped by Nadel (Nad89). It fits between standard forward
checking and full maintenance of arc-consistency in terms of
the amount of constraint propagation it performs. However,
we can make the algorithm more efficient than the generic
algorithms presented by Nadel because every value for an
h-variable functionally determines the values of all the ordi-
nary variables it is constrained with. When we instantiate an
ordinary variable we forward check any h-variables it is con-
strained with in the normal manner. This operation requires
a binary constraint check for every domain value of the h-
variable. Say that h-variable Hi has had some of its values



pruned. FC� must then check the domains of all of the unas-
signed ordinary variables Hi is constrained with. Say that
fX�� � � � � Xkg are the k unassigned variables constrained by
Hi. We can restore arc-consistency between Hi and each of
these variables by iterating once over the remaining domain
of Hi. Every unpruned value of Hi supports a unique value
for each of the Xj , and in �k operations per value (k binary
checks each requiring 2 operations) of Hi we can accumu-
late the set of still supported values for each of the Xj . Fi-
nally, in a second phase we iterate through the domains of
the Xj pruning all values not marked as still supported by
the first phase.

Counting all of these operations as primitive constraint
checks, and using the simplifying assumption that each of
the variables in the original non-binary CSP has an identical
domain size, we obtain the following result.

Proposition 1 Given any variable ordering strategy for the
non-binary CSP, there exists an ordering strategy such that
FC� applied to the hidden representation will never visit
more nodes than FC applied to the non-binary CSP, and
it will perform at most maxmi��

�
�Arity�Ci� � ��kCik �

Arity�Ci�
�

as many checks.

The variable ordering employed is exactly the same as that
used by FC on the non-binary representation. In particular,
we delay instantiating all the h-variables until all of the ordi-
nary variables are instantiated. Once all of the ordinary vari-
ables have been instantiated, and we have not experienced
a domain wipe-out, each h-variable will have its domain re-
duced down to one value. In fact the values assigned to the
other variables constitute a solution, so search can be termi-
nated prior to visiting any of the h-variables.

These results shed some light on the hidden representa-
tion. We see that using the hidden imposes an overhead over
direct use of the non-binary representation. Although this
overhead is only a multiplicative factor, it can be orders of
magnitude: non-binary constraints can often contain a large
number of satisfying tuples. On the other hand, if we em-
ploy the FC� algorithm we can potentially save an exponen-
tial amount of work by visiting exponentially fewer nodes.
When this potential is realized the savings can outweigh the
multiplicative overhead. In the next section we show empir-
ically that both outcomes are possible, and we provide some
guidelines as to when conversion to the hidden might be ef-
fective.

Experimental Comparisons
We now show some experimental results comparing FC on
the representations. Throughout this section, FC refers to
an implementation of the forward checking algorithm which
dynamically orders the variables by selecting as the next
variable to instantiate the variable with the minimum re-
maining values (ties are broken by choosing the variable
that participates in the most constraints) and FC� refers to
an implementation of the algorithm of Definition 2 for the
hidden variable method. In FC� we also employ the min-
imum remaining values heuristic. In particular, we allow
h-variables to be instantiated prior to ordinary variables, if

they are selected by the heuristic�. Finally, we count the
checks performed by FC and FC� in the manner described
in the previous section with one refinement: when solving
the dual, we charged one constraint check for each shared
variable. For example, with reference to Figure 1, checking
the constraint between Y� and Y� costs one and checking the
constraint between Y� and Y� costs two.

To systematically examine the effect of the cardinalities
of the constraints and the number of constraints on the cost
of solving a non-binary CSP and its corresponding binary
representations, we use the following model of a random
non-binary CSP. A random CSP has n variables each with
domain size of d, and m constraints each with arity k and
t satisfying tuples. Each constraint is over a subset of vari-
ables chosen with uniform probability from the

�
n
k

�
possible

subsets, and each constraint contains �  t  dk tuples
chosen at random.
Dual Graph Representation. Figure 3 shows the effect
of the number of tuples in the constraints and the number
of constraints on the cost of solving a random non-binary
CSP and its dual. Specifically, for each parameter settings
we generated and solved an ensemble of non-binary prob-
lems and their dual representations (a minimum of 30 prob-
lems in each ensemble). We then took the ratio of the me-
dian consistency checks needed to solve the dual represen-
tations over the median consistency checks needed to solve
the non-binary CSPs. Finally, we constructed the contour
lines shown in the figures using cubic spline interpolation
on our data points. For example, the left most contour lines
in the figures represent the points in the space of random
problems where solving the dual was 10� faster (in terms
of consistency checks) than solving the non-binary CSP, and
everything to the left of the left most line means the dual was
at least 10� faster. The experiments show that the dual can
be an efficient representation.

We now consider two classes of problems, random 3-SAT
and crossword puzzles, and show that the maps constructed
from our experimental results over the space of random non-
binary problems have predictive power and so provide guid-
ance for selecting between the non-binary and dual CSP
models of a problem. The results for random 3-SAT are
shown in Table 1. It can be seen that the cost ratios for solv-
ing the original CSP and its dual representation fit well with
the predictions of the order of magnitude curves (see Fig-
ure 3, k � �, at the point 7/8 on the x-axis (each of the con-
straints has 7 out of the 8 possible tuples)). This provides
some evidence that the experimental predictions scale for
larger n. The results for 20 crossword puzzles (Gin93) are
shown in Table 2. In the non-binary formulation of cross-
word puzzles there is a variable for each letter to be filled
in and the constraints are the words in the Unix dictionary.
There are few constraints and each constraint allows few of
the possible tuples: at most 4000 out of the ��k possible tu-
ples for k � �� ����, where 10 is the length of the longest
word in the puzzles to be filled. The order of magnitude

�We delay instantiating any h-variables all of whose constrained
variables have already been assigned. When this happens the h-
variable has become redundant and need not be further considered.
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Figure 3: Order of magnitude curves for median cost of dual and original CSP when n � ��, d � �� ��, and k � �� 
. From
left to right the curves mean: (i) dual is 10� better, (ii) dual is 2� better, (iii) dual and non-binary cost the same, (iv) dual is
2� worse, and (v) dual is 10� worse.

Table 1: Effect of the ratio of clauses to variables (m/n)
on the ratio of the average number of consistency checks
performed to solve the dual representation over the average
number of consistency checks performed to solve the non-
binary representation (cost rat.), when finding first solution
to random 3-SAT problems with 100 Boolean variables.

m/n 1/4 1/2 1 2 4 8 16 32
cost rat. 0.9 1.5 2.5 4.2 31 33 38 44

curves predict that the dual representation should be more
and more efficient as the length of the words in the puzzle
grows. This is indeed the case and on the larger problems
the dual is at least 1000 times faster.

Hidden Variable Representation. Figure 4 shows the ba-
sic behavior of the hidden variable representation on random
CSPs. Over a wide range of different values for n, d, k, and
m, we have found that it is the number of satisfying tuples

in the constraint that determines the relative effectiveness of
the hidden variable CSP. To determine which representation
is superior, the hidden variable or the original non-binary,
we plot the ratio of the average number of constraint checks
performed by each algorithm. We run a sufficient number
of problems at each data point to obtain averages that have
two statistically significant digits. To present the data most
effectively we plot the log (base 10) of this ratio: at zero the
representations have approximately the same performance,
positive numbers represent the number of orders of magni-
tude the hidden outperforms the non-binary, while negative
number similarly represent the number of orders of magni-
tude the non-binary outperforms the hidden.

The plot shows three sample problem classes, each spec-
ified by the numbers hn� d� k�m� ti. For each problem class
we vary the number of satisfying tuples in each constraint
from near 0% to near 100%. In the first two problem classes
the number of constraints is 10% or less the total possible,
while for the last class the number of constraints is 90% the
total possible. The graphs show what we have also seen in



Table 2: Number of consistency checks performed when
finding one solution to crossword puzzles. The absence of an
entry indicates that the problem could not be solved within

 � ��	 consistency checks. For the dual problem, n is the
number of variables and m is the number of constraints; for
the non-binary problems, m is the number of variables and
n is the number of constraints.

original dual size
puzzle cc’s cc’s n m

1 52 292 4 3
2 138 3,267 6 8
3 185 11,404 8 14
4 208 10,481 12 14
5 12,509 18,686 10 19
6 12,636 19,876 14 21
7 556,660 28,962 14 23
8 5,780,710 27,656 20 30
9 47,167 26 41
10 224,258 18 35
11 29,777 24 40
12 729,125 18 38
13 28,446,460 50,281 28 52
14 72,307 34 65
15 254,381 28 62
16 258,780 46 95
17 178,885 68 135
18 248,877 88 180
19 587,826 86 177
20 80 187

other problem classes: if the constraints have few satisfy-
ing tuples the hidden variable CSP can outperform the non-
binary CSP by many orders of magnitude; the performance
advantage of the hidden variable CSP decreases as we in-
crease the number of satisfying tuples in the constraints and
there is some threshold beyond which the non-binary be-
comes more effective; and finally, as our theory predicts the
potential gain of the non-binary over the hidden is much less
than the other way around. These results makes sense in
terms of what FC� is doing. As the constraints have fewer
and fewer satisfying tuples the FC� is able to detect a larger
and larger number of extra deadends over FC running on the
non-binary.

It is important to note that hard problems exist at all val-
ues of t. In particular, the hidden variable representation
can be superior on hard problems: when the constraints con-
tain a small number of satisfying tuples we can generate
hard problems by increasing n or by decreasing m, both
of these changes decrease the number of constraints each
variable participates in. In Figure 5 we plot the average
number of constraint checks required by FC� to solve the
hidden variable CSP and the average number of checks re-
quired by FC to solve the equivalent non-binary CSP. In this
plot we vary the number of constraints m. The graph shows
something like the classic easy/hard/easy regions (smoothed
out to some extent by our use of a log scale) as the varying
number of constraints change the problems from solvable
to unsolvable, and we see that although FC� on the hidden
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Figure 4: Log of the number of constraints checks per-
formed by FC� on the hidden divided by the number of con-
straint checks performed by FC on the non-binary.

variable CSP never finds this particular problem class very
difficult it becomes quite difficult for FC on the non-binary:
at the peak (when we have a total of 10 constraints) it re-
quires about 30 million checks on average to solve a prob-
lem vs. an average of 16 thousand checks for the hidden.
More importantly is the fact that in this peak area FC on the
non-binary requires in excess of 500 million checks on 3%
of the problems while using the hidden the same problems
were solved using less than 35 thousand checks. This phe-
nomenon seems to be related to the exceptionally hard prob-
lems reported by Smith and Grant in (SG95). In particular, it
indicates that for this problem class the distribution of con-
straint checks performed by FC� displays a lower variance
as well as a lower mean.

Conclusions and Future Work
We examined how well the FC algorithm performs on a
non-binary CSP in comparison to its performance on binary
translations of the CSP.

Our experiments show that the dual graph representation
can be more efficient by orders of magnitude, when the num-
ber of constraints is low relative to the number of variables,
and the constraints are restrictive. As well, for the hidden
variable representation, we showed that a modified forward
checking algorithm which we call FC�, can sometimes per-
form exponentially better than simply using FC on the non-
binary, and sometimes it can be outperformed by a bounded
(but sometimes large) amount. We have also provided bet-
ter insights into the behavior and nature of the two binary
translations. Translating a non-binary CSP involves some
overhead, and we view this work as providing some initial
intuitions as to when such a translation is worthwhile. Em-
pirically, we have shown that the number of satisfying tuples
in the constraints is perhaps the most important factor in de-
termining how worthwhile the translation is.

An important question that we have not addressed here is
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the relationship between the two binary translations. When
is the dual representation to be preferred to the hidden vari-
able representation and vice versa? Are there any theoretical
results that can be proved about their relative behaviour? We
intend to address these questions in future work.

One thing, however, we feel that our data has demon-
strated is that the translation to the binary has promise as
a solution technique for non-binary CSPs. In the end, how-
ever, it could well be that insights about when these trans-
lations perform better, can be carried over directly to the
non-binary case, so that improved methods for solving non-
binary CSPs can be developed that avoid the overhead of the
translation entirely. It should be clear, however, that study-
ing and understanding these binary translations is an essen-
tial prerequisite to achieving such insights.
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