The Expected Value of Hierarchical Problem-Solving

*

Fahiem Bacchus and Qiang Yang
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Abstract

In the best case using an abstraction hierarchy in
problem-solving can yield an exponential speed-up in
search efficiency. Such a speed-up is predicted by var-
ious analytical models developed in the literature, and
efficiency gains of this order have been confirmed empir-
ically. However, these models assume that the Down-
ward Refinement Property (DRP) holds. When this
property holds, backtracking never need occur across
abstraction levels. When it fails, search may have to
consider many different abstract solutions before find-
ing one that can be refined to a concrete solution. In
this paper we provide an analysis of the expected search
complexity without assuming the DRP. We find that
our model predicts a phase boundary where abstraction
provides no benefit: if the probability that an abstract
solution can be refined is very low or very high, search
with abstraction yields significant speed up. However,
in the phase boundary area where the probability takes
on an intermediate value search efficiency is not nec-
essarily improved. The phenomenon of a phase bound-
ary where search is hardest agrees with recent empirical
studies of Cheeseman et al. [CKT91].

Introduction

In this paper we examine the benefits of hierarchical
problem-solving. Hierarchical problem-solving is ac-
complished by first searching for an abstract solution
to the problem and then using the intermediate states
of the abstract solution as intermediate goals to de-
compose the search for the non-abstract solution. This
technique has been used in a number of problem-solvers

in AT [NS72, Sac74, Sac77, Ste81, Tat77, Wil84].

This work is supported by grants from the Natural
Science and Engineering Council of Canada and by the
Institute for Robotics and Intelligent Systems. The au-
thors’ e-mail addresses are fbacchus@logos.waterloo.ca
and qyang@logos.waterloo.ca.

It has long been known that the identification of in-
termediate states which decompose a problem can sig-
nificantly reduce search [NSS62, Min63]. However, the
analysis of the benefit yielded by decomposition, pro-
vided in these works, ignores the cost of finding the in-
termediate states. In hierarchical problem-solving these
states are found by searching in an abstract version
of the problem-space. The abstract space is smaller
and hence the benefit gained by decomposing the non-
abstract space often outweights the cost of searching
this space. Empirical evidence of the net benefit of the
hierarchical approach has been provided by ABSTRIPS
[Sac74] and by the work of Newell and Simon [NS72].
However, only small problems and limited domains were
considered by these works.

Korf [Kor85] has provided an analysis of the bene-
fits of using macro operators as the abstraction device.
With this type of abstraction, however, once we find a
solution in the abstract space (the space generated by
the macro operators) we have a non-abstract solution:
no further search is required. Nevertheless, Kort’s anal-
ysis can be viewed as demonstrating that searching for
an abstract solution is significantly more eflicient that
searching for a non-abstract solution.

Knoblock’s analysis of hierarchical problem-solving
[Kno91] is the most detailed to date, and has had a sig-
nificant influence on this work. However, his analysis
assumes that backtracking does not occur across ab-
straction levels: once an abstract solution is found we
need never search for another one. Hence, Knoblock’s
work can be viewed as demonstrating that searching
the decomposed non-abstract space plus searching the
abstract space once yields a significant net benefit over
searching the non-abstract space.

In previous work [BY91] we have identified this as-
sumption as an important property of an abstraction
hierarchy, and have termed it the downward refinement
property (DRP). Formally, this property holds when ev-

ery abstract solution can be refined in a useful manner?

to the next lower level of abstraction. This implies that
an abstract solution can always be refined to a con-
crete solution without backtracking across abstraction
levels, given that a concrete-level solution to the plan-
ning problem exists.

When the DRP fails the planner may expend search
effort trying to refine a particular abstract solution be-
fore discovering that it is unrefineable. This would
cause backtrack in the abstraction hierarchy to find an
alternate abstract solution. Search would then continue
by trying to refine this new abstract solution. Clearly,
if such backtracking occurs frequently the overhead of
searching the abstraction hierarchy could overwhelm
the benefits of using abstraction. In fact, experiments
with ABSTRIPS and ABTWEAK [YT90] have shown that
abstraction only increases search efficiency in hierar-
chies where the probability is high that an abstract so-
lution is refineable (i.e., where we do not have to do
much backtracking in the abstraction hierarchy). In hi-
erarchies where this is not the case, using abstraction
can in fact decrease the efficiency of the planner.?

In order to understand this phenomenon more thor-
oughly we provide an analytical model of search
complexity® as a function of this probability, i.e., the
probability that an abstract solution can be refined.
This also provides a more realistic analysis of the ben-
efits of abstraction in problem-solving: unlike previous
models it takes the important factor of search through
the abstraction hierarchy into consideration.

Our analysis demonstrates the existence of two quali-
tatively distinct cases. When we have the DRP or when
the probability that an abstract solution can be refined
is low, search complexity does not depend on the shape
of the abstraction space, and in fact it can be made lin-
ear 1f the number of levels of abstraction can be made
large enough. On the other hand, in the middle region,
where the DRP fails and the probability of refinement is
not that small, search complexity depends on both the
number of levels of abstraction and on the branching

! There is a formal characterization of “useful” which en-
sures that the work done at the abstract level is not undone
during refinement. Such refinements are termed monotonic.
See [KTY91] and [BY91] for more details.

2This effect is in part due to the additional (constant
factor) overhead involved in using abstraction.

3There have been other analytical models of search com-
plexity presented in the literature, e.g., [KP83, MP91].
However, these works have addressed fundamentally differ-
ent search problems. For example, the works cited consider
the problem of searching for an optimal path in an infinite
binary tree with branches of cost 1 and 0. Search through a
hierarchy of abstraction spaces, considered here, cannot be
mapped to this model.

factor in the abstraction space. In this region increas-
ing the number of levels of abstraction is not always a
useful option as that also increases search complexity.

An additional contribution of this work is that it pro-
vides an analytical model that supports the recent em-
pirical results reported by Cheeseman et al. [CKT91].
At the extremes where most abstract solutions can be
refined and where very few can, search is relatively easy.
In the former case backtracking is minimized, while in
the latter case it does not require much work to rec-
ognize that you are on the wrong path, i.e., backtrack-
ing is cheap. The middle region, however, represents
a phase boundary where a larger proportion of hard
search problems lie: average search complexity rises in
this region. Here, a significant fraction of the abstract
solutions are unrefineable, and it can take a great deal
of work to detect that you are on a bad path.

In the sequel we will first present the basic problem-
solving framework under which we are working, and
identify the assumptions which make the analysis
tractable. We then present the details of our analy-
sis. From the model we are able to generate various
predictions and we discuss those next. Finally, we close
with a discussion of the implications of the work and
some conclusions.

The Problem-Solving Framework

The problem-space is defined by a collection of states
and operators which map between the states. A prob-
lem consists of an initial state and a goal state, and it
is solved by searching for a sequence of operators whose
composition will map the initial state to the goal state.
In hierarchical problem-solving an abstract version of
the original, ground or concrete, problem-space is used.
The abstract version is generated via some reduction or
generalization of the operators or states in the ground
space. For example, in ABSTRIPS the operators are gen-
eralized by dropping some of their preconditions; this
has the effect of increasing the domain of the function
they define on the states.

A hierarchical problem-solver first searches the ab-
stract space for a solution. However, this solution will
no longer be correct when we move to a lower level of
abstraction; instead it can only serve as a skeletal plan
for the lower level. A correct solution at the lower level
is generated by refineing the abstract plan, and this is
accomplished by inserting additional operators between
the operators in the abstract plan. If we have m oper-
ators in the abstract plan, refinement to the next lower
level can be viewed as solving m “gap” subproblems.
Solving the gaps amounts to finding new sequences of
operators which when placed between the operators of

the abstract plan generate a correct solution at the
lower level.

The Analytical Model

The Tree of Abstract Plans

The total search space explored by a hierarchical
problem-solver can be viewed as a tree generated by the
abstraction hierarchy. In this tree each node at level ¢
represents a complete -th level abstract plan. The chil-
dren of a node represent all of the different refinements
of that plan at the next (lower) level of abstraction. The
leaf nodes are complete concrete-level plans. The task
in searching through the abstraction space is to find a
path from the root down to a leaf node representing a
correct concrete-level solution. Each node on the path
must be a legal i-th level abstract plan to the problem at
hand and must be a refinement of the ¢+ 1-level abstract
plan represented by its parent. The work in searching
this tree comes from the work required to find the plan
at each node and will depend on the number and depth
of the nodes the search examines.

The root represents a special length one solution to
every problem: a universal plan. Its presence is sim-
ply a technical convenience. The levels of the tree are
numbered {n,...,0} with the root being at level n and
the leaves at level 0. Hence, discounting the universal
plan at level n, our abstraction hierarchy has n levels.
To make our analysis useful we make some additional
assumptions.

First, we assume that the abstraction hierarchy is reg-
ular. In particular, we assume that it takes approxi-
mately k new operators to solve every gap subproblem
where k is constant across abstraction levels. Refineing
a solution to the next level amounts to solving a gap
subproblem between every pair of operators; hence the
refined solution will be % times longer. Since the root
is a solution of length 1, this means that the solutions
at level 7 are of length k" ~%, and that the concrete-level
solution is of length £", which we also denote by 4.

As this assumption degenerates the value of abstrac-
tion degenerates. If we end up having gap subprob-
lems which require solutions of length O(¢) instead of
O(k) = O(¢*/™), then solving them will require search
of O(b*) where b is the branching factor generated by
the operators in the ground space.* This is no better
than search without abstraction.

Second, we assume that the individual gap subprob-
lems can be solved without significant interaction. If,
say, r gap subproblems interact we will have to search
for a plan that solves all of them simultaneously. Such a

*The branching factors of the abstract spaces are lower,
but we can use b as an upper bound.

plan would be of length O(rk) and would require O (b"*)
search. As rk approaches £ we once again degenerate
to search complexity of O(b%) where abstraction yields
no benefits.

Our two assumptions, then, are basic assumptions
required before the abstraction hierarchy yields any in-
teresting behavior at all. When these assumptions fail
the abstraction hierarchy is simply not decomposing
the problem effectively. Knoblock [Kno91] also relies
on these assumptions, but his assumption of indepen-
dent subproblems is phrased as an assumption that
backtracking only occurs within a subproblem. This is
significantly stronger as it also prohibits backtracking
across abstraction levels.

The tree of abstract plans will have a branching factor
that, in general, will vary from node to node. This
branching factor is the number of i—1 level refinements
possible for a given 2 level solution, i.e., the number
of children a node at level ¢ has. Let the maximum
of these branching factor be B. For simplicity we will
use B as the branching factor for all nodes in the tree.
Note, B has no straightforward relationship with b the
branching factor generated by the operators.

The Probability of Refinement

If a hierarchy has the DRP then every solution at ab-
straction level ¢ can be refined to a solution at abstract
level i—1. A reasonable way in examine the behavior of
hierarchies in which the DRP fails is to assign a proba-
bility, p, to the event that a given i-th level solution can
be refined to level i—1. DRP now corresponds to the
case p= 1. If p = 1 we need never reconsider the initial
part of a path of good solutions. The DRP guarantees
we can extend the path down to level 0. If p < 1, how-
ever, we might build a path of correct solutions from
the root down to a node at level 4, and then find, upon
examining all of its children, that it is not refineable to
the next level. This will force a backtrack to the penul-
timate node at level ¢ + 1 to find an alternate level 2
solution, one which is refineable. This may cause fur-
ther backtrack to level ¢ 4+ 2, or search may progress to
lower levels before backtracking occurs again.

We are interested in the complexity of search when a
ground-level solution exists. In this case it follows from
the upward solution property [Ten89] that there will be
at least one path of correct solutions in the tree from
the root to a leaf node. Qur task, then, is to explore
the average case complexity of search in abstraction hi-
erarchies in which (1) the probability that a given node
in the abstraction search tree can be refined is p, and
(2) there is at least one good path, i.e., a path of good
nodes, from the root to a leaf in the tree.

Average case complexity can be found by considering
randomly generated abstraction trees. Our tree has a
constant branching factor B and height n + 1. Hence,
it has N = BnB+_11_1 nodes. A random tree is generated
by labeling each node independently as being refineable
(good) with probability p, or not refineable (bad) with
probability 1 — p. Each of the 2%V distinct trees that
can be generated by this process has probability p9(1—
p)V 9, where g is the number of good nodes. Some of
these trees will not contain a good path from the root
to a leaf. We remove these trees, and renormalize the
probabilities of the remaining trees so that they sum to
1. That is, we take the conditional probability.

One other piece of notation we use is b(K, N, P) to
denote the binomial distribution, i.e., the probability
of K successes in N independent Bernoulli trials each
with probability P of success.

Analytic Forms

Now we present the analytic forms which result from
an analysis of the above model. The reader is referred
to our full report for the proofs of the following results
[BY94].

1) Let NodeWork(z) be the amount of work required to
refine a node at level 2. At level n we have one subprob-
lem to solve which requires O(b*) computation. At level
n—1 the nodes are abstract solutions of length &, result-
ing in k subproblems each requiring O(b*) computation.
This trend continues to level 1, but at level 0 the solu-
tions are concrete and do not need to be refined. Hence,

we have NodeWork (1) = k"% and NodeWork(0) = 0.

2) Let F(¢) be the probability that a random subtree
rooted at level ¢ fails to contain a good path from its
root to a leaf. A subtree can fail to contain a good path
in two exclusive ways: (a) the root could be a bad node
or (b) the root could be good but somewhere among its
descendents all the good paths terminate before reach-
ing level 0.

The second case can be analyzed using the theory of
branching processes [Fel68, AN72]. If the root is good it
initlates a branching process where it might have some
number of good children and they in turn might have
some number of good children and so on. We can con-
sider the production of bad children as points were the
process terminates. The number of good children of the
root is binomially distributed: b(m, B, p) is the proba-
bility of having m good children, and its generating
function is G(s) = (¢ + ps)B,® where ¢ = 1 — p. Let

®When this generating function is expanded as a power
series in s the coefficient of s™ is equal to the probability
of m good (refineable) children among the B offspring, i.e.,
b(m, B, p).

Gi(s) = G(s) and G; = G;_1(G(s)), i.e., the j-th iter-
ate of G(s).

From the theory of branching processes it is known
that the probability that there are no path of i good
nodes from the root is G;(0). For example, the prob-
ability of there being no paths of 2 good nodes from
the root (i.e., the probability of no good child having a
good child) is G2(0) = G(G(0)) = G(¢®) = (¢ +pe®)5.

Putting (a) and (b) together we obtain: F(i) =
q + p[Gi(0)], and we can compute F(¢) directly for any
value of 7 and p. From this result and known results
about the asymptotic behavior of branching processes
we can lidentify three regions of importance: when
p < 1/B we have lim; ;o F(¢) = 1; when 1/B < p <1
we have 0 < limy, o F(4) < 1 with the value of the
limit decreasing as p increases; and when p = 1 we

have Vi.F () = 0.

3) Let BadTreeWork(4) be the expected amount of com-
putation required to search a subtree with root at
level ¢ that does not contain a good path. To ensure
that such a tree is a dead end we have to search un-
til we have exhausted all candidate good paths. We
always have to expand the root which is at level 4
and hence requires NodeWork(i) = k"~ 'b* computa-
tion. With probability p the root is refineable and
we will then have to examine all of the B subtrees
under the root, all of which must be bad (otherwise
the initial tree would not be bad). This process must
stop by level 1, as if a node at level 1 is good this
means that it can be refined to a good ground-level so-
lution and the initial tree would not be bad. Hence,
BadTreeWork(0) = 0, and we obtain the recurrence:
BadTreeWork(i) = k"~ 'b* + pB(BadTreeWork(i—1)).
By expanding the first few terms of this recurrence we
can find a general expression:

. kn—i (PBk)' —1
BadTreeWork(:) = bk DBk 1 (1)
4) Let GoodTreeWork(i) be the expected amount of
computation required to search a good subtree with root
at level 4, i.e., a subtree which contains at least one
good path from its root to a leaf. Our ultimate aim is
to analyze GoodTreeWork(n). To examine a good tree
we have to expand its root node. Then we must search
the subtrees under the root, looking for a good subtree
rooted at the next level. Once we find such a subtree
we never need backtrack out of it. (There may however,
be any amount of backtracking involved while search-
ing the bad subtrees encountered before we find a good
subtree.)

The root has B children, and hence between 1 and
B good subtrees under it. Let m be the number of

good subtrees under the root. The probability of m
taking any particular value is b(m, B,1— F(i—1)): each
subtree can be viewed to be the result of a Bernoulli
trial where the probability of failure (a bad subtree) is
F(i—1). However, we also know that the case m = 0 is
impossible, and must renormalize the probabilities by
dividing them by 1—5(0, B,1— F(i—1)). If there are in
fact m good subtrees, then by it can be proved [BY94]
that on average we will have to search (B —m)/(m +
1) bad subtrees before finding a good subtree. The
expected number of bad subtrees that must be searched
can then be computed by summing the average number
of trees for each values of m times the probability of
that value of m holding.

The observations above can be put together to yield
a recurrence which can be simplified to the following
form.

GoodTreeWork(7) = (2)
ki 1 i—1
n—ipk B . .
k™" (—k —) + 2 BadTreeWork (5)T'(j).

In this equation T'(¢) represents the average number of
bad subtrees we need to examine at level 2. A closed
form for I'(4) involving B and F (%) can be given [BY94].

Predictions of the Model

We can now examine what these expressions tell us
about the expected amount of work we need to do
when doing hierarchical problem-solving: we examine
GoodTreeWork(n) under various conditions. First it is
useful to know the following results derived in the full
report [BY94]:

n—1 O(b* k1) p<1/B
Z BadTreeWork(j) = ¢ O(b*k"~1n) p=1/B
P Ok~ (pB)"~2) p>1/B

(3)
1) In the region 0 < p < 1/B, lim; ;o F (i) = 1. It can
be shown that I'(¢) — (B —1)/2 as F(i) = 1.
Applying Eq. 3 we obtain:

kpn—1
GoodTreeWork(n) = { ggzkz“_lzl) ig i 1 (4)
2) In the region 1/B < p < 1, lim;_, o F(4) lies between
1 and 0, decreasing as p increases. For any fixed value
of p and B it can be shown that that I'(¢) tends to a
constant value independent of n, and that this value lies
between 0 and (B — 1)/2. Applying Eq. 3 we obtain:

GoodTreeWork(n) = OOB* k"~ (»B)"~%) (5)

3) Finally, when p = 1 the DRP holds and Vi.F (i) =
0. Hence, I'(:) = 0 for all ¢ and Eq. 3 simplifies to

Er-ipk (’2%11) Evaluating this expression at ¢ = n we

obtain:
GoodTreeWork(n) = ka(k"_l). (6)

Implications of the Analysis

There are two cases to consider: n constant and n vari-
able. In certain domains we can make n, the number
of abstraction levels, vary with £. For example, in the
Towers of Hanoi domain we can place each disk at a
separate level of abstraction [Kno91]. In other domains,
e.g., blocks world, it is not so easy to construct a vari-
able number of abstraction levels, and n is generally
fixed over different problem instances.

The length of the concrete-level solution is equal to
k™. Let £ = k™. We want to express our results in
terms of £. If we can vary n with £ then we can ensure
that k remains constant and we have that n = log, (£).
In this case, b* will become a constant. Otherwise, if
n is constant, k = /2 will grow slowly with £ In
this case, b* = bVt grows exponentially with £, albeit
much more slowly that b¢ (c.f., [Kno91]). This essential
difference results in different asymptotic behavior for
the two cases n variable and n constant. Table 1 gives
the results of our analysis for these two cases expressed
in terms of the length of solution 4.

Non-abstract search requires O(b%); hence, it is evi-
dent from the table that when 0 < p < 1/B and when
p = 1 abstraction has a significant benefit. If we can
vary n we can obtain an exponential speed-up, and even
if n 1s not variable, we still obtain a significant speed
up by reducing the exponent £ to its n-th root. Our
result for p = 1 agrees with that of Knoblock [Kno91]:
here we have the DRP and all of his assumptions hold.
Our results for the region 0 < p < 1/B, however, ex-
tend his analysis, and indicate that abstraction is useful
when the probability of refinement is very low. What
is happening here is that although the number of bad
subtrees that must be searched is large, it does not re-
quire much effort to search them: most paths die out
after only a small number of levels.

As p approaches 1/B we see that the search com-
plexity increases by a factor of n, and as we move to
the region 1/B < p < 1 things are worse: we increase
by a factor, (pB)", that is exponential in n. In these
regions it 1s not always advantageous to increase the
number of abstraction levels n, especially in the region
1/B < p < 1. As p increases in the region 1/B < p < 1
search first becomes harder and then becomes easier,
as the number of bad subtrees to be searched drops

P [0,1/B) | 1/B (1/B,1) 1
Variable n || O(1) O(llogy (1)) | O(l(pB)ros=) | O(l)
Constant n || O(YY) | 0(b¥n) | oV (pB)*) | OV

Table 1: Search Complexity for Different Regions of Refinement Probability.

off. Search complexity varies continuously until it again
achieves the low complexity of p = 1 where the DRP
holds.

Our analysis also tells us that if the number of pos-
sible refinements for an abstract solution (B) is large,
then searching the abstraction tree is more expensive in
the worst region 1/B < p < 1. This is to be expected:
the abstraction tree is bushier and in this region we have
to search a significant proportion of it. Also of interest
is that B does not play much of a role outside of this
region, except, of course, that it determines the size of
the region. Hence, if we know that the DRP holds,® or
if the probability of refinement is very low, we do not
have to worry much about the shape of the abstraction
tree. However, without such assurances it is advanta-
geous to choose abstraction hierarchies where abstract
solutions generate fewer refinements. For example, this
might determine the choice of one criticality ordering
over an alternate one in ABSTRIPS-style abstraction.

A question that remains is how does one determine
the refinement probability p? One method is to use
a learning algorithm to keep track of the statistics of
successful and unsuccessful refinements. Such statistics
can be used to estimate p. Once such estimates are ob-
tained they can be used to measure the merit of a partic-
ular abstraction hierarchy. It then becomes possible to
construct an adaptive planner that can use these mea-
surements to decide whether or not to use abstraction,
to decide between alternate abstraction hierarchies, or
even to automatically construct good abstraction hier-
archies. We have implemented statistics gathering in a
working planning system, and are currently investigat-
ing the design of an adaptive planner. We have also
recently completed a series of experiments to provide
empirical confirmation of the results presented here.
These developments will be reported on in the full re-
port [BY94].

References

K. B. Athreya and P. E. Ney. Branching Pro-
cesses. Springer-Verlag, New York, 1972.

[ANT72]

$Various tests for detecting if the DRP holds of an ab-
straction hierarchy are given in [BY91].

[BY91]

[BY94]

[CKT91]

[Fel68]

[Kno91]

[Kor85]

[KP83]

[KTY91]

[Min63]

[MP91]

Fahiem Bacchus and Qiang Yang. The down-
ward refinement property. In Procceedings
of the International Joint Conference on Ar-
tifical Intelligence (LJCAI), pages 286-292,
1991.

Fahiem Bacchus and Qiang Yang. Downward
refinement and the efficiency of hierarchical
problem solving. Artificial Intelligence, 1994.
(60 pages in manuscript, to appear).

Peter Cheeseman, Bob Kanefsky, and
Willian M. Taylor. Where the really hard
problems are. In Procceedings of the Inter-
national Joint Conference on Artifical Intel-

ligence (IJCAI), pages 331-337, 1991.

William Feller. An Introduction to Probability
Theory and Its Applications: Volume 1. John
Wiley and Sons, New York, 1968.

Craig Knoblock. Search reduction in hierar-
chical problem solving. In Proceedings of the
AAAI National Conference, pages 686-691,
1991.

Richard Korf. Planning as search: A quanti-
tative approach. Artificial Intelligence, 33:65—
88, 1985.

R. M. Karp and J. Pearl. Searching for an
optimal oath in a tree with random costs. Ar-

tifictal Intelligence, 21:99-116, 1983.

Craig Knoblock, Josh Tenenberg, and Qiang
Yang. Characterizing abstraction hierarchies
for planning. In Proceedings of the AAAI Na-
tional Conference, pages 692-697, Anaheim,
CA., 1991.

Marvin Minsky. Steps towards artificial in-
telligence. In Edward A. Feigenbaum, edi-
tor, Computers and Thought, pages 406-450.
McGraw-Hill, New York, 1963.

C. J. H. McDiarmid and G. M. A. Provan. An
expected-cost analysis of backtracking and
non-bactracking algorithms. In Procceedings

[NS72]

[NSS62]

[SacT4]

[Sac?T]

[Ste81]

[Tat77]

[Ten89]

[Wils4]

[YT90]

of the International Joint Conference on Ar-
tifical Intelligence (LJCAI), pages 172-177,
1991.

Allen Newell and A. Simon, Herbert. Human
Problem Solving. Prentice-Hall, Englewood
Cliffs, N.J., 1972.

Allen Newell, J. C. Shaw, and Herbert A.
Simon. The processes of creative thinking.
In COmtemporary Approaches to Creative
Thinking, pages 63-119. Altherton Press,
New York, 1962.

Earl Sacerdoti. Planning in a hierarchy of
abstraction spaces. Artificial Intelligence,

5:115-135, 1974.

Earl Sacerdoti. A Structure for Plans and
Behavior. Elsevier, Amsterdam, 1977.

Mark Stefik. Planning with constraints. Ar-
tificial Intelligence, 16:111-140, 1981.

Austin Tate. Generating project networks.
In Procceedings of the International Joint
Conference on Artifical Intelligence (LJCAI),
pages 888-893, 1977.

Josh Tenenberg. Inheritance in automated
planning. In Ronald J. Brachman, Hector J.
Levesque, and Raymond Reiter, editors, Pro-
ceedings of the First Conference on Principles
of Knowledge Representation and Reasoning.
Morgan Kaufmann, San Mateo, California,

1989.

David Wilkins. Domain-independent plan-
ning: Representation and plan generation.

Artificial Intelligence, 22:269-301, 1984.

Qiang Yang and Josh D. Tenenberg.
Abtweak: Abstracting a nonlinear, least com-
mitment planner. In Proceedings of the AAAI
National Conference, pages 204-209, 1990.

