
The Expected Value of Hierarchical Problem�Solving�

Fahiem Bacchus and Qiang Yang
Department of Computer Science

University of Waterloo

Waterloo� Ontario� Canada

N�L �G�

Abstract

In the best case using an abstraction hierarchy in
problem�solving can yield an exponential speed�up in
search e�ciency� Such a speed�up is predicted by var�
ious analytical models developed in the literature� and
e�ciency gains of this order have been con�rmed empir�
ically� However� these models assume that the Down�
ward Re�nement Property �DRP� holds� When this
property holds� backtracking never need occur across
abstraction levels� When it fails� search may have to
consider many di	erent abstract solutions before �nd�
ing one that can be re�ned to a concrete solution� In
this paper we provide an analysis of the expected search
complexity without assuming the DRP� We �nd that
our model predicts a phase boundary where abstraction
provides no bene�t
 if the probability that an abstract
solution can be re�ned is very low or very high� search
with abstraction yields signi�cant speed up� However�
in the phase boundary area where the probability takes
on an intermediate value search e�ciency is not nec�
essarily improved� The phenomenon of a phase bound�
ary where search is hardest agrees with recent empirical
studies of Cheeseman et al� �CKT�
��

Introduction

In this paper we examine the bene�ts of hierarchical
problem�solving� Hierarchical problem�solving is ac�
complished by �rst searching for an abstract solution
to the problem and then using the intermediate states
of the abstract solution as intermediate goals to de�
compose the search for the non�abstract solution� This
technique has been used in a number of problem�solvers
in AI �NS��� Sac��� Sac��� Ste�
� Tat��� Wil����

�This work is supported by grants from the Natural
Science and Engineering Council of Canada and by the
Institute for Robotics and Intelligent Systems� The au�
thors� e�mail addresses are fbacchus�logos�waterloo�ca

and qyang�logos�waterloo�ca�

It has long been known that the identi�cation of in�
termediate states which decompose a problem can sig�
ni�cantly reduce search �NSS��� Min���� However� the
analysis of the bene�t yielded by decomposition� pro�
vided in these works� ignores the cost of �nding the in�
termediate states� In hierarchical problem�solving these
states are found by searching in an abstract version
of the problem�space� The abstract space is smaller
and hence the bene�t gained by decomposing the non�
abstract space often outweights the cost of searching
this space� Empirical evidence of the net bene�t of the
hierarchical approach has been provided by Abstrips
�Sac��� and by the work of Newell and Simon �NS����
However� only small problems and limited domains were
considered by these works�

Korf �Kor��� has provided an analysis of the bene�
�ts of using macro operators as the abstraction device�
With this type of abstraction� however� once we �nd a
solution in the abstract space �the space generated by
the macro operators� we have a non�abstract solution

no further search is required� Nevertheless� Korf�s anal�
ysis can be viewed as demonstrating that searching for
an abstract solution is signi�cantly more e�cient that
searching for a non�abstract solution�

Knoblock�s analysis of hierarchical problem�solving
�Kno�
� is the most detailed to date� and has had a sig�
ni�cant in�uence on this work� However� his analysis
assumes that backtracking does not occur across ab�
straction levels
 once an abstract solution is found we
need never search for another one� Hence� Knoblock�s
work can be viewed as demonstrating that searching
the decomposed non�abstract space plus searching the
abstract space once yields a signi�cant net bene�t over
searching the non�abstract space�

In previous work �BY�
� we have identi�ed this as�
sumption as an important property of an abstraction
hierarchy� and have termed it the downward re�nement
property �DRP�� Formally� this property holds when ev�



ery abstract solution can be re�ned in a useful manner�

to the next lower level of abstraction� This implies that
an abstract solution can always be re�ned to a con�
crete solution without backtracking across abstraction
levels� given that a concrete�level solution to the plan�
ning problem exists�
When the DRP fails the planner may expend search

e	ort trying to re�ne a particular abstract solution be�
fore discovering that it is unre�neable� This would
cause backtrack in the abstraction hierarchy to �nd an
alternate abstract solution� Search would then continue
by trying to re�ne this new abstract solution� Clearly�
if such backtracking occurs frequently the overhead of
searching the abstraction hierarchy could overwhelm
the bene�ts of using abstraction� In fact� experiments
withAbstrips andAbTweak �YT��� have shown that
abstraction only increases search e�ciency in hierar�
chies where the probability is high that an abstract so�
lution is re�neable �i�e�� where we do not have to do
much backtracking in the abstraction hierarchy�� In hi�
erarchies where this is not the case� using abstraction
can in fact decrease the e�ciency of the planner��

In order to understand this phenomenon more thor�
oughly we provide an analytical model of search
complexity� as a function of this probability� i�e�� the
probability that an abstract solution can be re�ned�
This also provides a more realistic analysis of the ben�
e�ts of abstraction in problem�solving
 unlike previous
models it takes the important factor of search through
the abstraction hierarchy into consideration�

Our analysis demonstrates the existence of two quali�
tatively distinct cases� When we have the DRP or when
the probability that an abstract solution can be re�ned
is low� search complexity does not depend on the shape
of the abstraction space� and in fact it can be made lin�
ear if the number of levels of abstraction can be made
large enough� On the other hand� in the middle region�
where the DRP fails and the probability of re�nement is
not that small� search complexity depends on both the
number of levels of abstraction and on the branching

�There is a formal characterization of �useful� which en�
sures that the work done at the abstract level is not undone
during re�nement� Such re�nements are termed monotonic�
See �KTY	
� and �BY	
� for more details�

�This e�ect is in part due to the additional 
constant
factor� overhead involved in using abstraction�

�There have been other analytical models of search com�
plexity presented in the literature� e�g�� �KP��� MP	
��
However� these works have addressed fundamentally di�er�
ent search problems� For example� the works cited consider
the problem of searching for an optimal path in an in�nite
binary tree with branches of cost 
 and �� Search through a
hierarchy of abstraction spaces� considered here� cannot be
mapped to this model�

factor in the abstraction space� In this region increas�
ing the number of levels of abstraction is not always a
useful option as that also increases search complexity�

An additional contribution of this work is that it pro�
vides an analytical model that supports the recent em�
pirical results reported by Cheeseman et al� �CKT�
��
At the extremes where most abstract solutions can be
re�ned and where very few can� search is relatively easy�
In the former case backtracking is minimized� while in
the latter case it does not require much work to rec�
ognize that you are on the wrong path� i�e�� backtrack�
ing is cheap� The middle region� however� represents
a phase boundary where a larger proportion of hard
search problems lie
 average search complexity rises in
this region� Here� a signi�cant fraction of the abstract
solutions are unre�neable� and it can take a great deal
of work to detect that you are on a bad path�

In the sequel we will �rst present the basic problem�
solving framework under which we are working� and
identify the assumptions which make the analysis
tractable� We then present the details of our analy�
sis� From the model we are able to generate various
predictions and we discuss those next� Finally� we close
with a discussion of the implications of the work and
some conclusions�

The Problem�Solving Framework

The problem�space is de�ned by a collection of states
and operators which map between the states� A prob�
lem consists of an initial state and a goal state� and it
is solved by searching for a sequence of operators whose
composition will map the initial state to the goal state�
In hierarchical problem�solving an abstract version of
the original� ground or concrete� problem�space is used�
The abstract version is generated via some reduction or
generalization of the operators or states in the ground
space� For example� inAbstrips the operators are gen�
eralized by dropping some of their preconditions� this
has the e	ect of increasing the domain of the function
they de�ne on the states�

A hierarchical problem�solver �rst searches the ab�
stract space for a solution� However� this solution will
no longer be correct when we move to a lower level of
abstraction� instead it can only serve as a skeletal plan
for the lower level� A correct solution at the lower level
is generated by re�neing the abstract plan� and this is
accomplished by inserting additional operators between
the operators in the abstract plan� If we have m oper�
ators in the abstract plan� re�nement to the next lower
level can be viewed as solving m �gap� subproblems�
Solving the gaps amounts to �nding new sequences of
operators which when placed between the operators of



the abstract plan generate a correct solution at the
lower level�

The Analytical Model

The Tree of Abstract Plans
The total search space explored by a hierarchical
problem�solver can be viewed as a tree generated by the
abstraction hierarchy� In this tree each node at level i
represents a complete i�th level abstract plan� The chil�
dren of a node represent all of the di	erent re�nements
of that plan at the next �lower� level of abstraction� The
leaf nodes are complete concrete�level plans� The task
in searching through the abstraction space is to �nd a
path from the root down to a leaf node representing a
correct concrete�level solution� Each node on the path
must be a legal i�th level abstract plan to the problem at
hand and must be a re�nement of the i�
�level abstract
plan represented by its parent� The work in searching
this tree comes from the work required to �nd the plan
at each node and will depend on the number and depth
of the nodes the search examines�
The root represents a special length one solution to

every problem
 a universal plan� Its presence is sim�
ply a technical convenience� The levels of the tree are
numbered fn� � � � � �g with the root being at level n and
the leaves at level �� Hence� discounting the universal
plan at level n� our abstraction hierarchy has n levels�
To make our analysis useful we make some additional
assumptions�
First� we assume that the abstraction hierarchy is reg�

ular� In particular� we assume that it takes approxi�
mately k new operators to solve every gap subproblem
where k is constant across abstraction levels� Re�neing
a solution to the next level amounts to solving a gap
subproblem between every pair of operators� hence the
re�ned solution will be k times longer� Since the root
is a solution of length 
� this means that the solutions
at level i are of length kn�i� and that the concrete�level
solution is of length kn� which we also denote by ��
As this assumption degenerates the value of abstrac�

tion degenerates� If we end up having gap subprob�
lems which require solutions of length O��� instead of
O�k� � O����n�� then solving them will require search
of O�b�� where b is the branching factor generated by
the operators in the ground space�� This is no better
than search without abstraction�
Second� we assume that the individual gap subprob�

lems can be solved without signi�cant interaction� If�
say� r gap subproblems interact we will have to search
for a plan that solves all of them simultaneously� Such a

�The branching factors of the abstract spaces are lower�
but we can use b as an upper bound�

plan would be of length O�rk� and would require O�brk�
search� As rk approaches � we once again degenerate
to search complexity of O�b�� where abstraction yields
no bene�ts�

Our two assumptions� then� are basic assumptions
required before the abstraction hierarchy yields any in�
teresting behavior at all� When these assumptions fail
the abstraction hierarchy is simply not decomposing
the problem e	ectively� Knoblock �Kno�
� also relies
on these assumptions� but his assumption of indepen�
dent subproblems is phrased as an assumption that
backtracking only occurs within a subproblem� This is
signi�cantly stronger as it also prohibits backtracking
across abstraction levels�

The tree of abstract plans will have a branching factor
that� in general� will vary from node to node� This
branching factor is the number of i�
 level re�nements
possible for a given i level solution� i�e�� the number
of children a node at level i has� Let the maximum
of these branching factor be B� For simplicity we will
use B as the branching factor for all nodes in the tree�
Note� B has no straightforward relationship with b the
branching factor generated by the operators�

The Probability of Re�nement
If a hierarchy has the DRP then every solution at ab�
straction level i can be re�ned to a solution at abstract
level i�
� A reasonable way in examine the behavior of
hierarchies in which the DRP fails is to assign a proba�
bility� p� to the event that a given i�th level solution can
be re�ned to level i�
� DRP now corresponds to the
case p � 
� If p � 
 we need never reconsider the initial
part of a path of good solutions� The DRP guarantees
we can extend the path down to level �� If p � 
� how�
ever� we might build a path of correct solutions from
the root down to a node at level i� and then �nd� upon
examining all of its children� that it is not re�neable to
the next level� This will force a backtrack to the penul�
timate node at level i � 
 to �nd an alternate level i
solution� one which is re�neable� This may cause fur�
ther backtrack to level i� �� or search may progress to
lower levels before backtracking occurs again�

We are interested in the complexity of search when a
ground�level solution exists� In this case it follows from
the upward solution property �Ten��� that there will be
at least one path of correct solutions in the tree from
the root to a leaf node� Our task� then� is to explore
the average case complexity of search in abstraction hi�
erarchies in which �
� the probability that a given node
in the abstraction search tree can be re�ned is p� and
��� there is at least one good path� i�e�� a path of good
nodes� from the root to a leaf in the tree�



Average case complexity can be found by considering
randomly generated abstraction trees� Our tree has a
constant branching factor B and height n � 
� Hence�

it has N � Bn����
B�� nodes� A random tree is generated

by labeling each node independently as being re�neable
�good� with probability p� or not re�neable �bad� with
probability 
 � p� Each of the �N distinct trees that
can be generated by this process has probability p g�
�
p�N�g� where g is the number of good nodes� Some of
these trees will not contain a good path from the root
to a leaf� We remove these trees� and renormalize the
probabilities of the remaining trees so that they sum to

� That is� we take the conditional probability�
One other piece of notation we use is b�K�N�P � to

denote the binomial distribution� i�e�� the probability
of K successes in N independent Bernoulli trials each
with probability P of success�

Analytic Forms

Now we present the analytic forms which result from
an analysis of the above model� The reader is referred
to our full report for the proofs of the following results
�BY����
�� Let NodeWork�i� be the amount of work required to
re�ne a node at level i� At level n we have one subprob�
lem to solve which requires O�bk� computation� At level
n�
 the nodes are abstract solutions of length k� result�
ing in k subproblems each requiringO�bk� computation�
This trend continues to level 
� but at level � the solu�
tions are concrete and do not need to be re�ned� Hence�
we have NodeWork�i� � kn�ibk and NodeWork��� � ��

�� Let F �i� be the probability that a random subtree
rooted at level i fails to contain a good path from its
root to a leaf� A subtree can fail to contain a good path
in two exclusive ways
 �a� the root could be a bad node
or �b� the root could be good but somewhere among its
descendents all the good paths terminate before reach�
ing level ��
The second case can be analyzed using the theory of

branching processes �Fel��� AN���� If the root is good it
initiates a branching process where it might have some
number of good children and they in turn might have
some number of good children and so on� We can con�
sider the production of bad children as points were the
process terminates� The number of good children of the
root is binomially distributed
 b�m�B� p� is the proba�
bility of having m good children� and its generating
function is G�s� � �q � ps�B �� where q � 
 � p� Let

�When this generating function is expanded as a power
series in s the coe�cient of sm is equal to the probability
of m good 
re�neable� children among the B o�spring� i�e��
b
m�B� p��

G��s� � G�s� and Gj � Gj���G�s��� i�e�� the j�th iter�
ate of G�s��
From the theory of branching processes it is known

that the probability that there are no path of i good
nodes from the root is Gi���� For example� the prob�
ability of there being no paths of � good nodes from
the root �i�e�� the probability of no good child having a
good child� is G���� � G�G���� � G�qB� � �q�pqB�B �
Putting �a� and �b� together we obtain
 F �i� �

q� p�Gi����� and we can compute F �i� directly for any
value of i and p� From this result and known results
about the asymptotic behavior of branching processes
we can identify three regions of importance
 when
p � 
�B we have limi�� F �i� � 
� when 
�B � p � 

we have � � limi�� F �i� � 
 with the value of the
limit decreasing as p increases� and when p � 
 we
have �i�F �i� � ��

�� Let BadTreeWork�i� be the expected amount of com�
putation required to search a subtree with root at
level i that does not contain a good path� To ensure
that such a tree is a dead end we have to search un�
til we have exhausted all candidate good paths� We
always have to expand the root which is at level i
and hence requires NodeWork�i� � kn�ibk computa�
tion� With probability p the root is re�neable and
we will then have to examine all of the B subtrees
under the root� all of which must be bad �otherwise
the initial tree would not be bad�� This process must
stop by level 
� as if a node at level 
 is good this
means that it can be re�ned to a good ground�level so�
lution and the initial tree would not be bad� Hence�
BadTreeWork��� � �� and we obtain the recurrence

BadTreeWork�i� � kn�ibk � pB�BadTreeWork�i�
���
By expanding the �rst few terms of this recurrence we
can �nd a general expression


BadTreeWork�i� � bkkn�i
�pBk�i � 


pBk � 

� �
�

�� Let GoodTreeWork�i� be the expected amount of
computation required to search a good subtree with root
at level i� i�e�� a subtree which contains at least one
good path from its root to a leaf� Our ultimate aim is
to analyze GoodTreeWork�n�� To examine a good tree
we have to expand its root node� Then we must search
the subtrees under the root� looking for a good subtree
rooted at the next level� Once we �nd such a subtree
we never need backtrack out of it� �There may however�
be any amount of backtracking involved while search�
ing the bad subtrees encountered before we �nd a good
subtree��
The root has B children� and hence between 
 and

B good subtrees under it� Let m be the number of



good subtrees under the root� The probability of m
taking any particular value is b�m�B� 
�F �i�
��
 each
subtree can be viewed to be the result of a Bernoulli
trial where the probability of failure �a bad subtree� is
F �i�
�� However� we also know that the case m � � is
impossible� and must renormalize the probabilities by
dividing them by 
�b��� B� 
�F �i�
��� If there are in
fact m good subtrees� then by it can be proved �BY���
that on average we will have to search �B � m���m �

� bad subtrees before �nding a good subtree� The
expected number of bad subtrees that must be searched
can then be computed by summing the average number
of trees for each values of m times the probability of
that value of m holding�
The observations above can be put together to yield

a recurrence which can be simpli�ed to the following
form�

GoodTreeWork�i� � ���

kn�ibk
�ki � 


k � 


�
�

i��X
j��

BadTreeWork�j���j��

In this equation ��i� represents the average number of
bad subtrees we need to examine at level i� A closed
form for ��i� involvingB and F �i� can be given �BY����

Predictions of the Model

We can now examine what these expressions tell us
about the expected amount of work we need to do
when doing hierarchical problem�solving
 we examine
GoodTreeWork�n� under various conditions� First it is
useful to know the following results derived in the full
report �BY���


n��X
j��

BadTreeWork�j� �

��
�

O�bkkn��� p � 
�B
O�bkkn��n� p � 
�B
O�bkkn���pB�n��� p � 
�B

���
�� In the region � � p � 
�B� limi�� F �i� � 
� It can
be shown that ��i�� �B � 
��� as F �i�� 
�
Applying Eq� � we obtain


GoodTreeWork�n� �

�
O�bkkn��� pB � 

O�bkkn��n� pB � 
�

���

�� In the region 
�B � p � 
� limi�� F �i� lies between

 and �� decreasing as p increases� For any �xed value
of p and B it can be shown that that ��i� tends to a
constant value independent of n� and that this value lies
between � and �B � 
���� Applying Eq� � we obtain


GoodTreeWork�n� � O�bkkn���pB�n��� ���

�� Finally� when p � 
 the DRP holds and �i�F �i� �
�� Hence� ��i� � � for all i and Eq� � simpli�es to

kn�ibk
�
ki��
k��

�
� Evaluating this expression at i � n we

obtain


GoodTreeWork�n� � bkO�kn���� ���

Implications of the Analysis

There are two cases to consider
 n constant and n vari�
able� In certain domains we can make n� the number
of abstraction levels� vary with �� For example� in the
Towers of Hanoi domain we can place each disk at a
separate level of abstraction �Kno�
�� In other domains�
e�g�� blocks world� it is not so easy to construct a vari�
able number of abstraction levels� and n is generally
�xed over di	erent problem instances�
The length of the concrete�level solution is equal to

kn� Let � � kn� We want to express our results in
terms of �� If we can vary n with � then we can ensure
that k remains constant and we have that n � logk����
In this case� bk will become a constant� Otherwise� if
n is constant� k � n

p
� will grow slowly with �� In

this case� bk � b
n
p
� grows exponentially with �� albeit

much more slowly that b� �c�f�� �Kno�
��� This essential
di	erence results in di	erent asymptotic behavior for
the two cases n variable and n constant� Table 
 gives
the results of our analysis for these two cases expressed
in terms of the length of solution ��
Non�abstract search requires O�b��� hence� it is evi�

dent from the table that when � � p � 
�B and when
p � 
 abstraction has a signi�cant bene�t� If we can
vary n we can obtain an exponential speed�up� and even
if n is not variable� we still obtain a signi�cant speed
up by reducing the exponent � to its n�th root� Our
result for p � 
 agrees with that of Knoblock �Kno�
�

here we have the DRP and all of his assumptions hold�
Our results for the region � � p � 
�B� however� ex�
tend his analysis� and indicate that abstraction is useful
when the probability of re�nement is very low� What
is happening here is that although the number of bad
subtrees that must be searched is large� it does not re�
quire much e	ort to search them
 most paths die out
after only a small number of levels�
As p approaches 
�B we see that the search com�

plexity increases by a factor of n� and as we move to
the region 
�B � p � 
 things are worse
 we increase
by a factor� �pB�n� that is exponential in n� In these
regions it is not always advantageous to increase the
number of abstraction levels n� especially in the region

�B � p � 
� As p increases in the region 
�B � p � 

search �rst becomes harder and then becomes easier�
as the number of bad subtrees to be searched drops



p ��� 
�B� 
�B �
�B� 
� 


Variable n O�l� O�l logk�l�� O�l�pB�logk�l�� O�l�

Constant n O�lb
n
p
l� O�lb

n
p
ln� O�lb

n
p
l�pB�n� O�lb

n
p
l�

Table 

 Search Complexity for Di	erent Regions of Re�nement Probability�

o	� Search complexity varies continuously until it again
achieves the low complexity of p � 
 where the DRP
holds�

Our analysis also tells us that if the number of pos�
sible re�nements for an abstract solution �B� is large�
then searching the abstraction tree is more expensive in
the worst region 
�B � p � 
� This is to be expected

the abstraction tree is bushier and in this region we have
to search a signi�cant proportion of it� Also of interest
is that B does not play much of a role outside of this
region� except� of course� that it determines the size of
the region� Hence� if we know that the DRP holds�	 or
if the probability of re�nement is very low� we do not
have to worry much about the shape of the abstraction
tree� However� without such assurances it is advanta�
geous to choose abstraction hierarchies where abstract
solutions generate fewer re�nements� For example� this
might determine the choice of one criticality ordering
over an alternate one in Abstrips�style abstraction�

A question that remains is how does one determine
the re�nement probability p� One method is to use
a learning algorithm to keep track of the statistics of
successful and unsuccessful re�nements� Such statistics
can be used to estimate p� Once such estimates are ob�
tained they can be used to measure the merit of a partic�
ular abstraction hierarchy� It then becomes possible to
construct an adaptive planner that can use these mea�
surements to decide whether or not to use abstraction�
to decide between alternate abstraction hierarchies� or
even to automatically construct good abstraction hier�
archies� We have implemented statistics gathering in a
working planning system� and are currently investigat�
ing the design of an adaptive planner� We have also
recently completed a series of experiments to provide
empirical con�rmation of the results presented here�
These developments will be reported on in the full re�
port �BY����

References

�AN��� K� B� Athreya and P� E� Ney� Branching Pro�
cesses� Springer�Verlag� New York� 
����

�Various tests for detecting if the DRP holds of an ab�
straction hierarchy are given in �BY	
��

�BY�
� Fahiem Bacchus and Qiang Yang� The down�
ward re�nement property� In Procceedings
of the International Joint Conference on Ar�
ti�cal Intelligence �IJCAI�� pages ��� ����

��
�

�BY��� Fahiem Bacchus and Qiang Yang� Downward
re�nement and the e�ciency of hierarchical
problem solving� Arti�cial Intelligence� 
����
��� pages in manuscript� to appear��

�CKT�
� Peter Cheeseman� Bob Kanefsky� and
Willian M� Taylor� Where the really hard
problems are� In Procceedings of the Inter�
national Joint Conference on Arti�cal Intel�
ligence �IJCAI�� pages ��
 ���� 
��
�

�Fel��� WilliamFeller� An Introduction to Probability
Theory and Its Applications� Volume 	� John
Wiley and Sons� New York� 
����

�Kno�
� Craig Knoblock� Search reduction in hierar�
chical problem solving� In Proceedings of the
AAAI National Conference� pages ��� ��
�

��
�

�Kor��� Richard Korf� Planning as search
 A quanti�
tative approach� Arti�cial Intelligence� ��
�� 
��� 
����

�KP��� R� M� Karp and J� Pearl� Searching for an
optimal oath in a tree with random costs� Ar�
ti�cial Intelligence� �

�� 

�� 
����

�KTY�
� Craig Knoblock� Josh Tenenberg� and Qiang
Yang� Characterizing abstraction hierarchies
for planning� In Proceedings of the AAAI Na�
tional Conference� pages ��� ���� Anaheim�
CA�� 
��
�

�Min��� Marvin Minsky� Steps towards arti�cial in�
telligence� In Edward A� Feigenbaum� edi�
tor� Computers and Thought� pages ��� ����
McGraw�Hill� New York� 
����

�MP�
� C� J� H� McDiarmid and G� M� A� Provan� An
expected�cost analysis of backtracking and
non�bactracking algorithms� In Procceedings



of the International Joint Conference on Ar�
ti�cal Intelligence �IJCAI�� pages 
�� 
���

��
�

�NS��� Allen Newell and A� Simon� Herbert� Human
Problem Solving� Prentice�Hall� Englewood
Cli	s� N�J�� 
����

�NSS��� Allen Newell� J� C� Shaw� and Herbert A�
Simon� The processes of creative thinking�
In COmtemporary Approaches to Creative
Thinking� pages �� 

�� Altherton Press�
New York� 
����

�Sac��� Earl Sacerdoti� Planning in a hierarchy of
abstraction spaces� Arti�cial Intelligence�
�


� 
��� 
����

�Sac��� Earl Sacerdoti� A Structure for Plans and
Behavior� Elsevier� Amsterdam� 
����

�Ste�
� Mark Ste�k� Planning with constraints� Ar�
ti�cial Intelligence� 
�



 
��� 
��
�

�Tat��� Austin Tate� Generating project networks�
In Procceedings of the International Joint
Conference on Arti�cal Intelligence �IJCAI��
pages ��� ���� 
����

�Ten��� Josh Tenenberg� Inheritance in automated
planning� In Ronald J� Brachman� Hector J�
Levesque� and Raymond Reiter� editors� Pro�
ceedings of the First Conference on Principles
of Knowledge Representation and Reasoning�
Morgan Kaufmann� San Mateo� California�

����

�Wil��� David Wilkins� Domain�independent plan�
ning
 Representation and plan generation�
Arti�cial Intelligence� ��
��� ��
� 
����

�YT��� Qiang Yang and Josh D� Tenenberg�
Abtweak
 Abstracting a nonlinear� least com�
mitment planner� In Proceedings of the AAAI
National Conference� pages ��� ���� 
����


