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Abstract

Planning by forward chaining through the world space has
long been dismissed as being “obviously” infeasible. Nev-
ertheless, this approach to planning has many advantages.
Most importantly forward chaining planners maintain com-
plete descriptions of the intermediate states that arise during
the course of the plan’s execution. These states can be utilized
to provide highly effective search control. Another advantage
is that such planners can support richer planning representa-
tions that can model, e.g., resources and resource consump-
tion. Forward chaining planners are still plagued however by
their traditional weaknesses: a lack of goal direction, and the
fact that they search totally ordered action sequences. In this
paper we address the issue of goal direction. We present two
algorithms that provide a forward chaining planner with more
information about the goal, and allow it to avoid certain types
of irrelevant state information and actions.

Introduction
In this paper we present two ways of improving the effi-
ciency of a forward chaining planner. Such planners search
in the space of worlds generated by applying all possible
(totally ordered) action sequences to the initial state.2 The
two mechanisms correspond to ways of making these plan-
ners more goal directed by allowing them to ignore actions
that are irrelevant to the goal. The first method utilizes a
static analysis of the domain actions. It runs in polyno-
mial time and is performed on individual planning problems
prior to plan search. The analysis allows the planner to ig-
nore some of the domain actions during planning while still
retaining completeness. The second method is a dynamic
control mechanism that operates during search. It prunes
from the search space action sequences containing actions
made irrelevant by other actions in the sequence. This has
the effect of pruning from the search space certain redundant

1Copyright c�1998, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

2There is a range of terminology used to refer to such planners.
Weld [Wel94] calls this kind of planner a progressive world-state
planner, McDermott [McD96] calls it searching in the space of plan
prefixes, and Russell and Norvig [RN95] it call a progressive to-
tally ordered situation space planner. The term “forward chaining”
is more succinct and it also has a long history.

paths. The two mechanisms can be used together to achieve
even greater improvements.

At this point the reader may wonder why we are inter-
ested in forward chaining planners, since this approach to
planning has long been dismissed in the planning commu-
nity in favor of more sophisticated approaches. In our opin-
ion, however, of all the approaches to AI planning that have
been developed, including recent innovations like Graphplan
[BF97] and Satplan [KS96], forward chaining has the most
promise. This is a controversial opinion, and although we
hope to accumulate more evidence to support it, we know
that it is an opinion that the reader might not share. In this
paper we can only offer a brief defense of forward chaining
and why further development of this approach to planning is
worthwhile.

Forward chaining planners have two particularly use-
ful properties. First, they maintain complete information
about the intermediate states generated by a potential plan.
This information can be utilized to provide highly effec-
tive search control, both domain independent heuristic con-
trol [McD96], and even more effective domain dependent
control. For example, with domain specific information
in the blocks world domain, the TLPLAN system [Bac95]
developed in [BK96b] can generate solutions to problems
involving 100 blocks in under 10 seconds, where as the
fastest domain independent planners, Graphplan and Sat-
plan, both take over 1000 seconds to solve problems involv-
ing 11 blocks. Furthermore, TLPLAN can solve problems in
a range of other domains orders of magnitude faster than any
other planning system, and the intermediate states can also
be used to ensure that the plan satisfies a range of tempo-
rally extended conditions, of which maintenance and safety
conditions are just simple instances [BK96a]. The second
advantage of forward chaining planners is they can support
rich planning languages. The TLPLAN system for example,
supports the full ADL language, including functions and nu-
meric calculations. Numbers and functions are essential for
modeling many features of real planning domains, particu-
larly resources and resource consumption.

Nevertheless, forward chaining planners have a number
of well known deficiencies that are at the root of their dis-
missal by the planning community. One of the most serious
deficiencies is that such planners are not goal directed, and
thus can end up pursuing action sequences irrelevant to the



current goal. This is an especially serious problem when we
consider scaling up such planners. Useful intelligent agents
will probably have to deal with a range of different prob-
lems, and will have at their disposal a range of different ac-
tions. Only a small subset of these actions are likely to be
relevant to any particular task. If a forward chaining planner
has to explore all possible actions irrespective of the goal,
then it is ultimately doomed to failure. The algorithms we
develop here address this problem, and doing so we demon-
strate that this particular argument against forward chaining
planners can be countered.

Of course there are other arguments against forward
chaining planners that still remain. Most importantly among
these is the issue of totally vs. partially ordered action se-
quences. The fact that forward chaining planners explore to-
tally ordered action sequences remains an area of difficulty
for such planners. We do not address this issue here, but we
are currently exploring some mechanisms for dealing with
this problem also.

The overall aim of this and other work we are pursuing is
to try to improve the baseline performance of forward chain-
ing planners. Search control still remains an essential com-
ponent in making such planners perform effectively,3 but ef-
fective control information, especially domain specific in-
formation, is often quite expensive to acquire. By improv-
ing the baseline performance we hope to require less control
information and to make the information we do have more
effective.

In the sequel we present the two methods we have devel-
oped for adding goal direction to forward chaining planners
and give some empirical results showing their effects.

Static Relevance
The first algorithm we describe is one that operates prior to
searching for a plan. Hence, we call it “static” relevance.
First an example. Say that we have the following actions in
the domain:

1. pre�a�� � fPg, e�ects�a�� � fQ�Sg,
2. pre�a�� � fQg, e�ects�a�� � fRg, and
3. pre�a�� � fPg, e�ects�a�� � fTg,

where the actions are specified using the STRIPS represen-
tation with pre being the set of preconditions, e�ects being
the set of effects which can be positive literals (adds) or neg-
ative literals (deletes).

In the initial state I � fPg, both actions a� and a� can
be executed. If the goal G � fRg, then it is easy to see
that there is no reason to execute action a�: it does not yield
a goal literal nor does it yield a precondition that can ulti-
mately be used to produce a goal literal. Action a� on the
other hand produces Q which can be used by action a� to
produce a goal literal. However, the other literal it produces,
S does not facilitate the execution of any relevant actions. In
sum, for this initial state and goal the action a� is irrelevant
as is the literal S produced by action a�.

3In fact, effective search control is essential for the success of
any planning architecture.

Inputs: The initial state I and the goal state G, both spec-
ified as a collection of ground literals, and a set of ground
action instances Acts specified using the STRIPS represen-
tation.
Output: A set of literals, RelvLits, and actions, RelvActs,
that are potentially relevant to the planning problem of trans-
forming I to G.

Procedure Static�I�G�Acts�

1. ReacLits �� I; RelvLits ��G;
RelvActs ��ReacActs �� �;

2. ReacActs �� fa � pre�a� � ReacLitsg;
3. if ReacActs was changed in step 2 then:

ReacLits �� I �
S

a�ReacActsf� � � � e�ects�a�g;
4. if ReacLits was changed in step 3 then: goto step 2;
5. if there exists � � G such that � �� ReacLits then:

return(Failure);
6. RelvActs �� fa � a � ReacActs � �e�ects�a� �

RelvLits� �� �g;
7. if RelvActs was changed in step 6 then: RelvLits ��

G �
S

a�RelvActsf� � � � pre�a�g;
8. if RelvLits was changed in step 7 then goto step 6;
9. return�RelvLits�RelvActs�;

Table 1: Static Relevance Algorithm

Our static relevance algorithm is designed to detect these
kinds of irrelevance, and as we explain below it can be
used to simplify a planning problem and to provide forward
chaining with a degree of goal direction. The algorithm for
computing the set of statically relevant actions and literals
for a specific planning problem is given in Table 1. The al-
gorithm takes as input a fully ground set of actions. This
set can be computed from a set of parameterized operators
by instantiating the operators in all possible ways with the
constants contained in the initial state I.4 First the algo-
rithm performs a forward pass to detect the set of potentially
reachable literals and actions. A literal is reachable if it is
present in the initial state or if it is the effect of some reach-
able action. An action is reachable if all of the literals in
its preconditions are reachable. Note that marking a literal
or an action as reachable does not mean that it is actually
reachable from the initial state. In particular, an action may
have all of its preconditions marked as being reachable, but
the conjunction of these preconditions might in fact not be
reachable. The loop in steps 2–4 computes the reachable
sets, ReacLits and ReacActs .

Then the algorithm performs a backwards pass to detect
the set of potentially relevant literals and actions. A literal
is relevant if it is reachable and it appears in the goal or in
the precondition of a relevant action. An action is relevant if
it is reachable and it produces a relevant literal. The loop in
step 6–8 computes the relevant sets, RelvLits and RelvActs.

4We have given the algorithm in terms of ground actions, but
our implementation in fact works directly with the parameterized
operators. It generates the ground actions only on an as needed
basis.



1. Remove all irrelevant literals from I to form a new
initial state I � � I �RelvLits.

2. Remove all irrelevant actions from Acts to form a
new set of actions Acts� � Acts �RelvActs.

3. Modify every action a � Acts � by removing from
e�ects�a� all literals � such that both � and 	� are
irrelevant (i.e., not in RelvLits).

Table 2: Reduced planning Space Algorithm

There are a number of points to be made about the algo-
rithm. First, the algorithm operates on literals, i.e., positive
or negative atomic facts. Hence if the actions have nega-
tive literals as preconditions the algorithm continues to func-
tion properly. The only caveat is that under the standard
closed world assumption used by most planners, I contains
many implicit negative facts. The algorithm does not place
these negative facts in the set ReacLits even though they are
in fact reachable literals (the algorithm does place negative
facts produced by actions into ReacLits). Instead, when-
ever we test a negative literal for membership in ReacLits
(in steps 2, 6, and 7) the implementation also tests to see if
the literal is implicitly in I. The end result is that the final
set RelvLits contains all relevant literals, both positive and
negative.

Second, although we have specified the two loops as re-
computing the sets from scratch, it is not difficult to see that
these computations can be performed incrementally. Our
implementation does the computation incrementally.

And finally, we have found that in practice it is more ef-
ficient to do an initial backwards pass from G marking all
of the predicate and action names that are potentially rele-
vant. In particular, this initial pass ignores the arguments to
the actions and literals. Once the names have been marked
we can restrict the forward pass to only consider literals and
actions whose names have been marked as being potentially
relevant.

Utilizing Static Relevance
Once we have the set of relevant literals and actions gener-
ated by the above algorithm, we can use them to construct a
smaller planning space. The smaller space can be viewed as
being a quotient space where the states of the original plan-
ning space have been reduced into a smaller set of equiva-
lent classes. Search for a plan can then be conducted in this
smaller space.

In particular, the original planning space is specified by
the initial state I, the goal G, and the set of actions Acts.
The algorithm given in Table 2 constructs the reduced space
�I ��Acts�� G�. The algorithm is specified as using and gen-
erating a set of ground actions. However, in our implemen-
tation we do not explicitly store this set. Instead, we use
the original set of parameterized operators, and check the
ground actions and effects generated at plan time to ensure
that they are relevant.

The reduced planning space preserves completeness.

Theorem 1 There exists a sequence of actions from Acts
that can solve the planning problem of transforming I to a
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Figure 1: Decreased branching factor using static relevance

state satisfying G iff there exists a sequence of actions from
Acts� that can solve the planning problem of transforming
I� to a state satisfying G.

And it is not that hard to compute.

Theorem 2 The complexity of computing the reduced plan-
ning space is O�ok�, where o is the number of domain ob-
jects mentioned in the initial state I, and k is a constant
equal to the maximum arity of the domain operators and
predicates. This complexity is polynomial in the size of I.
More precisely, let n be the number of distinct operators
(the parameterized operators from which the ground actions
are generated), let m be the number of domain predicates.
Both of these are constants. Then the complexity is bounded
above by �n�m�ok.

The reduced planning space offers two advantages for for-
ward chaining planners. First, there is the obvious advantage
that by removing irrelevant actions we reduce the branch-
ing factor of the search space they explore. The second ad-
vantage is a bit more subtle. Any search engine can prof-
itably employ cycle checking. Breadth-first based search of-
fers the most opportunity for cycle checking, however, even
when utilizing depth-first based search the search engine can
still check for state cycles along the current path being ex-
plored. By removing irrelevant effects from the actions and
the initial state in the reduced planning space, states become
equivalent that would not have been equivalent in the origi-
nal space, and cycle checking can play a greater role.

Empirical Results
To test static relevance we conducted three tests. The first
two are designed to show the claimed properties of static
relevance: that irrelevant actions can be ignored which re-
duces the branching factor, and that eliminating irrelevant
literals facilitates greater cycle-detection.

The first test was to run a simple blocks world prob-
lem with 4 blocks in the initial world state, and 4 blocks



in the goal state. The test consisted of adding n new ac-
tions a�� � � � � an where ai is the action pre�ai� � fPig, and
e�ects�ai� � fGig. We set the initial state to contain all of
thePi so that all of these extra actions are executable, but the
goal does not contain any Gi so in fact they are all irrelevant.
A standard forward-chaining planner (we use the TLPLAN
system for all of our tests [Bac95]), will have an increasingly
higher branching factor as n increases, but static relevance
will detect that these actions are irrelevant and hence will
not be affected by their presence. Figure 1 shows the re-
sults. We ran TLPLAN using breadth first search. In the
test we also ran UCPOP. UCPOP uses goal regression so it
also is unaffected by these extra actions. The results show
that with static relevance TLPLAN, like UCPOP, is able to
achieve a runtime unaffected by n, without it its complexity
climbs rapidly.

The next test is designed to show that static relevance fa-
cilitates cycle detection. Again we use the block world do-
main, but this time we make multiple copies of each of the
operators. In particular, we make three copies of each of the
operators pickup, putdown, stack , and unstack . For the i-th
copy (i � �� �� �), of pickup and unstack we add the effects
extra1�i� and 	extra2�i�, and for putdown and stack we add
the effects extra2�i� and 	extra1�i�.

Neither of the predicates extra1 or extra2 appear in the
goal, and thus they are irrelevant. Without static relevance,
TLPLAN is unable to utilize cycle-checking properly as
even though a cycle might be present in the standard blocks
world component of the world, the various changes to the ex-
tra literals extra1 and extra2 makes the world different (most
of the time). When static relevance is used, however, we see
that this extended domain reduces to the original blocks do-
main (with three copies of each operator).

Our test consisted of running 10 random 3 blocks prob-
lems (to convert a random initial state to a random goal
state). Without the irrelevant literals TLPLAN took 0.061
seconds in total run time to execute the tests but when they
were present its run time rose to 13.92 seconds. When static
relevance is used this dropped back down to 1.98 seconds.5

The final test was designed to address the classical crit-
icism of forward chaining planners, that they cannot scale
up in the face of increasing numbers of available actions. In
this test we used a blocks world problem containing 5 blocks
that takes TLPLAN 1.4 seconds to solve using breadth-first
search exploring 741 worlds.

Then we added in a number of additional (non-
interacting) domains, running TLPLAN with the union of
the domain actions and with an initial state that contained
literals from the other domains (so that the additional ac-
tions were executable). The domains we added were stan-
dard test domains: the monkey and bananas, rocket, lo-
gistics, and tires domains, as well as an artificial domain
containing 20 actions. After adding in only one extra do-

5The difference between this and the original run time arises
from the extra time required to run the static relevance algorithm
as well as some plan time overhead required by our implementa-
tion. This latter overhead could be reduced by a more sophisticated
implementation.

main TLPLAN was unable to solve the original problem af-
ter searching 5000 worlds. With static relevance however
its runtime returned to the previous 1.4 seconds (approxi-
mately) and stayed there as we kept increasing the number
of additional domains.

In all cases, the static relevance algorithm took approxi-
mately 0.03 seconds to execute: its run time remained con-
stant as we increased the number of extra domains. This
was due to the initial backwards pass (mentioned briefly in
the text above) that marks action and predicate names prior
to the forward reachability pass. In this test the initial back-
wards pass is able to eliminate all of the actions from the ex-
tra domains from any further processing. Also the planner’s
run time did not increase because the static relevance algo-
rithm is able to remove the other domains’ operators from
the list of operators prior to planning: since no instance of
any of these operators appears in the set of relevant actions,
the planner does not need to consider them at all.6

Related Work

One way of understanding static relevance is to view it as a
mechanism that allows a forward chaining planner to realize
some of the benefits of partial order planners (in particu-
lar, planners based on the SNLP algorithm [MR91]). When
such planners add actions to the partial plans they are search-
ing, they only consider actions that achieve open conditions.
Such conditions can only be generated in the plan by the goal
or by the preconditions of an action added to achieve some
prior open condition. It is not hard to see that static rele-
vance is essentially computing the set of all the actions that
could potentially achieve an open condition in some plan.
The key difference is that it also takes into account the ac-
tion bindings that are reachable from the initial state.

Gerevini and Schubert [GS96] have developed an algo-
rithm for computing action bindings that are reachable from
the initial state. They then use this information in an SNLP-
style planner (UCPOP [PW92]), to help it avoid exploring
actions that are relevant but not reachable. Their algorithm
is closely related to ours. The key difference is that they use
their algorithm to compute reachability information, where
as we use ours to compute relevance information. Also they
work with sets of bindings instead of fully ground literals
and actions. Fully ground literals provide stronger informa-
tion than sets of binding (i.e., the relevance sets computed
are smaller), and we have found that there is hardly any com-
putational time penalty over working with sets of bindings.
We also deal with negative literals. We do not, however, deal
with ADL actions where as Gerevini and Schubert’s algo-
rithm can handle the when clauses of ADL actions. It would
not be difficult, however, to extend our algorithm to handle
this case as well.

6In some cases an operator may have some relevant instances
and some irrelevant instances. Since the planner works with oper-
ators not actions (operator instances), it must consider the operator
instances generated at plan time to determine whether or not it is
relevant. This adds a constant time overhead at plan time. How-
ever, when no instance is relevant, we can eliminate that overhead
by removing the operator entirely.



Our static relevance algorithm is also somewhat related to
the planning graph construction of Graphplan: both can be
viewed as being a type of reachability analysis. One differ-
ence is that we do not compute exclusivity sets. To do so,
however, Graphplan’s planning graph must grow with the
length of the plan. An interesting question is whether or not
some exclusivity information can be gained (which would
allow further reduction of the relevance sets) without paying
the plan length factor.

Nebel et al. [NDK97] point out that the size of Graph-
plan’s planning graph can be a serious issue in its perfor-
mance, and they have developed a collection of heuristics to
detect irrelevant literals. Their heuristics are able to detect ir-
relevances beyond what our algorithm can detect. However,
in doing so they lose completeness: their heuristics can re-
move relevant information thus rendering the planning prob-
lem unsolvable. Nevertheless, it may be possible to utilize
some of their techniques to extend our approach.

Dynamic Relevance
Static relevance is a useful idea but it is relatively weak. It is
particularly problematic when testing with the standard suite
of planning test domains. Invariably these test domains are
designed to generate plans for one particular purpose, and
often all of the actions in the domain end up being statically
relevant for the planning problem at hand (although not all
of the effects do).

In this section we describe another algorithm that keeps
track of relevance dynamically. Again we can moti-
vate the idea with an example. Consider the standard
blocks world with four operators pickup, putdown, stack
and unstack. Say that in the initial world we have
fontable�a�, ontable�b�, ontable�c�, ontable�d�g. Now con-
sider the action sequence pickup�a�, stack �a� b�, pickup�c�,
stack �c� d�, unstack�a� b�, putdown�a�. It is clear that there
was never any need to move block a, and that the shorter ac-
tion sequence pickup�c�, stack �c� d� would have achieved
the same final state. Unfortunately, unless we are doing
blind breadth-first search there is no guarantee that the plan-
ner would have seen and remembered the shorter plan be-
fore it visited the longer sequence. Dynamic relevance is
designed to prune such sequences from the search space.
We thus avoid having to search all of the descendants of the
pruned sequence as well, which means that such pruning has
can potentially yield exponential savings during search.

Dynamic relevance is based on checking to see if an
action sequence has a (not necessarily contiguous) subse-
quence of actions that are irrelevant. Consider an action
sequence ha�� a�� a�� a�� a�� a�i. We can split such a se-
quence into two subsequences, R � fa�� a�� a�g and R �
fa�� a�� a�g. The question is “When are the actions in R ir-
relevant?” There are probably many different answers to this
question, but an obvious one is the following:

Definition 3 A subsequence R of an action sequence is ir-
relevant when

1. R, the complement of R is an executable sequence
(from the initial state), and

2. when R is executed it yields the same final state as
the entire action sequence.

Intuitively, the definition says that R, the complement
of R, is equivalent to the entire sequence, and hence R
is irrelevant. It should be clear that completeness is pre-
served when we prune actions sequences containing irrele-
vant subsequences from the forward chaining search space.
It should also be clear that this definition covers the exam-
ple given above. In particular, the subsequence pickup�a�,
stack �a� b�, unstack�a� b�, putdown�a�, is irrelevant.

Our definition does not cover all intuitively irrel-
evant cases, however. Consider the sequence of
actions pickup�a�, stack �a� b�, pickup�c�, stack �c� d�,
unstack �a� b�, stack �a� c�. The shorter sequence pickup�c�,
stack �c� d�, pickup�a�, stack �a� c� would have achieved
the same final state. However, the first sequence contains
no irrelevant subsequences. To detect cases like this we
would need a mechanism that can realize that the actions
stack �a� b� and unstack�a� b� can be removed and then the
remaining actions reordered so that pickup�a� comes just
prior to stack �a� c�. Future work may be able to find some
additional cases that can be detected efficiently.

It is possible to give syntactic tests that given a sequence
and a subsequence can test if the subsequence is irrele-
vant. That is, we have developed syntactic versions of the
above semantic definition. However, for our forward chain-
ing planner, we have found that it is most efficient to imple-
ment the test directly by simply executing the complement
to determine if it is in fact executable and yields an identical
final state.

Our definition provides a fairly efficient test for whether
or not a particular subsequence is irrelevant. However a
given sequence contains an exponential number of subse-
quences. Detecting whether one of them is irrelevant seems
to be hard (we suspect that this is NP-hard). So the question
becomes how to test action sequences relatively efficiently
and still detect a useful number of ones that contain irrele-
vant subsequences.

To address this problem we have developed a greedy al-
gorithm that has complexity linear in the length of the action
sequence. Thus it imposes anO(depth of the node) overhead
on each node expanded in the search space. In the domains
we tested the algorithm is able prune away sufficient nodes
in the search space to more than make up for this overhead.
In future work we intend to analyze the tradeoff between the
algorithm’s overhead and the reduction in the search space
it yields in more detail.

The algorithm examines a sequence of actions and tries
to greedily construct a relevant subsequence, thus possibly
detecting that the sequence has an irrelevant subsequence
(the complement of the greedily constructed relevant subse-
quence). For each action ai in the sequence it places all of
the previous actions aj , j � i, into a subsequence R and ai
into the subsequence R. Then for each subsequent action a�,
i � �, it greedily tries to place a� into R by checking to see if
a� is executable given the current contents of R. R is a subse-
quence of actions whose first omitted action is ai and whose
other omitted actions are those that depended on a condition



Inputs: An action sequence P � ha�� � � � � ani, a new
ground action a, W the world generated by executing the
sequence P in the initial state, a list of alternate worlds
AltWorld, such that AltWorld�ai� is the alternate world as-
sociated with action ai. AltWorld�ai� stores the world gen-
erated by the greedy subsequence whose first omitted action
is ai. If AltWorld�ai� is the same world as that produced by
P we know that we have detected a subsequence of P that
has the same effects as P (hence P contains an irrelevant
subsequence). It is assumed that a is executable in W .
Output: Fail if we detect that a generates an irrelevant sub-
sequence, else the extended action sequence P � a, the new
final world W � � a�W �, and a new list of alternate worlds,
AltWorld� one for every action in the extended sequence.

Procedure Dynamic�P� a�W�AltWorld�

1. W � �� a�W �;
2. for i �� � to n

(a) if a is executable in AltWorld�ai� then:
AltWorld��ai� �� a�AltWorld�ai�� (greedily add
it to the subsequence whose first omitted action
is ai);
else AltWorld��ai� �� AltWorld�ai�;

(b) if AltWorld��ai� � W then: return(Fail) (we
have detected a subsequence whose complement
is irrelevant);

3. AltWorld��a� � W .
4. return(P � a, W �, AltWorld�).

Table 3: Dynamic Relevance Algorithm

produced by ai. Finally, it checks to see if the complement
of R is irrelevant by checking to see if the actions in R yield
the same final state as the entire sequence. A more efficient
incremental implementation is given in Table 3. This algo-
rithm would be called whenever we try to grow an action
sequence by adding a new action a. It returns either the in-
cremented action sequence or rejects a as being an illegal
extension to the sequence (i.e., it has determined that a gen-
erates an irrelevant subsequence). It should be noted that, in
the algorithm, if the current plan P is empty then n � 	 and
the loop of step 2 is never executed.

For example, say the planner examines the action
sequence pickup�a�, stack �a� b�, pickup�c�, stack �c� d�,
unstack �a� b�, putdown�a�, given above. When it examines
the greedy subsequence starting at pickup�a�, it will place
pickup�a� in R, stack �a� b� in R, pickup�c� in R, stack �c� d�
in R, unstack�a� b� in R, and putdown�a� in R. Then it can
detect that R � hpickup�c�, stack �c� d�i yields the same fi-
nal state as the entire sequence.

As indicated above our greedy algorithm does not detect
all irrelevant subsets. One simple example is the action se-
quence a�, a�, a� and a�, where 	P�, 	P�, and 	P� hold in
the initial state. If a� adds P�, a� adds P�, a� adds P�, and
a� deletes P� and P�, then the subsequence a�, a�, and a�
are irrelevant. However, our algorithm will not detect this.
In this example, there are two “roots” in the irrelevant sub-
sequence, a� and a�. Our algorithm can only detect singly
rooted irrelevant subsequences. These ideas can be formal-

ized and the algorithm extended to detect k rooted irrelevant
subsequences. When k 
 the length of the action sequence,
all irrelevant subsequences can be detected. Unfortunately,
the complexity of the algorithm grows exponentially with
k, and since irrelevance detection must take place during
search we doubt that the k � � versions would be of prac-
tical importance. As our empirical results will demonstrate,
the greedy k � � algorithm works well in practice.

One way of viewing dynamic relevance is once again to
compare it with what partial order planners do. In partic-
ular, SNLP style planners ensure that no causal link is ever
violated. This means that every action in any plan explored
must produce something “useful”. In part this is what dy-
namic relevance detects: if all of an action’s effects are su-
perseded prior to being used that action will form an irrele-
vant subset. However, dynamic relevance goes further with
its ability to detect that certain subsets of actions when con-
sidered together are redundant.

Combining Dynamic and Static Relevance: Unlike the
static relevance algorithm, dynamic relevance does not de-
pend on the syntactic form of the actions, and can work
equally well with STRIPS or ADL actions. Furthermore, in
those domains where we can use static relevance we can
apply both types of relevance detection. In particular, we
can apply dynamic relevance pruning when searching the re-
duced space produced by static relevance. The experiments
we present in the next section demonstrate that there is con-
siderable benefit to be gained from the combination.

Empirical Results
For our first experiment, we considered Russell’s flat tire
domain, where the general task is to change a flat tire us-
ing actions such as inflating a new tire, removing an old tire,
etc. In the initial state, we have a flat tire on the hub, and
a new, uninflated tire, as well as the required tools, in the
trunk. The standard “fix a flat tire” goal for this domain (the
fixit problem in the UCPOP distribution) contains 9 literals.
In the experiment we always used the same initial state but
generated random planning problems of size n (from 1–9)
by setting the goal to be a randomly selected size n subset
of the standard goal literals. Further, for each n we choose
15 random goals of size n (sampling with replacement since
for some values of n there are less than 15 distinct candi-
date goals) and computed the average run time. We ran
TLPLAN both with and without dynamic relevance detec-
tion, and UCPOP using one of its distributed search con-
trol mechanisms (which performs better than the default best
first search). UCPOP’s performance is dependent on the in-
put order of the goal literals, so when testing UCPOP on a
particular problem we ran it on 10 random permutations of
the goal, taking the average (thus running UCPOP 150 times
for each value of n). TLPLAN on the other hand is indepen-
dent of the goal ordering so only one test was required for
each problem. The results are shown in Figure 2.

Most problems with n � � proved to be too hard for
both TLPLAN and UCPOP (within the given search bounds).
However, with dynamic relevance detection, TLPLAN was
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Figure 2: Performance in the flat tire domain.

able to solve all of the problems for all tested sizes. In this
domain dynamic relevance is able to capture some natural
and effective control information to help TLPLAN. For ex-
ample, once actions were executed to remove the flat tire
from the hub, actions putting it back on the hub were not al-
lowed, as they would undermine the effects of the previous
actions. Another example is that tools could not be put back
into the trunk until they were used.

When n � 
 the problems generated were all the same as
the standard goal. TLPLAN with dynamic relevance detec-
tion took around 1.97 seconds to solve this problem, while
UCPOP was only able to solve 41 out of the 150 problems
within the given search bounds (i.e., it only solved 41 out of
150 different random permutations of the goal).

The second experiment we conducted used a simplified
version of the logistics domain. The logistics domain is a
very difficult domain for totally ordered planners, because
such planners cannot take advantage of the fact that the
movements of the various packages and vehicles are inde-
pendent of one another. Neither dynamic nor static relevance
detection do anything about the issue of total-orderings.
Hence, TLPLAN runs very slowly on this domain even with
relevance detection. As a result, we used a simplified ver-
sion of the domain, where there are only two cities, and we
are required to send packages from one city to another. The
problems we used in the experiment all contained an initial
state in which 10 packages were located in one city, and the
goal was to send i of the packages to the other city. We
ran TLPLAN, with and without both dynamic and static rel-
evance detection, using depth first search. The results are
shown in Figure 3.

TLPLAN without relevance detection could not solve the
problem even for one package. TLPLAN with only dy-
namic relevance had similar difficulties and was also unable
to solve any of the problems. With static relevance, things
improved and TLPLAN was able to solve up the 3 pack-
age problem. However with both types of relevance detec-
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Figure 3: Performance in the simplified logistics domain.

tion, we were able to boost the performance significantly—
TLPLAN managed to solve the 6 package problem before
the search limit was reached.

There are two distinct ways in which irrelevance occurs
in this domain. The first one has to do with the packages
that do not appear in the goal. Actions to move these pack-
ages greatly (and needlessly) increase the branching factor
of the search space. The second one has to do with ac-
tions that undo the effects of an earlier action, for exam-
ple an “(unload package1 truck1)” following a “(load pack-
age1 truck1)”. Many action sequences contain such irrel-
evant subsequences. It is clear that static relevance is ex-
actly what is needed to detect the first type of irrelevance,
while dynamic relevance is exactly what is required to detect
the second type of irrelevance. Either of these irrelevances
serve to make TLPLAN very inefficient when solving prob-
lems, which is why both dynamic relevance and static rele-
vance detection do not work very well by themselves. When
both dynamic and static relevance detection are employed,
TLPLAN is given a considerable performance boost.

Conclusions
Our results demonstrate that considerable gains can be
achieved by adding the notions of relevance into forward
chaining. A traditional argument has been that forward
chaining cannot scale up because of the large number of ac-
tions a real agent can execute. However, if most of these
actions are irrelevant for any particular task (as we would
expect them to be), then our results show that fairly simple
notions of irrelevance can be utilized to ignore them. Hence,
our work shows that this particular argument against forward
chaining is invalid.

Nevertheless, it is equally clear from our experiments
that forward chaining planners are “still not ready for prime
time,” even when augmented with notions of relevance. As
we discussed in the introduction, we feel that forward chain-
ing has considerable potential, and it is for this reason that



we are pursuing this and other work that is aimed at improv-
ing the “base line” for forward chaining planners. That is,
we want to enhance the performance of such planners prior
to applying any domain independent or domain dependent
heuristic control. Our experiments have shown that the next
thing that needs to be addressed are the inefficiencies pro-
duced by using total orderings. We are currently working on
approaches to this problem.
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