Modeling an Agent’s Incomplete Knowledge during Planning and
Execution

Fahiem Bacchus
Department of Computer Science
University of Waterloo
Waterloo, Canada N2L 3Gl

fbacchus@logos.uwaterloo.ca

Abstract

In many domains agents must be able to gen-
erate plans even when faced with incomplete
knowledge of their environment. We pro-
vide a model to capture the evolution of the
agent’s knowledge as it engages in the activ-
ities of planning (where the agent must at-
tempt to infer the effects of hypothesized ac-
tions) and execution (where the agent must
update its knowledge to reflect the actual ef-
fects of actions). The effects (on the agent’s
knowledge) of a planned sequence of actions
are very different from the effects of an exe-
cuted sequence of actions, and one of the aims
of this work is to clarify this distinction. The
work is also aimed at providing a model that
is not only rigorous but can also be of use in
developing planning systems.

1 Introduction

In this paper we address the problem of how agents
who must operate in incompletely known environ-
ments can generate and execute plans. In particular,
we examine the case where an agent has correct but
incomplete knowledge of its environment. A represen-
tation scheme for incomplete knowledge is developed
that is specifically oriented towards the development
of actual planning systems. In particular, we focus
on representing and updating the kinds of incomplete
knowledge that would be useful to a planning agent
capable of sensing and manipulating its environment,
and we ensure that the representation can be used in a
straightforward manner in an actual planning system.

When planning, the agent must reason about the ef-
fects of actions. When the agent has complete knowl-
edge of its environment, there is no need to distin-

Ron Petrick
Department of Computer Science
University of Waterloo
Waterloo, Canada N2L 3Gl

rpapetrick@logos.uwaterloo.ca

guish between what the agent knows and what is true
in its environment. Hence, in classical planning sys-
tems there 1s no explicit separation between the agent’s
knowledge and facts about the world. For example,
when a STRIPS database is employed to model the
world state it is only implicit that the agent knows
the contents of the database.

When faced with incomplete knowledge, however, we
do require an explicit model of the agent’s knowledge
and the manner in which this knowledge is affected
by the actions executed by the agent. In fact, for the
purposes of planning it is the action’s effects on the
agent’s knowledge that are most important: at plan
time the agent must know that the plan will achieve its
desired effects, and at execution time the agent must
have sufficient knowledge at every step of the plan to
execute it [Lev96].

A major complication, when having to reason about
how actions affect the agent’s knowledge, arises from
the fact that the plan time effects of such actions are
quite different from their execution time effects. For
example, say that the agent is operating in the UNIX
domain and that it is considering the action of listing
a directory. At plan time all that it will know is that
after the action it will know all of the files in the direc-
tory: the actual identity of those files will not become
known until the action is actually executed.

In many domains generating plans that operate cor-
rectly no matter how the world is configured is
impossible—such conditional plans [PS92, PG93] end
up being too large. Instead, the agent must often
commit by actually executing some actions so as to
avoid having to plan for contingencies that never oc-
cur. However, execution also has its pitfalls, as exe-
cuting an action might change the world in such a way
that the agent’s ultimate goal becomes impossible to
achieve.

Understanding how to manage these tradeoffs so that

we can effectively interleave planning and execution
remains an important open problem in the area. We
believe that our work makes a contribution to this
problem. In particular, our representation of ac-
tions provides a clear separation between their plan
time and execution time effects. We can project the
agent’s knowledge state through both planned actions
sequences and executed action sequences. This pro-
vides useful information about the differences between
plan time and execution time and leads to a deeper
understanding of both plan time and execution time
effects. It also opens up a wider range of possibilities
for interleaving planning and execution.

The general approach we adopt is much like the tradi-
tional STRIPS representation. In particular, we use a
collection of databases to represent the agent’s knowl-
edge. However, we provide a formal semantics for the
items in each database. We do this by translating
each of these items into formulas of a modal logic of
knowledge. Actions operate much like STRIPS actions
do: they modify the contents of the various databases.
Through examples we show that a useful range of ac-
tions can be represented as update operations to these
databases.

Our approach allows us to project the agent’s knowl-
edge through a sequence of planned actions: we sim-
ply apply the actions’ plan time effects to the agent’s
initial knowledge state to produce a sequence of inter-
mediate knowledge states. This means that a straight-
forward forward chaining search could in principle be
used to generate plans. We can also project the agent’s
knowledge state through sequences of action execu-
tions, and this means that an plan execution module

can also be supported by our formalism.®.

In the rest of the paper we will present the method
we use for representing the agent’s knowledge, discuss
how inferences can be made from this knowledge, and
briefly discuss how actions are represented and how
they update the agent’s knowledge. Finally, we will
close with some simple examples that show how our
approach models the plan time and execution time ef-
fects of various actions and plans. But first we discuss
some related work.

'Some work would have to be done to modify our ap-
proach to support partial order planning or backwards
chaining planning. This should be possible as such plan-
ning technologies were initially developed from “projec-
tive” action semantics like ours. However, such approaches
are not a major interest of ours, as we are pessimistic about
their ultimate future. We are much more optimistic about
the future of forward chaining planners [BK96, McD96]

1.1 Related work

The general issue of planning with correct but incom-
plete knowledge has received a great deal of attention
recently. There are many domains that can be usefully
modeled under this paradigm. For example, Etzioni,
Golden and Weld have been engaged in ongoing re-
search into software agents that operate in the UNIX
and Internet environments [EGW97, GW96, EGW94,
GEW94]. As they point out, these domains are rea-
sonably approximated by the assumption of correct
but incomplete knowledge. The main feature of their
work has been to develop methods for providing such
agents with planning capabilities: exactly the issue we
address here. Their work, particularly their work on
locally closed worlds [EGW97] has been very influen-
tial in our work.

There are two main differences between their work and
that presented here. First, much of their approach is
tied to the technology of partial order planning. We
feel that this often has the detrimental effect of making
the semantics of their representations and algorithms
much more difficult to understand. The projective se-
mantics we use here gives a clearer separation between
the issues that involve the semantics of actions and
the agent’s knowledge and the issues that involve the
implementation and semantics of partial order plan-
ning. The second difference is that their work is in-
timately tied to execution time effects. For example,
the algorithms they develop for reasoning about locally
closed world conditions [EGW97] assume that the ac-
tions achieving such conditions have been executed.
This means that the planning system they construct
is forced to interleave planning and execution in an
inflexible manner. There is limited scope for alterna-
tive ways of interleaving planning and execution, to
deal, e.g., with domains where executing actions can
produce irreversible changes.

As pointed out by Levesque, there are a number of
subtle issues involved in planning in the face of in-
complete knowledge. In [Lev96] Levesque provides a
formal specification of plan correctness in the face of
incomplete knowledge. He points out that plans have
knowledge preconditions, and that it must be known
at plan time that these conditions will be achieved at
execution time. Although Levesque’s work provides
vital insights into the problem, his work does not di-
rectly address the issue of generating plans. In partic-
ular, his model of actions and knowledge is specified
in the situation calculus. Hence, to reason about the
effects of actions one would, in general, have to em-
ploy full first-order inference. In our work we have
used some of Levesque’s ideas about plan correctness,

but have focused on more limited representations that
can be implemented more effectively in real planning
systems.

2 Representing the Agent’s
Knowledge

The first issue we address is that of representing the
agent’s knowledge. As mentioned in the introduction
we are assuming that the agent has correct, albeit in-
complete, information about its environment. This
kind of information is conveniently formalized using
a standard modal logic of knowledge (see [FHMV95)
for an introduction).

One of our aims, however, is to develop an approach
that can facilitate the development of effective plan-
ning systems, and we do not know, at this time, how
to deal with a fully general logic of knowledge. Instead
we adopt a STRIPS like approach where by the agent’s
knowledge is represented as a collection of databases
each of which maintains a particular type of knowl-
edge. We formally characterize the agent’s knowl-
edge by providing a translation from the database con-
tents to a set of logical formulas. Thus we utilize the
logic’s semantics as the underlying semantics of our
representation.? We use DB to represent the agent’s
databases, and KB to represent the set of logical for-
mulas that characterize the agent’s knowledge.

In brief, the standard modal logic of knowledge adds a
modal operator K to an ordinary first-order language,
extending the language’s syntax by adding the rule:
if ¢ is a formula then so is K(¢). Semantically, the
language is interpreted over a collection of worlds W,
each of which is an ordinary first-order model. These
worlds are related to each other by an accessibility re-
lation. In this case every world is accessible from every
other world. Any non-modal formula ¢ is interpreted
to be true at a particular world w (written w = ¢) iff
it 1s true according to the standard rules for interpret-
ing first-order formulas. A formula of the form K (¢) is
interpreted to be true at w iff ¢ is true at every world
accessible from w, which means that ¢ must be true
at every world in W (since at every world all worlds
are accessible).

Intuitively, the agent’s knowledge is being modeled by
the set W. The agent does not know which of the
worlds in W is the real world, and considers all of these
worlds to be possible versions of the way the real world
is configured. If it does not know whether or not ¢ is
true, then there will be worlds in W where ¢ is true and

?In essence we are simply restricting ourselves to a par-
ticular subset of the logic.

worlds where ¢ is false. Knowing ¢ to be true means
that ¢ is true in every world in W. Our assumption
that the agent’s knowledge is correct is modeled by the
fact that the real world is a member of W. Thus, if
the agent knows ¢, ¢ is in fact true in the real world.
For convenience, we use the notation w* to represent
the real world. Furthermore, when we write a logical
formula we always interpret it at w*. Thus, a formula
like K (readable(kr.tex)) Awritable(kr.tex) means that
the agent knows that file kr.tex is readable (and by the
semantics of K, kr.tex is in fact readable) and that it
is in fact writable (but this is not necessarily known
by the agent). A useful notation is Kywne(¢) which is
defined to be the formula K(¢) V K(—¢): either ¢ or

its negation is known to hold.

2.1 Rigid Terms and Constant Domains of
Discourse

The agent’s knowledge will include atomic facts about
various terms. For example, knowing that the file
kr.tex is readable might be represented by the atomic
formula K (readable(kr.tex)), where kr.tex is a term
of the language. We also allow functions. For exam-
ple, the agent might know various function values like
K (size(kr.tex) = 1024), i.e., kr.tex is 1024 bytes in
length.

Terms composed from functions and constants, like
kr.tex, 1024, and size(kr.tex), pose potential problems
when dealing with knowledge. In particular, the terms
they generate may be rigid or non-rigid. Non-Rigid
terms are terms whose denotation varies from world
to world, while rigid terms have a fixed denotation
across worlds. For example, the agent might not know
the size of the file kr.tex, so the term size(kr.tex) may
have a different denotation (i.e., a different value) in
the different worlds the agent considers possible. On
the other hand a number like 1024 would have the same
denotation (i.e., the same meaning) in every world.

When terms can be of either type reasoning about facts
like readable(kr.tex) becomes more complex.> For ex-
ample, it is not immediately obvious what it would
mean for the agent to know this fact if the term kr.tex
had potentially a different denotation in every world.
Since there does not seem to be a good reason to have
this level of generality, we impose the restriction that
all constants must be rigid. Thus, a term like kr.tex
will always denote the same object in every world.* On

#See Garson [Gar77] for a good discussion of these is-
sues.

*There may be many files in the agent’s environment
called kr.tex. In practice, we would have to use a distinct
constant for each file. For example, we could use a unique

the other hand, we allow functions to generate non-
rigid terms. Thus, a term like size(kr.tex) can denote
a different value in different worlds.

Formally, this means that for every constant ¢ in the
language describing any particular planning domain,
the agent’s knowledge (the set KB) includes the for-
mula:

Jz.K(z = ¢). (1)

This says that there is a particular object in the real
world such that in every possible world the constant ¢
denotes that object.

We assume that numeric functions, like “4”, or nu-
meric predicates like “<” have their standard inter-
pretation in every world (hence they also are rigid).

Another complication that we wish to avoid are those
that arise when different worlds w can have different
5 So we restrict our semantics
to only consider models in which all worlds have an
identical domain of discourse.®

domains of discourse.

2.2 The Databases

We represent the agent’s knowledge by a collection of
four databases, each of which is discussed below.

Ky: The first database is much like a standard
STRIPS database, except that both positive and nega-
tive facts are allowed and we do not apply the closed
world assumption. In particular, K; can include any
ground literal (atomic formula or negation of an atomic
formula). K; is further restricted so that all the terms
that appear in any literal must be constants. So,
for example, an atomic formula like readable(..(dir)),
where the function “..” specifies the parent directory
of a direction file, cannot appear in K;. To include
such information we would have to know the name of
dir’s parent directory.

In addition to literals K; can also contain specifica-
tions of function values. In particular, formulas of the
form f(e1,...,¢n) = ¢ny1, where f is an n-ary func-
tion and the ¢; are all constants. This formula speci-
fies that f’s value on this particular set of arguments
is the constant ¢,41. In effect, our restriction means

identifier for each file and have a function name that maps
this identifier to the file’s “common” name. The function
name may thus map many different files to the same com-
mon name. However, for readability we will continue to use
common names in our examples, leaving it to the reader to
remember that all such names are intended to be unique.

® Again see [Gar77] for a discussion.

5We have not found that this poses any practical prob-
lems. In particular, this assumption does not mean that
we know the identity of all the objects in the real world.

that function values in Ky are considered to be known
by the agent only if they can be “grounded” out as
constant values.

We specify what the contents of Ky means in terms
of the agent’s knowledge by specifying that for every
formula £ € K;, KB includes the formula:

K(2). (2)

K,: Thesecond database contains a collection of for-
mulas every instance of which the agent either knows
or knows the negation. In particular, K, can contain
any formula that is a conjunction of atomic formu-
las. By adding simple ground atomic facts to K, we
can model the effects of sensing actions at plan time.
In particular, at plan time if the agent hypothesizes
executing a sensing action that senses some fact like
readable(kr.tex), all the agent will know is that after
sensing it will know whether or not this fact is true.
Only at execution time will there be a resolution of
this disjunction.

In a similar manner by adding formulas containing
variables to K,, we can model the plan time effects of
actlons that generate universal effects like local closed
world information [EGW97]. For example, the UNIX
“Is dir” command yields local closed world informa-
tion about the contents of directory dir. Yet at plan
time the agent will not know the actual contents of the
directory. The contents will only become known after
the Is action is executed.

We specify what the contents of K, means in terms
of the agent’s knowledge by specifying that for every
formula ¢(Z) € K, (a conjunction of atomic formulas
in which the variables in # appear free), KB includes
the formula

VEK($(Z)) V K(=¢(Z)). (3)

Note that in the case where # is the empty set (i.e., ¢ is
a conjunction of ground atomic formulas), this reduces
to the formula Kywhe(¢).

Some predicates, e.g. numeric predicates like < and
equality =, have the same denotation in every world
in W. Such “rigid” predicates are considered to be
implicitly in K,,. For example, x > y and z = y
are 1mplicit members of K. The inference algorithm
presented below has access to these implicit members
of K,,.

K,: The third database is simply a specialized ver-
sion of K, designed to store information about various
function values the agent will come to know. In par-
ticular, K, can contain any unnested function term.

For example, f(z,a) would be a legal entry in K, but
f(g(a), ¢) would not be. Like K,,, the entries in K, can
be used to model sensing actions, except in this case
the sensors are returning constants (e.g., numbers) not
truth values. The value returned by the sensor will not
be known until execution time, but at plan time the
agent will know that such a value will become known.

For every formula f(#) € K,, where Z is the set of
variables appearing in the term, KB includes the for-
mula

V.30 K (f(T) = v). (4)

Formulas of this type are a standard way of specifying
that the agent knows a function value, see, e.g., [SL93].

More general information about knowing function val-
ues can be specified by entries in K,. For exam-
ple, if we will come to know the sizes of all the
files in a particular directory dir, we could place
in-dir(z, dir) A size(z) = y in Ky, where in-dir(z,y)
means that z is in directory y. This formula says that
for every file z that is in directory dir we know all val-
ues of y such that size(z) = y. Of course since size is
a function there is only one such y.

LCW: The fourth database is a database of local
closed world information. The innovative concept of
locally closed worlds comes from the work of Etzioni
et al. [EGW97]. LCW represents the execution time
analog of K,,, and basically asserts that the agent’s K
database contains a complete list of all items satisfying
a particular conjunction of atomic formulas. In most
cases such a list can only be added to the K; database
by actually executing an action.

LCW can contain formulas of exactly the same form
as K,: conjunctions of atomic formulas. We spec-
ify the semantics of the LCW database as follows.
Let ¢(%) = a1(d) A ... A ap(Z) be a conjunction
of atomic formulas in which the vector of variables
= (z1,...,7,) appear free. Say that ¢ € LCW."
Let C ={¢ : o;(£/C) € K;,1 <i < k}. Cis the set of
tuples of constants explicitly listed in K; as satisfying
¢. For every such formula ¢ € LCW, KB includes the
formula

Vi, \ ~(z1=ci A Azy =ca) = K(=(Z/E)).

ce (5)

For example, if P(z) A Q(z,y) € LCW, and P(a),
P(c), Q(a,b) and Q(a,c) are all in K, (which means
that the pairs (a,b), and (a,¢) are explicitly listed as

"Note that not every variable in # need appear free in
every literal.

satisfying P(z) A Q(z,y) in K;), then the formula

Ve,y—-(z=aAy=bA-(z=arhy=c)
= K(~(P(z) A\ Q(z,9)),

is in KB. This formula says that the pairs (a,) and
(a, ¢) are in fact the only pairs satisfying P(z)AQ(z, v).
Thus it entails, e.g., that K(=(P(b) A Q(b, ¢))).

This formula makes explicit the notion utilized by Et-
zionl et al. that if we have local closed world informa-
tion and we don’t have an instance explicitly listed in
the database then we can conclude that the property
does not hold.

2.3 The semantics of ZCW and K,

We have provided a semantics for the LCW and K,
databases by translating their contents to modal logic
formulas. In doing this we are using the well under-
stood semantics of the modal logic to provide a final
grounding for the entries in these databases. It is use-
ful to point out that when we convert entries in K,
to formulas of the form YZ.K(¢(Z)) V K(—¢(Z)) this
corresponds to the agent knowing that the set of satis-
fying instances of ¢ (&) is invariant across worlds. That
is, a tuple of constants ¢ satisfies ¢(Z/¢) in the real
world if and only if it satisfies the formula in every
world the agent considers possible.

The presence of such a formula in K,, does not mean,
however, that the agent knows the truth value of
$(£/), since the action that will resolve this has not
yet been executed. When the formula is in LCW the
action has already been executed and all of the satisfy-
ing instances of ¢ have been added to the agent’s K;
database by the action. Hence, the agent will know
the truth value of ¢(#/&) for every &. Thus a typical
action specification will include a plan time addition
to K, and an execution time addition to LCW .

The concept of locally closed worlds as a generalization
of the closed world assumption is due to Etzioni et al.
who develop the concept in detail in [EGW97]. In
our approach, however, we have carefully separated
local closed world information into plan time effects
and execution time effects. The inference algorithm
developed in [EGW9T] is an execution time algorithm
that requires the actions executed to actually add all
of the satisfying instances to the Ky database. At plan
time the satisfying instances are not yet known, yet we
still want to perform “local closed world” reasoning at
plan time. Our approach gives us that ability.

2.4 The Knowledge State

Given a particular set of these four databases, i.e.; a
particular DB, the agent’s knowledge state is defined
by the set of formulas in KB as specified by the for-
mulas 1-5 above. In particular, the agent’s knowledge
state is characterized by the set of models (in which
every possible world has the same domain of discourse)
that satisfy all of the formulas in KB.

It can be shown that subject to obvious consistency
requirements any DB specifies a consistent KB.

Theorem 2.1 Let DB be any set of these four
databases subject to the two conditions

1. there is no atomic formula a with both o and -«
in Ky and

2. no function f(ci,...,cn) is specified to have two
distinct values in Kj.

Then the KB corresponding to DB is consistent. That
is, KB has a model.

Proof: In general KB will have many models. We
show how an arbitrary model can be constructed.
First, we let the domain of discourse be the set of
all constants appearing in DB. Then we construct a
single first-order model w by starting with the set of
ground literals (and function values) contained in K;.
Then we add to K; a set of negative facts sufficient
to satisfy all of the formulas arising from LCW. Let
VE Nece (1 = ca Ao Az = cn) = K(=¢(Z/C))
be a formula in KB arising from a formula ¢ € LCW.
For every ¢ ¢ C we pick a conjunct of ¢(Z/&), a; (£/8),
that is not in Kj: one such conjunct must exist by the
definition of C. In fact, more than one such conjunct
may exist, in which case we make an arbitrary choice.
We add —a;(Z/¢) to Ky, thus satisfying that negative
instance of ¢. We do this for every negative instance

of every ¢ € LCW.

Note that since no positive facts are added to K, our
additions do not affect what we can infer from LCW.
(The sets C of satisfying instances do not change.)
Hence, the addition of negative facts to K; in order to
satisfy a formula ¢ € LCW will not affect the addi-
tions required to satisfy any other formula ¢’ € LCW.

Clearly, the resulting set of facts in K; continues to
satisfy the above two conditions, and thus this set of
facts has at least one first-order model. We pick an
arbitrary model, w. Finally, we build a model for the
modal logic by setting the collection of models W to
be simply the set {w}. It is not difficult to see that

this set of worlds W satisfies any formula of the form
VE.K($(Z)) vV K(—¢(Z)) that could arise from entries
in K, and K,. ®

Corollary 2.2 If actions are specified as additions
and deletions to these databases and these updates
maintain the obvious consistency conditions, then no
sequence of actions can give rise to an inconsistent
KB.

Intuitively, this theorem says that our representational
formalism remains much like the classical STRIPS rep-
resentation. In STRIPS any database is logically consis-
tent and any sequence of actions maintains this con-
sistency. This is true for our representation as well
(except we must outlaw obvious inconsistencies). Like
STrIPS this has both positive and negative features.
On the positive side, a user of our representation need
not worry about “breaking” the representation by gen-
erating an inconsistent state. On the negative side, the
onus is on the user to build an accurate domain model.
As with STRIPS the user must ensure that the KB rep-
resented by the databases makes sense in the domain
being modeled, and that the actions update KB in an
sensible manner. For example, as with STRIPS, if there
are state constraints (e.g., the agent can’t be carrying
an object and have its hands empty at the same time),
then the user must ensure that the databases repre-
senting the initial world satisfies those constraints and
that the actions properly update the databases so as
to maintain those constraints.

3 Inference from DB

From its collection of databases the agent can infer
various things. An inference procedure is sound if
whenever it infers a formula ¢ from DB we have that
KB £ ¢; the procedure is complete if KB = ¢ im-
plies that ¢ can be inferred by the procedure from
DB. Unfortunately, complete inference is impractical,
as the set of things that follow from KB includes all
logical truths (this is the famous problem of logical
omuiscience [Hin75]).

Fortunately planning applications typically do not re-
quire particularly complex reasoning. The major re-
quirement is usually to decide whether or not an
atomic formula is true or false at a particular point
in a plan. When dealing with incomplete knowledge
the requirements become more complex, e.g., we may
need to determine whether or not the agent will Ky pe
some fact at a particular point in a plan. In Table 1
we present a simple procedure for answering queries
about atomic formulas from the databases.

Procedure IA (¢)

Inputs: Either a ground atomic formula containing the terms (¢1,. ..

,tr), or a single term. The terms in € can

contain functions but no variables.

Output: T, F, W, or U subject to the conditions: (1) T implies KB = K(¢), (2) F implies KB | K(-¢), (3)
W implies KB |= Kyhe(e) (know whether) when ¢ is a formula and KB = Jz.K (z = ¢) when ¢ is a term, and
(4) U implies the algorithm is unable to conclude anything about e.

1.
2.

Simplify all terms by replacing each #; in € by EvalT(¢;).

If € is the term ¢ and either (1) ¢ is a constant or (2) there exists a ¢’ € K, and a substitution 6 such that
t'6 = t, then return(W). Else return(U).

If € is of the form ¢; = ¢5, then if these two terms are syntactically identical return(T). Else if ¢; and 43
are both constants then return(F). Else return(U).

If ¢ € Ky, then return(T).
If —¢ € Ky, then return(F).

If there exists a ¢(Z) = a1(£) A ... Aap(Z) € LCW and a ground instance of ¢, ¢(£/d), such that (1) a@
are constants appearing in Ky, (2) «;(Z/d) = € for some 4, and (3) IA(q;(£/d)) = T for all j # i, then
return(F).

If there exists a ¢(Z) = a1(Z) A ... A ag(%) € Ky and a ground instance of ¢, ¢(Z/d), such that (1) @ are
either constants appearing in Ky or terms ¢; appearing in ¢ for which IA(¢;)) = W | (2) «;(Z/d) = ¢ for

some %, and (3) IA(a;(Z/d)) = T for all j # 4, then return(W).

8. Else return U.

Procedure EvalT (%)
Inputs: A variable free term.
Output: ¢’ the simplest term known to be equal to t.

1. If ¢ is a constant then return(z).

2.If t = f(ta,...

,tx) and f(EvalT(¢),...,EvalT(t;)) = ¢

€ K; or we can compute that f

on these arguments is equal to ¢ (e.g., when f is an arithmetic function) then return(c), else

return(f(EvalT(¢;),..., EvalT(¢))).

Table 1: Inference Algorithm

This algorithm can be shown to be sound. Its complex-
ity is dominated by the search for ground instances
of ¢(%) in steps 4 and 5. Potentially the number of
ground instances of ¢(Z) can be exponential in the
number of variables in . However, we do not feel that
this will be an issue in practice.

As an example of the operation of TA consider the
query IA (size(kr.tex) > 1000) when size(kr.tex) € K,
is the only entry in any of the databases. In this
case TA will return W. Intuitively, since the agent
will come to know the value of size(kr.tex) it will
also come to know whether or not that size is larger
than 1000. First TA tries to reduce the function
term size(kr.tex), but no reduction is known as this
term is not in Kj. There are no entries in LCW

so the algorithm progresses to step 7. The predi-
cate > is rigid and thus ¢ = =z > y is an implicit
entry in K, (see discussion of K, above). Since
size(kr.tex) € K,, IA(size(kr.tex)) = W and the
ground substitution {z = size(kr.tex),y = 1000} sat-
isfies condition (1). Under this substitution condition
(2) is satisfied and (3) is trivially satisfied as ¢ has no
other conjunctions.

4 Representing Actions

The previous sections have provided a mechanism for
representing an agent’s knowledge state in a STRIPS
like manner as a collection of databases. We have
also provided a mechanism for answering some simple

queries from these databases. In this section we show
how we can model actions in a very STRIPS like man-
ner as well. In particular, the preconditions of actions
involve testing the contents of the various databases,
and the action effects bottom out on a set of adds and
deletes to the databases. This means that starting
at some initial configuration of the agent’s knowledge
state we can decide what actions can be applied and
we can compute what the agent’s new knowledge state
will be after the action has been applied.

A major theme throughout the paper has been the
separation between plan time and run time. This sep-
aration is maintained in our action descriptions. Every
action has a specified set of plan time effects and a set
of run time effects. Both plan time and run time ef-
fects are encoded as database updates. This means
that we can compute the plan time effects of a se-
quence of actions or track their execution time effects
in the same formalism. This will be illustrated by the
examples presented in Section 5, but first we specify
more formally the representation of actions.

Actions are specified by four components: the param-
eters, the preconditions, the plan time effects, and the
run time effects.

The action’s parameters. This is simply a set of
variables that can be bound to produce a particular
instance of the action.

The action’s precondition. Since it is the agent
that is executing or planning the actions a decision
on whether or not an action can be executed must
be based on the agent’s knowledge state: the agent
has no direct access to the state of its environment.
To this end it is possible to develop a query language
for querying the status of its databases. However, to
keep things simple we will specify preconditions to be a
conjunctive set of primitive queries. All queries in the
set must evaluate to true to satisfy the precondition.
The primitive queries all utilize the above inference
algorithm and they are listed below. In this listing «
is any ground atomic formula, and ¢ is any variable
free term.

1. K(«), true iff TA (o) returns T.

K (—«), true iff TA(a) returns F.

K, (a), true iff TA(a) returns W, T, or F.
K, (t), true iff TA(¢) returns W.

T W N

The negation of any of the above four queries.

The action’s plan time effects. These are specified
by a list of condition effect statements of the form

C = E. Each condition C is a conjunctive set of
primitive queries, and each effect F is a set of additions
or deletions to the four databases.

The action’s run time effects. We assume a sim-
ple interface between the planner and the execution
module. In particular, when an action instance is ex-
ecuted the name of that action is passed to the execu-
tion module along with a list of “run-time” variables
[GW96]. The execution module binds the run-time
variables with information it obtains while executing
the action.® The execution module may generate a
sequence of bindings for the run-time variables. The
effects of the action are specified using a list of condi-
tion effect statements, C' = E, as before. For run-time
effects, however, C' and E may contain any of the run-
time variables. Furthermore, C' may contain tests on
the run-time variables. If C' = E contains a run-time
variable then this condition effect statement will be
evaluated once for every distinct binding of the run-
time variables generated by the execution module. On
the other hand, when C' = E has no runtime variables
it is only executed once.

Additions and deletions to the four databases are spec-
ified by formulas like add(Ky,size(kr.tex) = 33000),
which adds this function value to the K; database.
We assume that add and delete have been configured
80 as to maintain the obvious consistency conditions
mentioned in Theorem 2.1. For example, when we add
the function value to Ky we delete any previous func-
tion values.

5 Examples

Our first example is that of opening a safe, due orig-
inally (we believe) to Moore [Moo85]. There are two
actions available: readComb and dialComb. Formal
descriptions of these actions are given in Table 2. We
consider two different plans to see if they achieve the
goal of opening the safe.

Consider the situation where the agent’s initial knowl-
edge state I is described by K; = {haveComb(safe)},
i.e., the object “safe” has a combination lock.
The agent might try dialing a random combina-
tion on the safe, for instance, taking the ac-
tion dialComb(safe, 15-42-7). In I it is easy to
see that IA(haveComb(safe)) = T. Furthermore,
TA(15-42-7) = W since “15-42-7" is a constant (step 2
of the algorithm) and all constants are known. Hence

8The run-time variables are positional just as in a pro-
cedure call. The user has to know what information is re-
turned by the execution module at each position in order
to properly specify the action.

Command Precondition Effects

readComb(z) K (haveComb(z))

exec(

Plan Time:
add(K,, combo(z))

Run Time:

delete(K, , combo(z)), add(K;, combo(z) = !val)

readComb(z), val)

dialComb(z,y) | K (haveComb(z)),

K, ()

exec g

Plan Time:
K (y = combo(z)) = add(Ky, (open(z)))
Run Time:

dialComb(z), \safeopen)
safeopen = True =
add(Ky, (open(z))), add(Ky, (y = combo(z)))

Table 2: Open Safe Domain Actions

the agent knows at plan time that the action’s precon-
ditions are satisfied.

Since the action’s preconditions are satisfied, the ac-
tion can be simulated® on I to yield an updated DB,
I'. In this case however I’ = I since the action has
no plan time effects on I. dialComb has a conditional
plan time effect, but in this case IA cannot deduce the
condition K (y = combo(safe)) from I and so the effect
add(Ky, open(safe)) is not activated. Intuitively, the
agent does not know if dialing a random combination
will cause the safe to open.

When we execute the action from the initial state I,
however, we get a different set of effects. The com-
bination 15-42-7 is passed to the execution module
along with the run time variable !safeopen (this is
the exec(dialComb(z,y), !safeopen) component of the
action where z is bound to safe and y is bound to
15-42-7). The execution module will set !safeopen to
True or False dependent on whether or not the ac-
tion succeeded in opening the safe. At run time, if
Isafeopen is set to True by the execution module, the
action’s conditional effect will be activated resulting
in both open(safe) and combo(safe) = 15-42-7 being
added to Ky to create a new state I'. Intuitively, if the
safe opens the agent comes to know it and also comes
to know that the combination dialed was in fact the
right combination. So we see that the act of dialing
a arbitrary combination does not allow the agent to
conclude at plan time that the safe will be opened.
However, at run time the agent may in fact be lucky
and cause the safe to open.

Now consider the action sequence readComb(safe) fol-
lowed by dialComb(safe, combo(safe)), again from ini-
tial state I. The precondition to the first action,

?We use the term “simulated” when talking about pro-
jecting the action’s effects at plan time, and “executed”
when talking about projecting the action’s effects at run
time.

readComb(safe), is satisfied in I. At plan time this
action updates I by adding combo(safe) to K,. In-
tuitively, this action will cause the agent to come to
know the combination of the safe. Let the updated
state be I'.

In I’, K(haveComb(safe)) holds as this fact was not
deleted from K. Furthermore, K, (combo(safe)) also
holds as this term was added to K, by the previous ac-
tion. Thus, we can conclude that the preconditions of
the second action dialComb(safe, combo(safe)) hold in
I'. When we simulate the action in I’ we must deter-
mine if the conditional of dialComb’s plan time effect
holds in I'. For this action instance the conditional
is K(combo(safe) = combo(safe)). I' has nothing in
it to allow the inference algorithm to simplify these
terms, but the algorithm is still able to return T as
the two terms are syntactically identical (step 3 of the
IA algorithm). Hence, open(safe) is added to the Ky
database of I'. Intuitively, the agent knows at plan
time that these two actions will open the safe, even
though 1t does not currently know what combination

will be dialed.

At run time, readComb(safe) has the effect of deter-
mining what the actual value of the combination is.
The execution module binds this value to the run time
variable !val. Suppose that this value is 15-42-7. Then
combo(safe) = 15-42-7 will be added to K;. In ad-
dition, the term combo(safe) is deleted from K,.!°
These changes will be made to the initial state I to
yield a new state I'. Now dialComb(safe, combo(safe))
is executed in I’. Prior to passing information to
the execution module we must reduce all terms to
their simplest form using the EvalT algorithm. This
means that the run time call to the execution module
will be exec(dialComb(safe, 15-42-7), \safeopen): the
second argument of the action combo(safe) will have
been reduced to 15-42-7 by the function value added

10This deletion is not strictly necessary. It “cleans up”
K, by removing redundant information.

Command | Effects
drink Plan Time:
add(Ky, hydrated)
medicate Plan Time:
K (hydrated) = add(Ky, —infected)
K (—hydrated) = add(Ky, dead)
- K, (hydrated) = delete(K;, ~dead)
Run Time:
exec(medicate, lalive)
lalive = False = add(K;, dead)
lalive = True = add(Kjy, ~infected)
stain Plan Time:

add(K,,, blue), add(K,,, infected)
Run Time:
exec(stain, !stainblue)
delete(K,,, blue), delete(K,,, infected)
Istainblue = True = add(Kjy, blue), add(Ky, infected)
Istainblue = False = add(K;, ~blue), add(Ky, minfected)

Table 3: Medical Domain Actions

by the previous action. This reduction is important,
and is the reason we need a K,(y) precondition on
the dialComb action: the execution module cannot be
expected to take complex terms whose value is un-
known as arguments. If the execution module is suc-
cessful it will return True in the run time variable
Isafeopen, which will cause open(safe) to be added to
K; in I'. The other addition is redundant as the value
of combo(safe) is already in I'.

Our second example is due to Smith and Weld. Three
actions are available: drink, medicate, and stain. The
goal is to cure a patients’ infection, without killing
them. drink has the effect of hydrating the patient.
medicate has the ability to cure the infection, but only
if the patient is hydrated. Otherwise, it kills the pa-
tient. stain can be used to test if the patient is infected:
the stain becomes blue if the patient is infected. These
actions are described in Table 3. None of these actions
have preconditions that need to be satisfied, so we are
only concerned with their effects.

Suppose that the agent’s initial knowledge state is de-
scribed by K; = {—dead}. One possible plan is the
action sequence drink followed by medicate. drink has
the plan time effect that the agent knows that the pa-
tient is hydrated. The second action, medicate, has
a conditional plan time effect. Since the agent knows
hydrated, it will also come to know —infected. Fur-
thermore, K (hydrated) implies K,, (hydrated) so the
third conditional is not activated. Hence, neither of
these actions removes —dead from Ky, so the agent
also knows the patient will be alive after these two ac-
tions. Thus, the agent is able to construct to plan that
it knows will achieve its goals. Furthermore, it knows
this at plan time.

Another possible plan is to perform the action
medicate without first hydrating. Since initially the
agent does not have any knowledge about hydration
the third conditional effect is activated and the agent
loses its knowledge that the patient is not dead. So
at plan time the agent can conclude that the medicate
action has an unknown effect on dead and hence that
this plan is not safe.

Finally consider the plan stain followed by the con-
ditional action if K (infected) then drink followed by
medicate. The action stain has the plan time effect
of adding infected to K,. In other words, the agent
knows at plan time that after executing stain it will ei-
ther be in a state where it knows infected or it knows
It is not difficult to extend the planner
so that at plan time it can add a conditional branch
for any fact in K, like infected. Along one of the
branches it adds infected to Ky, assuming infected to
be true, and along the other it adds —infected to Kj
assuming infected to be false. It then proceeds to com-
plete the plan along both branches ensuring that all
branches achieve the goal. At execution time the K,
fact that conditions any branch will be resolved and
the plan executor will know which branch to take.

—infected.

In this example, after the stain action one branch will
start in a state where Ky = {—dead, infected}. In this
state it is not difficult to see that the actions drink then
medicate achieve the agent’s goal. The other branch
starts in a state where K; = {—dead, —infected}. No
additional actions are needed along this branch to
achieve the agent’s goal.

So we see that the agent is able to determine at plan
time that the above conditional plan achieves its goal.

Command | Precondition Effects
Is-al 2 K (readable(z)) Plan Time:
add(Ky,, in-dir(z, z))
add(Ky, in-dir(z, z) A readable(z))
add(Ky, in-dir(z, z) A size(z) = y)
Run Time:
exec(ls -al z,!file, 'readable, lsize)
add(Ky, in-dir(!file, z))
Ireadable = add(Ky, readable(!file))
add(Ky, size(file) = lsize)
add(LCW , in-dir(z, z))
add(LCW , in-dir(z, z) A readable(z))
add(LCW , in-dir(z, z) A size(z) = y)
g7ip T K (readable(z)) Plan Time:
delete(K,, size(z))
Run Time:
exec(gzip)
delete(Ky, size(z)), delete(K, , size(z))
Table 4: UNIX Domain Actions

At run time when the stain action is executed, the ex-
ecution module determines if the colour of the stain
is blue and binds the result to the run time vari-
able Istainblue. The truth value of this variable will
then determine whether or not infected or —infected
is added to K;. In either case, the plan executor will
have sufficient information to correctly execute the rest
of the conditional plan (cf. [Lev96]).

Notice that at plan time the agent is able to guaran-
tee that the goal of curing the infection is achieved,
by considering the possible consequences of the first
action and planning appropriately. But, it is not until
run time that the actual branch of the plan to execute
in order to achieve the goal (either medicating or doing
nothing) becomes known.

We close the paper with a final example taken the
UNIX domain. The actions used in the example are
given in Table 4.1 This example uses a mechanism
for posting exceptions to K,, and LCW information:
specifying particular instances for which a K, or LCW
formula no longer holds. This mechanism will be ex-
plained in full in a later paper.

Say that in the real world we have readable(1.ps),
readable(2.ps), readable(old), in-dir(1.ps, old),
size(1.ps) = 10,000, and in-dir(2.ps,new). The
following conditional plan is intended to achieve
the goal “If the file I.ps is in directory old and
readable then compress it, and if 2.ps is in directory
old and readable compress it:” (1) Is-al old; (2) if
in-dir(1.ps, old) and readable(1.ps) execute gzip 1.ps;
(3) if in-dir(2.ps,old) and readable(2.ps) execute

'We have simplified these UNIX actions somewhat for
ease of presentation.

gzip 2.ps.

Say that the agent’s initial knowledge state is K; =
{readable(1.ps), readable(2.ps), readable(old)}, with
all of the other databases empty. Using the above
action specifications we can project this conditional
plan forward to determine what the agent’s knowledge
state would be at the various steps of the plan.

From the initial state we can conclude that the pre-
conditions of Is -al old hold. Simulating this ac-
tion we generate the new knowledge state where
K, = {in-dir(z,old), in-dir(z,old) A readable(z),
in-dir(z, old) A size(z) = y}, and everything else is
unaffected. From this knowledge state we have that
K, (in-dir(1.ps, old)), and K (readable(I.ps)). This
entails that we know whether the branch condition of
step 2 at this point in the plan, and hence the branch
is legitimate.

Along the false branch we can conclude that
K (—(in-dir(1.ps, old)) and K (readable(1.ps)), which
is sufficient to show that the first goal is achieved on
this branch. Along the true branch, K; still contains
readable(1.ps) which is sufficient to conclude that the
preconditions of gzip I1.ps hold.

After simulating this action we obtain a new K,
in which the entry in-dir(z,old) A size(z) = y has
been replaced by the entry in-dir(z, old) A size(z) =
y A (z # 1.ps) to reflect the fact that we no longer
know the value of size(l.ps). The mechanism that
handles this update is part of an extension we have
developed to deal with exceptions to K,, (and LCW)
facts. This mechanism recognizes that the delete spec-
ified by gzip , delete(K,, size(1.ps)), should not mean
the simple removal of this item from the K, database

(in this case it is not even present in K,). Rather,
in this situation K, allows us to conclude that we
know this value, and so we must also update K,,. The
mechanism we have developed posts exceptions to K,
and LCW facts. This allows us to update such facts
without loosing excessive amounts of information (cf.

[EGW97)).

The third step of the plan can be simulated in a similar
manner to show that both of its branches also succeed
in achieving the second goal (irrespective of the branch
we took for step 2).

Turning now to execution time, the effects of the first
and second steps of the plan are fairly straightfor-
ward. It is the third step that is interesting. At this
stage of execution we would have executed the true
branch of step 2 and would have K; = {readable(1.ps),
readable(2.ps), readable(old), in-dir(1.ps,old)}. At
execution time a size fact for 1.ps would have been
added by step 1, but deleted by the execution of gzip .
There are no facts in Ky about the file 2.ps as it was
not found to be in the listed directory, but we will
have that in-dir(z, old) € LCW. Now the inference al-
gorithm can infer that K (—(in-dir(2.ps, old)), and the
execution module can correctly realize that it should
execute the false (null) branch of step 3’s conditional.

References
[BK96] F. Bacchus and F. Kabanza. Using tem-
poral logic to control search in a forward
chaining planner. In M. Ghallab and
A. Milani, editors, New Directions in Plan-
ning, pages 141-153. I0S Press, 1996.

[EGW94] O. Etzioni, K. Golden, and D. Weld.
Tractable closed-world reasoning with up-
dates. In Proceedings of the International
Conference on Principles of Knowledge
Representation and Reasoning, pages 178—

189, 1994.

[EGW97] O. Etzioni, K. Golden, and D. Weld.
Sound and efficient closed-world reason-
ing for planning. Artificial Intelligence,
1997. To appear, preprint available at

ftp.cs.washington.edu.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and
M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, Mass., 1995.

[GarT7) J. W. Garson. Quantification in modal
logic. In D. Gabbay and F. Guenthner,

editors, Handbook of Philosophical Logic,

[GEW94]

[GW96]

[Hin75]

[Lev96)

[McD96]

[Moo85]

[PG93]

[PS92]

[SL93]

Vol. II, pages 249-307. Reidel, Dordrecht,
Netherlands, 1977.

K. Golden, O. Etzioni, and D. Weld. Om-
nipotence without omniscience: Efficient
sensor management in planning. In Pro-
ceedings of the AAAI National Conference,
pages 1048-1054, 1994.

K. Golden and D. Weld. Representing
sensing actions: The middle ground re-
visited. In Proceedings of the Interna-
tional Conference on Principles of Knowl-
edge Representation and Reasoning, pages

174-185, 1996.

J. Hintikka. Impossible possible worlds
vindicated. Journal of Philosophical Logic,
4:475-484, 1975.

H. Levesque. What is planning in the pre-
sense of sensing? In Proceedings of the
AAAI National Conference, pages 1139-
1146, 1996.

D. McDermott. A heuristic estimator for
means-end analysis in planning. In Pro-
ceedings of the Third International Con-
ference on A.I Planning Systems, 1996.

R. C. Moore. A formal theory of knowledge
and action. In J. Hobbs and R. C. Moore,
editors, Formal Theories of the Common-
sense World, pages 319-358. Ablex Pub-
lishing Corp., Norwood, NJ, 1985.

L. Pryor and Collins G. Cassandra: Plan-
ning for contingencies. Technical Re-
port 41, Northwestern University, The In-
stitute for the Learning Sciences, June

1993.

M. Peot and D. Smith. Conditional non-
linear planning. In Proceedings of the First
International Conference on A.I. Planning
Systems, pages 189-197, 1992.

R. B. Scherl and H. J. Levesque. The
frame problem and knowledge-producing
actions. In Proceedings of the AAAI Na-
tional Conference, pages 689-695, 1993.

