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In planning� goals have been traditionally been viewed as specifying a set of de�
sirable �nal states� Any plan that transforms the current state to one of these
desirable states is viewed to be correct� Goals of this form are limited in what
they can specify� and they also do not allow us to constrain the manner in which
the plan achieves its objectives�

We propose viewing goals as specifying desirable sequences of states� and a plan
to be correct if its execution yields one of these desirable sequences� We present
a logical language� a temporal logic� for specifying goals with this semantics� Our
language is rich and allows the representation of a range of temporally extended
goals� including classical goals� goals with temporal deadlines� quanti�ed goals
�with both universal and existential quanti�cation�� safety goals� and maintenance
goals� Our formalism is simple and yet extends previous approaches in this area�

We also present a planning algorithm that can generate correct plans for these
goals� This algorithm has been implemented� and we provide some examples of
the formalism at work� The end result is a planning system which can generate
plans that satisfy a novel and useful set of conditions�

Keywords� planning� temporal logic�

� Introduction

One of the features that distinguishes intelligent agents is their 
exibility	 generally they
have the ability to accomplish a task in a variety of ways� Such 
exibility is� of course�
necessary if the agent is to be able to accomplish a range of tasks under varying conditions�
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Yet this 
exibility also poses a problem	 how do we communicate to such an agent the
task we want accomplished in a suciently precise manner so that it does what we really
want�

In the area of planning� methods and algorithms are studied by which� given informa�
tion about the current situation� an intelligent agent can compose its primitive abilities
so as to accomplish a desired task or goal� The afore mentioned problem then becomes
the problem of designing suciently expressive and precise ways of specifying goals�

Much of the work in planning has dealt with goals speci�ed as conditions on a �nal
state� For example� we might specify a goal as a list of literals� The intent of such
goals is that the agent should �nd a plan that will transform the current situation to a
con�guration that satis�es all of the literals in the goal� Any plan that achieves such a
satisfying �nal state is deemed to be correct� However� there are two major limitations
in the expressive power of such goals� First� not all goals are ��nal state� goals� For
example� we might have goals of maintenance or reaction� where the agent must try to
maintain a condition or respond within a limited time frame to a condition� Such goals can
be important� but they cannot be speci�ed as commands to reach a certain �nal state�
Second� there are many important constraints we might wish to place on the agent�s
behavior that similarly cannot be expressed using �nal state semantics for goals� For
example� if the agent�s goal is to minimize disk usage� we might want to constrain it from
deleting arbitrary �les �WE���� The importance of specifying such �safety� constraints
on the agent�s plans has been recognized� In particular� Weld and Etzioni �WE��� present
strong arguments for looking beyond the simple achievement of a �nal state� and suggest
two additional constraints on plans� a notion of don�t�disturb and restore� However� these
notions are only the tip of the iceberg� in general there are many other types of constraints
that we may need to specify�

In this paper we present a richer formalism for specifying goals that borrows from
work in veri�cation �MP���� and develop a planning algorithm for generating plans to
achieve such goals� Our formalism suggests a di�erent way of viewing goals in planning�
Instead of viewing goals as characterizing some set of acceptable �nal states and a plan
as being correct if it achieves one of these states� we will view a goal as specifying a set of
acceptable sequences of states and a plan as being correct if its execution results in one
of these sequences� As we will show our formalism for goals subsumes the suggestions of
Weld and Etzioni� except that instead of viewing don�t�disturb and restore as constraints
on plans� we view them as simply being additional goals�

Our formalism allows us to specify a wide range of temporally extended goals� This
range includes� but is not limited to� classical goals of achieving some �nal state� goals with
temporal deadlines� safety and maintenance goals like those discussed by Weld and Etzioni
and others �HH���� and quanti�ed goals �both universally and existentially quanti�ed��
Furthermore� our formalism is a logical language that carries with it a precise� and quite
intuitive� semantics� The latter is important� as without a precise semantics for our
goals we will not be able to analyze and verify exactly what it is our agents will be
accomplishing�

Logic has� of course� been previously used in work on planning� Included among the
works using logic for planning has been Green�s use of the situation calculus �Gre����
Rosenschein�s use of dynamic logic �Ros���� and Bauer et al��s use of temporal logic
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�BBD������ However� all of this work has viewed planning as a theorem proving problem�
In this approach the initial state� the action e�ects� and the goal� are all encoded as
logical formulas� Then� following Green� plans are generated by attempting to prove
�constructively� that a plan exists� Planning as theorem proving has to date su�ered
from severe computational problems� and this approach has not yet yielded an e�ective
planner�

Logic is used here in a completely di�erent manner� In particular� we use the standard
Strips approach of representing the initial state as a database of facts� and we use either
the Strips or the Adl �Ped��� representations for action e�ects� Plan generation is
accomplished by searching in spaces that are much more closely related to the structure
of plans than is the more abstract space of proofs searched by theorem proving approaches�
The logic is used solely to express goals and� as we will see later� search control information
that can be used to guide search� Our approach uses tractable mechanisms for model
checking logical formulas� rather than intractable mechanisms for generating proofs�

Temporally extended goals have previously been examined in the literature� Haddawy
and Hanks �HH��� have provided utility models for some types of temporally extended
goals� Kabanza et al� �Kab��� GK��� BKSD��� have developed methods for generating
reactive plans that achieve temporally extended goals� as has Drummond �Dru���� Plan�
ning systems and theories speci�cally designed to deal with temporal constraints �and
sometimes other metric resources� have also been developed �Ver��� Wil��� AKRT���
CT��� Lan��� PW����

The major di�erence between these previous works and what we present here� lies in
our use of a logical representation� In particular� we use a temporal logic that supports
a unique approach to computing plans� an approach based on formula progression� The
method of formula progression lends itself naturally to the speci�cation and utilization
of domain dependent search control knowledge� As we will argue later� the approach of
domain dependent search control o�ers considerable promise� and has motivated our ap�
proach to dealing with temporally extended goals� The other works that have constructed
planners capable of dealing with temporally extended conditions have either utilized com�
plex constraint management techniques to deal with temporal information� e�g�� the Zeno
planner of Pemberthy and Weld �PW���� or permit only a limited range of temporally
extended constructs� e�g�� the speci�c extensions to Snlp suggested by Weld and Etzioni
�WE���� These mechanisms� unlike our logic� are not compositional� That is� special pur�
pose modi�cations must be made to the underlying planning algorithm to accommodate
each of the primitive �temporally extended� constructs used� and these constructs cannot
be composed as can logical expressions� In our approach we develop a general purpose
algorithm that can take as input any temporally extended goal expressible as a logical
formula and� subject to computational limitations� �nd a plan satisfying that goal� The
compositional features of our logical language allow us to express a much wider range of
temporally extended goals than previous approaches�

The works by Kabanza cited above� are closer to our approach� In particular� he and
his co�authors have utilized similar logics and similar notions of formula progression in
their work� In this case the main di�erence is that here we address classical plans� i�e��
�nite sequences of actions� while Kabanza has concentrated on generating reactive plans�

�In fact� the temporal logic used by Bauer et al� shares some of the features of the logic used
here�
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i�e�� mappings from states to actions �sometimes called universal plans �Sch����� Reactive
plans have to specify an on�going interaction between an agent and its environment� and
thus pose a quite distinct set of problems�

To generate plans that achieve the goals expressed in our formalismwe present a plan�
ning algorithm that� as alluded to above� relies on the logical notion of goal progression�
This notion has been utilized in our previous work �BK���� In that work we examined
the generation of plans for classical goals and used a simpler temporal logic to express
search control information� We have implemented our algorithm as an extension to the
TLPlan system developed in that work� The planning algorithm is sound and complete�
and it is able to generate a range of interesting plans�

In the rest of the paper we will �rst provide the details of the logic we propose for
expressing goals� This logic is a temporal logic that is based on previous work by Alur
et al� �AFH���� We then present our approach to planning and provide examples to
demonstrate the range of goals that our system can cope with� Finally� we close with
some conclusions and discussion of future work�

� Expressing goals in MITL

We use a logical language for expressing goals� The logic is based on Metric Interval
Temporal Logic developed by Alur et al� �AFH���� but we have extended to it allow
�rst�order quanti�cation�

��� Syntax

We start with a collection of n�ary predicates �including equality and the ��ary predicate
constants true and false� and function symbols �with constants viewed as ��ary func�
tions�� variables� and the Boolean connectives � �not� and � �and�� We add the universal
and existential quanti�ers � and � and the modal operators � �next� and U �until�� From
this collection of symbols we generate MITL� the language we use to express goals� MITL
is de�ned by the traditional rules for generating terms� atomic formulas� and Boolean com�
binations� taken from ordinary �rst�order logic� In addition to these standard formula
formation rules we add	

�� If � is a formula then so is ���

�� If �� and �� are formulas and I is an interval then so is �� UI ��� �The syntax of
intervals is de�ned below��

�� If ��x� is an atomic formula in which the variable x is free� and � is a formula then
so are ��x	��x���� and ��x	��x����

Notice that we have de�ned a special syntax for quanti�cation� In particular� in our
language we will use bounded quanti�cation� The atomic formula � is used to specify
the range over which the quanti�ed variable ranges� Bounded quanti�cation is used so as
to make our implementation computationally feasible� The precise semantics of bounded
quanti�ers is given below�
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The syntax of intervals is as one would expect� The allowed intervals are all intervals
over the non�negative real line� and we specify an interval by giving its two endpoints�
both of which are required to be non�negative numbers� To allow for unbounded intervals
we allow the right endpoint to be �� Intervals can be either open� closed� or half�open
half�closed� and we use the traditional symbols ��� and ��� to denote closed bounds and
��� and ��� to denote open bounds� For example� ����� speci�es the interval of numbers
x such that � � x� ����� ���� speci�es the interval ��� � x � ���� and ��� �� speci�es the
interval � � x � � �i�e�� the point x � ���

Although non�negative intervals are the only ones allowed in the formulas of MITL�
in the semantics and algorithms we will need to utilize shifted intervals and to test for
negative intervals� For any interval I let I�r be the set of numbers x such that x�r 	 I�
I � r be the set of numbers x such that x� r 	 I� and I � � be true i� all numbers in I
are less than �� For example� ����� � ��� is the new interval �������� ��� ��� ��� is the
new interval ������������ and ����������� � � is true�

Finally� we introduce
 �implication�� and � �disjunction� as standard abbreviations�
We also introduce the temporal modalities eventually � and always � as abbreviations
with �I� � trueUI �� and �I� � ��I��� We will also abbreviate intervals of the form
�r��� and ��� r�� e�g�� ��r��� will be written as ��r and �����	 as ���� And we will often
omit writing the interval ������ e�g�� we will write �� U����	 �� as �� U ����

��� The Intuitive Meaning of the Temporal Modalities

Intuitively� the temporal modalities can be explained as follows� The �next� modality
� simply speci�es that something must be true in the next state� Its semantics will not
depend on the time of the states� It is important to realize� however� that what it requires
to be true in the next state may itself be a formula containing temporal modalities� MITL
gets its expressive power from its ability to nest temporal modalities�

The �until� modality is more subtle� In its untimed form �� U �� speci�es that ��
must hold until �� is achieved� When we introduce a timing constraint the condition to
be achieved� ��� must additionally be achieved during the interval speci�ed� The formula
�� U�
��	 ��� for example� requires that �� be true in some state whose time is between �
and � units into the future� and that �� be true in all states until we reach a state where
�� is true� The �eventually� modality will thus take on the semantics that �I� requires
that � be true in some state whose time lies in the interval I� and �I� requires that � be
true in all states whose time lies in I�

Now we present the formal semantics for these modalities�

��� Semantics

We intend that goals be expressed as sentences of the language MITL� As hinted in the
introduction such formulas are intended to specify sets of sequences of states� Hence� it
should not be surprising that the underlying semantics we assign to the formulas of MITL
be in terms of state sequences�

A model for MITL is a timed sequence of states� M � hs�� � � � � sn� � � �i� In particular�
a model is an in�nite sequence� and each state is a �rst�order model over a �xed domain

�The temporal modalities with the interval ���� correspond precisely to the traditional
untimed modalities of Linear Temporal Logic �Eme���
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D� That is� each state si assigns a denotation for each predicate and function symbol
over the domain D� Furthermore� there is a timing function T that maps each state si
in M to a point on the non�negative real line such that for all i� T �si� � T �si��� and for
all real numbers r there exists an i such that T �si� � r� This means that time is only
required to be non�decreasing� not strictly increasing� Time can stall at a single point
for any �nite number of states� Eventually� however time must increase beyond any �xed
bound� The ability to have a sequence of states in which time is not advancing allows us
to deal with concurrent actions�

Let V be a variable assignment� i�e�� a mapping from the variables to elements of D�
�� ��� and �� be formulas of MITL� and M be an MITL model� The semantics of MITL
are then de�ned by the following clauses�

�� hM� si� V i j� �� when � is atemporal �i�e�� contains no temporal modalities� and
quanti�er free� i� hsi� V i j� ���

�� hM� si� V i j� �� i� hM� si��� V i j� ��

�� hM� si� V i j� �� UI �� i� there exists sj � j  i with T �sj� 	 I � T �si� such that
hM� sj � V i j� �� and for all sk with i � k � j we have hM� sk� V i j� ���

�� hM� si� V i j� ��x	��x��� i� for all d 	 D such that hsi� V �x�d�i j� ��x� we have
hM� si� V �x�d�i j� ��

�� hM� si� V i j� ��x	��x��� i� there exists d 	 D such that hsi� V �x�d�i j� ��x� and
hM� si� V �x�d�i j� ��

It is not dicult to show that any formula of MITL that has no free variables� called
a sentence� has a truth value that is independent of the variable assignment V � Given a
sentence � of MITL we say it is true in a modelM � M j� �� i� hM� s�i j� ��

Since sentences of MITL are either true or false on any individual timed sequence of
states� we can associate with every sentence a set of sequences	 those sequences on which
it is true� We express goals as sentences of MITL� hence we obtain our desired semantics
for goals	 a set of acceptable sequences�

��	 Discussion

An important property of these semantics is that they are what could be called �snapshot�
semantics� They require that a state �a snapshot� exists that witnesses a particular
property� Such a witness could fail to exist for two reasons	 either the snapshot was
taken at the right time but showed that the property was false� or no snapshot was taken
�i�e�� no state with the appropriate time exists in the sequence�� For example� say that in
the modelM � T �s�� � � and T �s�� � �� then it cannot be the case that hM� s�i j� �����	�
nor is it the case that hM� s�i j� �����	��	 no state exists with time ��

Turning to the clauses for the bounded quanti�ers we see that the range of the quan�
ti�er is being restricted to the set of domain elements that satisfy �� If � is true of all
domain individuals� then the bounded quanti�ers become equivalent to ordinary quanti��
cation� Similarly� we could express bounded quanti�cation with ordinary quanti�ers using

�Note that si is a �rst�order model� so the relationship �hsi� V i j� �� is de�ned according to
the standard rules for �rst�order semantics�
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the syntactic equivalences ��x	��x��� � �x���x�
 � and ��x	��x��� � �x���x�� �� We
have de�ned MITL to use bounded quanti�cation because we will need to place �niteness
restrictions on quanti�cation when computing plans�

� Planning

��� Planning Assumptions and Restrictions

Now we turn to the problem of generating plans for goals expressed in the language MITL�
First we specify our assumptions�

�� We have as input a complete description of the initial state�

�� Actions preserve this completeness� That is� if an action is applied to a completely
described state� then the resulting state will also be completely described�

�� Actions are deterministic� that is� in any world they must produce a unique successor
world�

�� Plans are �nite sequences of actions�

�� Only the agent who is executing the plan changes the world� That is� there are no
other agents nor any exogenous events�

�� All quanti�er bounds� i�e�� the atomic formulas ��x� used in the de�nition of quan�
ti�ed formulas� range over a 
nite subset of the domain�

These assumptions allow us to focus on a particular extension of planning technology�
They are essentially the same assumptions made in classical planning� For example�
the assumption that actions preserve completeness is implied by the standard Strips

assumption�
It is possible� however� to weaken some of these assumptions� For example� our ap�

proach could accommodate some degree of incompleteness� Incomplete state descriptions
will suce as long as they are complete enough to ��� determine the truth of the pre�
conditions of every action and ��� determine the truth of all atemporal subformulas of
the goal formula� The price that may have to be paid however is eciency� instead of
database lookup� theorem proving may be required to determine the truth of these two
items� More conservative notions of incompleteness like locally closed worlds �EGW���
could be utilized in our framework without imposing a large computational burden�

Also� it should be made clear that restricting ourselves to deterministic actions does
not mean actions cannot have conditional e�ects� In fact� the planner we implemented
handles full Adl conditional actions �Ped��� including actions with disjunctive and exis�
tentially quanti�ed preconditions and actions that update metric quantities �functions��

��� Plan Correctness

Given a goal g expressed as a sentence of MITL we need to develop a method for generating
plans that satisfy g� Sentences of MITL are satis�ed by timed state sequences as described
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above� Hence� to determine whether or not a plan satis�es g we must provide a semantics
for plans in terms of the models of MITL�

Since actions map states to new states� any �nite sequence of actions will generate a
�nite sequence of states	 the states that would arise as the plan is executed� Furthermore�
we will assume that part of an action�s speci�cation is a speci�cation of its duration� which
is constrained to be non�negative� This means that if we consider s� to commence at time
�� then every state that is visited by the plan can be given a time stamp� Hence� a plan
gives rise to a �nite timed sequence of states�almost a suitable model for MITL�

The only diculty is that models of MITL are in�nite sequences� Intuitively� we
intend to control the agent for some �nite time� up until the time the agent completes
the execution of its plan��

Since we are assuming that the agent is the only source of change� once it has com�
pleted the plan the �nal state of the plan idles� i�e�� it remains unchanged� Formally� we
de�ne the MITL model corresponding to a plan as follows	

De�nition �
Let plan P be the 
nite sequence of actions ha�� � � � � ani� Let S � hs�� � � � � sni be the
sequence of states such that si � ai�si���� and s� is the initial state� S is the sequence
of states visited by the plan� Then the MITL model corresponding to P and s� is de
ned
to be hs�� � � � � sn� sn� � � �i� i�e�� S with the 
nal state sn idled� where T �si� � T �si��� �
duration�ai�� � � i � n� T �s�� � �� and the time of the copies of sn increases without
bound�

Therefore� every �nite sequence of actions we generate corresponds to a unique model
in which the �nal state is idling� Given a goal expressed as a sentence of MITL we can
determine� using the semantics de�ned above� whether or not the plan satis�es the goal�

De�nition �
Let P be a plan� g be a goal expressed as a formula of MITL� s� be the initial state� and
M be the model corresponding to P and s�� P is a correct plan for g given s� i� M j� g�

��� Generating Plans

We will generate plans by adopting the methodology of our previous work �BK���� In
particular� we have constructed a forward�chaining planning engine that generates linear
sequences of actions� and thus linear sequences of states� As these linear sequences of
states are generated we incrementally check them against the goal� Whenever we can
show that achieving the goal is impossible along a particular sequence� we can prune
that sequence and all of its possible extensions from the search space� And we can stop
when we �nd a sequence that satis�es the goal� The incremental checking mechanism is

�Work on reactive plans �BKSD��� and policies �DKKN��� TR��� BD��� has concerned itself
with on�going interactions between the agent and its environment� However� there are still many
applications where we only want the agent to accomplish a task that has a �nite horizon� in
which case plans that are �nite sequences of actions can generally su�ce�
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Inputs� A state si� with formula label �� and a time duration  to the successor state�
Output� A new formula �� representing the formula label of the successor state�

Algorithm Progress���si� �
Case
�� � contains no temporal modalities	

if si j� � �� 	� true

else �� 	� false

�� � � �� � ��	 �� 	� Progress���� si� �� Progress���� si� �
�� � � ���	 �� 	� �Progress���� si� �
�� � � ���	 �� 	� ��
�� � � �� UI ��	

if I � � �� 	� false

else if � 	 I �� 	� Progress���� si� �� �Progress���� si� � � �� UI� ���
else Progress���� si� �� �� UI� ��

�� � � ��x	����	 �� 	�
V
fc�sij���c�g

Progress����x�c�� si� �

�� � � ��x	����	 �� 	�
W
fc�sij���c�g

Progress����x�c�� si� �

Table �	 The progression algorithm�

accomplished by the logical progression of the goal formula�

Formula Progression�
The technique of formula progression works by labeling the initial state with the sentence
representing the goal� call it g� For each successor of the initial state� generated by forward
chaining� a new formula label is generated by progressing the initial state�s label using
the algorithm given in Table �� This new formula is used to label the successor states�
This process continues� Every time a state is expanded during planning search each of
its successors is given a new label generated by progression�

Intuitively a state�s label speci�es a condition that we are looking for� That is� we want
to �nd a sequence of states starting from this state that satis�es the label� The purpose
of the progression algorithm is to update this label as we extend the state sequence� It
takes as input the current state and the duration of the action that yields the successor
state�

The logical relationship between the input formula and output formula of the algo�
rithm is characterized by the following proposition	

Proposition �
Let M � hs�� s�� � � �i be any MITL model� Then� we have for any formula � of MITL�
hM� sii j� � if and only if hM� si��i j� Progress��� si� T �si���� T �si���

Proof
The proof of this proposition follows almost directly from the semantics of MITL formulas�
To see how the argument proceeds consider case �� when � contains no temporal modal�
ities� By the similar clause for the semantics of � �Section ���� we see that hM� sii j� �
i� si j� �� The progression algorithm produces as the progressed formula� ��� true if
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si j� � and false otherwise� Since hM� si��i j� true and hM� si��i �j� false� we see that
the proposition holds in this case�

The only more complicated case is when � � �� UI ��� Let  � T �si��� � T �si�� If
I � � then we see that � cannot be satis�ed by any sequence starting at si	 there can
be no sj with j  i and T �sj� 	 I � T �si� as time is non�decreasing along any sequence�
Hence� time has expired and �� � false validates the proposition� If � 	 I then � will
be true if �� is true at the current time �which is always ��� That is� the current state
falls into the interval where �� must be true� Hence� by the semantics of U� � will be
true i� �� is true now or �� is true now and a time shifted version of � is true in the next
state� By induction �� will be true now �i�e�� in si� i� Progress���� si� � is true in the
next state� and similarly for ��� To see the need for a time shifted version of �� observe
that if �� must be true in the interval I� then when we move to the next state� which is
 time units into the future� �� must be true in the interval I � Putting this together
we obtain the formula �� that must be satis�ed in the next state� Finally� if I � � then
whether or not �� is true in the current state becomes irrelevant� as the current time does
not fall into the required interval� In this �nal case� what we require is that �� be true in
the current state �i�e�� Progress���� si� � be true in the next state�� and a time shifted
version of � be true in the next state�

The �nal two cases of the algorithm show that we handle quanti�cation by rewriting
it as a formula over the possible instantiations of the quanti�ed variable� This is where we
use our assumption that all quanti�cation ranges over only a �nite subset of the domain�

Say that we label the start state� s�� with the formula �� and we generate new labels
for the sequence of states hs�� s�� � � � � si up to the state s� using the progression algorithm�
Furthermore� say we �nd a sequence of states� S � hs� s�� s�� � � �i� starting at state s that
satis�es s�s label� Then a simple induction using Proposition � shows that the sequence
leading from s� to s followed by the sequence S� i�e�� hs�� � � � � s� s�� s�� � � �i� satis�es �� The
progression algorithm keeps the labels up to date	 they specify what we are looking for
given that we have arrived where we are�

From this insight we can identify two important features of the formula progression
mechanism� First� if we �nd any state whose idling satis�es its label� we have found a
correct plan�

Proposition �
Let hs�� s�� � � � � sni be a sequence of states generated by forward chaining from the initial
state s� to sn� For each state si let its label be 	�si�� Let the labels of the states be
computed via progression� i�e�� for each state si in the sequence

	�si��� � Progress�	�si�� si� T �si���� T �si���

Then M � hs�� � � � � � sn� sn� � � �i j� 	�s�� i� hsn� sn� � � �i j� 	�sn��

Proof
By induction from Proposition ��

Since 	�s�� is a formula specifying the goal� this proposition shows that if hsn� sn� � � �i
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Inputs� A state s� and a formula ��
Output� True if the state sequence hs� s� � � �i� where time increases without bound� sat�
is�es �� False otherwise�

Algorithm Idle���s�
Case
�� � contains no temporal modalities	

if s j� � return true

else return false

�� � � �� � ��	 return Idle���� s� � Idle���� s�
�� � � ���	 return �Idle���� s�
�� � � ���	 return Idle���� s�
�� � � �� UI ��	

if I � � return false

else if � 	 I return Idle���� s�
else return Idle���� s� � Idle���� s�

�� � � ��x	����	 return
V
fc�sj���c�g Idle����x�c�� s�

�� � � ��x	����	 return
W
fc�sj���c�g Idle����x�c�� s�

Table �	 The idling algorithm�

satis�es sn�s label then the plan leading to sn satis�es the goal� Hence� if we have a method
for testing for any state s and any formula � 	 MITL whether or not hs� s� � � �i j� �� we
have a termination test for the planning algorithm that guarantees the soundness of the
algorithm� We will describe an appropriate method below�

Furthermore� as long as the search procedure used by the algorithm eventually con�
siders all �nite sequences of states the planning algorithm will also be complete�

The second feature of formula progression is that it allows us to prune the search
space without losing completeness� As we compute the progressed label we simplify it
by processing all true and false subformulas� For example� if the label � � true is
generated we simplify this to �� If any state receives the label false we can prune it from
the search space� thus avoiding searching any of its successors� From Proposition � we
know that this label speci�es a requirement on the sequences that start at this state� No
sequence can satisfy the requirement false� hence no sequences starting from this state
can satisfy the goal� and this state and its successors can be safely pruned from the search
space�

Termination�
As indicated above� we can detect when a plan satis�es the goal if we can detect when an
idling state satis�es its label� This computation is accomplished by the algorithm given
in Table ��

Proposition �
Idle��� s� returns true if and only if hs� s� � � �i j� �� That is� Idle detects if an idling state
satis
es a formula�
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Inputs� An initial state s�� and a sentence g 	MITL specifying the goal�
Returns� A plan P consisting of �nite sequence of actions�
Algorithm Plan�g�s�

�� Open � f�g� s��g�

�� While Open is not empty�

��� ��� s� � Remove an element of Open�

��� if Idle��� s� Return ���� s���

��� Successors � Expand�s��

��� For all �s�� a� 	 Successors

����� �� � Progress��� s� duration�a���

����� if �� �� false

������� Parent����� s��� ���� s��

������� Open �Open � f���� s��g�

Table �	 The planning algorithm�

Proof
Again this proposition is easily proved from the de�nition of the semantics of MITL� For
example� consider an until formula � � �� UI ��� If it has not yet timed out� it requires
that �� become true� Since the state s is idling� this means that s must itself satisfy ���
By induction this can be tested by calling Idle���� s�� Similarly� if there is some time gap
until the time that �� must be satis�ed then s must also satisfy ��� and this can be tested
by calling Idle���� s��

The Planning Algorithm�
Given the pieces developed in the previous sections we specify the planning algorithm
presented in Table �� The algorithm labels the initial state with the goal and searches
among the space of state�formula pairs� We test for termination by running the Idle
algorithm on the state�s formula� To expand a state�formula pair we apply all applicable
actions to its state component� returning all pairs containing a successor state and the
action that produced that state �this is accomplished by Expand�s��� We then compute
the new labels for those successor states using the Progress algorithm�

It should be noted that we cannot treat action sequences that visit the same state as
being cyclic� If we are only looking for a path to a �nal state� as in classical planning�
we could eliminate such cycles� Goals in MITL� however� can easily require visiting the
same state many times� Nevertheless� we can view visiting the same state�formula pair
as a cycle� and� using the standard techniques� we can optimize the search so as not to
perform redundant expansions of the same state�formula pair�
 Intuitively� when we visit

�For example� we can eliminate that node or search from it again if the new path we have
found to it is better than the old path� These considerations will determine how we decide to
set Parent����� s��� in step 
���
�	
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the same state�formula node we have arrived at a point in the search were we are searching
for the same set of extensions to the same state� The planner we implemented performs
this optimization��

Proposition 	
The planning algorithm is sound and complete� That is� it produces a plan that is correct
for g given s� �De
nition �� and so long as nodes are selected from Open in such a
manner that every node is eventually selected� it will 
nd a plan if one exists�

Proof
The soundness of our algorithm follows directly from the soundness of our termination
test �Propositions � and ��� Completeness is also obvious given the completeness of the
underlying search algorithm� The argument that we can optimize by eliminating state�
formula cycles can also be proved formally�

��	 The implementation

We have implemented the planning algorithm as an extension of the TLPlan system
�Bac���� This system provides a general forward chaining engine with a number of use�
ful features� It requires some set of described predicates� All positive instances of the
described predicates must be provided in the initial state� and the completeness of this
description must be preserved by the actions�

With the described predicates in place the system implements an ecient �rst�order
formula evaluator �utilizing a closed world assumption over the described predicates�� By
utilizing the complete descriptions of the described predicates� the evaluator is able to
test if a state satis�es an arbitrary �rst�order formula without using theorem proving�
Instead it employs model checking �HV���� in a process similar to query evaluation in
databases� The formula evaluator is then used to provide a number of useful features�

First� additional predicates can be de�ned by recursive �rst�order formulas over the
described predicates� For example� in the blocks world domain an above predicate can be
de�ned by a recursive formula over the described on predicates� Furthermore� predicates
that invoke arbitrary computations can be de�ned� These additional de�ned predicates
can be used in the preconditions of actions and in the goal formulas� Second� actions
can be speci�ed using the full Adl formalism� In particular� unlike Ucpop �PW����
the preconditions of actions can use disjunction and existential quanti�cation� Finally�
functions are fully supported� In particular� described functions can be de�ned that
are updated by the Adl actions �see �Ped��� for details about function updates�� and
functions that invoke arbitrary computations can be de�ned and used in formulas�

The TLPlan system was designed to plan for classical �achieve a �nal state� goals�
A key component of this system is the ability to express search control knowledge as
formulas of a temporal language� These formulas are progressed using an algorithm
similar to Progress� However� the temporal language used is simpler and does not include

�We have speci�ed the algorithm so that Progress is run for each successor of the current
state� as each successor might be generated by an action with a di�erent duration� However� the
implementation is able to avoid this and run Progress only once by producing a parameterized
version of the progressed formula that is appropriate for labeling all of the successor states�
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R1 R2 R3 R4

C4C1

Figure �	 Robot Room domain

the ability to specify timing constraints�
To implement our algorithm in the TLPlan system� we altered the progression mech�

anism to make it suitable for the MITL language� and we implemented the Idle algorithm
to test for termination� Both of these algorithms utilized TLPlan�s formula evaluator to
allow the testing of an arbitrary �rst�order formula on a state �the progression and idle
algorithms both bottom out on testing if a formula is true in the current state���

� Example and Empirical Results

In this section we examine a simple example domain to illustrate the range and types of
goals that can be expressed and planned for in our approach�

The domain we use is a variant of the classical Strips robot rooms domain �FN����
The con�guration of the rooms is illustrated in Figure �� In this domain there are objects
and a robot� which can be located at any of the � locations in the corridor� C� or C��
or any of the � rooms R�� � � � � R�� The robot can move between connected locations� it
can open and close doors �indicated as gaps in the walls�� and it can grasp and carry one
object at a time� The operators that characterize its capabilities are shown in Table ��
In this table variables are preceded by a question mark �!�� Also� the move operator
is an Adl operator with conditional e�ects� For all objects that the robot is holding it
updates their position� This is indicated in Table � by the notation f� 
 	 in the add
and delete columns	 the literal 	 is added or deleted if f� holds� The duration of most of
the actions is set to �� Our implementation allows us to set the duration of an action to
be dependent on the instantiation of its parameters� In particular� we set the duration of

�This is where the completeness assumptions mentioned in Section ��	 come into play� Since
we have complete descriptions TLPlan can evaluate �rst�order formulas on a state using model
checking� Less complete state descriptions might require some form of theorem proving�
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Operator Precondition Adds Deletes

open�!d� at�robot� !x�
connects�!d� !x� !y�
closed�!d�
door�!d�

opened �!d� closed�!d�

close�!d� at�robot� !x�
connects�!d� !x� !y�
opened �!d� door �!d�

closed�!d� opened �!d�

grasp�!o� at�robot� !x�
at�!o� !x�
handempty
object�!o�

holding�!o� handempty�!d�

release�!o� holding�!o� handempty holding�!o�
move�!x� !y� at�robot� !x�

connects�!d� !x� !y�
opened �!d�

at�robot� !y�
holding�!o�

 at�!o� !y�

at�robot� !x�
holding �!o�

 at�!o� !x�

Table �	 Operators for Robot Room domain�

move�x� y� to be �� except for move�C�� C�� which has duration ��
Any initial state for this domain must specify the location of the robot and the

existence and location of any objects in the domain� It must also specify whether each
door is opened or closed� The doors connect the rooms to each other and to the corridor
locations� and a set of connects relations must be speci�ed� e�g�� connects�D�� C�� R���
Door D� connects the corridor location C� and R�� door D� connects C� and R�� and
the doors Dij connect rooms Ri and Rj �i� j 	 f�� �� �g��

Finally� the two corridor locations are connected by a �corridor� which is always
�open�� So the literals connects�corridor� C�� C��� and opened �corridor�� are also present
in the initial state description�

	�� Types of Goals

Classical Goals� Classical goals can easily be encoded as untimed eventualities that hold
forever� For example� the classical goal fat�robot� C��� at�obj� � R��g expressed as a set of
literals� can be encoded as the MITL formula

���at�robot� C��� at�obj� � R����

Any classical goal can be encoded in this manner� Given the semantics of plans as idling
their �nal state� this formula will be satis�ed by a plan if and only if the �nal state
satis�es the goal�

More generally we can specify a classical �achieve a �nal state� goal by enclosing any
atemporal formula of our language in an eventuality� We can specify disjunctive goals�
negated conditions� quanti�ed goals� etc� The formula

����x	object�x�� at�x�R��� at�robot� R����
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for example� speci�es the goal state where some object or the robot is in room R��

Safety and Maintenance Goals� In �WE��� Weld and Etzioni discuss the need for safety
conditions in plans� Such conditions have also been studied in the veri�cation literature
�MP���� MITL can express a wide range of such conditions� Maintenance goals �e�g��
�HH���� which involve keeping some condition intact� are very similar�

Weld and Etzioni propose two speci�c constructions� don�t�disturb and restore� as a
start towards the general goal of expressing safety conditions� Both of these constructions
are easily encoded as goals in MITL�

Don�t�disturb speci�es a condition ��x�� A plan is de�ned to satisfy a don�t�disturb
condition if during its execution no instantiation of ��x� changes truth value� For example�
we might constrain the robot to not disturb the open status of doors by setting ��x� to
opened �x�� This would prohibit plans that closed any doors�

Such conditions are easily speci�ed by conjoining the formula �x���x� 
 ���x� to
the original goal�� For example� the goal

���at�robot� C��� at�obj� � R��� � ��x	opened �x���opened �x��

can only be satis�ed by a plan that does not close any doors that were open in the initial
state�

Restore also speci�es a condition ��x�� A plan satis�es a restore condition if it tidies
up after it has �nished� That is� at the end of its plan it must append a new plan to
restore the truth of all instantiations of ��x� that held in the initial state�

We can specify restore goals in MITL by conjoining the formula �x���x�
 ����x��
which speci�es that the �nal state of the plan must satisfy all instantiations of � that
held in the initial state�� Notice that the semantic distinction between restore and don�t�
disturb goals is made clear by our formalism� Restore goals use �� while don�t�disturb
goals use �� That is� restore goals allow the violation of � during the plan� as long as
these conditions are eventually restored in the �nal state�

Both of these conditions are limited special cases� MITL can express much more than
this� For example� say that we want to constrain the robot to close doors that it opens�
We cannot place a don�t�disturb condition closed �x�� as this would prohibit the robot from
moving into rooms where the doors are closed� If we specify this as a restore condition�
the robot might leave a door opened for a very long time until it has �nished the rest of
its plan� In MITL� however in this domain we can use the formula

����x� y� z	connects �z� x� y�� at�robot� x�� closed �z� ��open�z�

 ��at�robot� y� ����closed �z��

���

This formula speci�es that if the robot opens a closed door �closed �z� � ��open�z����
then it must go through the door ���at�robot� y�� and then it must close the door
����closed�z��� Hence� the robot is forced to be tidy with respect to doors	 it only

	Wemust appropriately rewrite �x���x� in terms of bounded quanti�cation� and use additional
quanti�ers if � has multiple free variables� Similar remarks hold for encoding restore�


When we add this formula as a conjunct to the original goal we force the planner to �nd a
plan that satis�es the restore� If we want to give restore conditions lower priority� as discussed
in �WE���� we could resort to the techniques of replanning suggested there�
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opens doors for the purpose of moving through them� and it closes the doors it opens
behind it�

Timing Deadlines� MITL is also capable of expressing goals with timing conditions�
For example ����� requires the condition � be achieved within ten time units� Timed
reactions are also possible� For example� ���
 ��

� requires that the condition 
 be
achieved within �ve time units after condition � becomes true� Note that � and 
 can
themselves be temporally extended conditions�

	�� Empirical Results

We have tested di�erent goals from each of the categories mentioned above� All the plans
were generated from similar initial states� In particular� in this state we have at�obj� � R���
at�obj� � R��� at�robot � C��� handempty � object�obj� �� object�obj� �� and all of the doors
are opened�

G�
 From this initial state we set the goal to be

���at�robot � C��� at�obj� � R����

This corresponds to the classical goal fat�robot � C��� at�obj� � R��g� The plan�
ner generates the following plan	

Time Action Time Action

� move�C�� R�� � release�obj� �
� grasp�obj� � � move�R�� R��
� move�R�� R�� � move�R�� C��

It took the planner ��� seconds� expanding ��� worlds to �nd this plan���

G�
 From the same initial state we set the goal to be

�����x	object�x�� at�x�R�� � handempty ��

Now the planner generates the plan	

Time Action Time Action

� move�C�� R�� � move�R�� R��
� move�R�� R�� � release�obj� �
� grasp�obj��

In this case it has generated a plan for a quanti�ed goal by making an conve�
nient choice for the object to place in R�� This plan took the planner ��� sec��
expanding �� worlds to �nd the plan�

��Timings were taken on a SPARC station 
� and a best �rst search strategy �exploring least
cost plans �rst� was used so as to �nd the shortest plan� Finally� our planner tested for duplicate
state�formula pairs during search�
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G�
 Now we change the initial state so all of the doors are closed� and we set the
goal to be

���at�robot� C�� � at�obj� � R���
� ����x� y� z	connects�z� x� y�� at�robot� x�� closed�z� ��open�z�


 ��at�robot� y� ����closed�z�

This is simply a classical goal with an additional constraint on the robot to
ensure it closes doors behind it� For this goal the planner generates the plan	

Time Action Time Action

� open�D�� � release�obj� �
� move�C�� R�� � open�D���
� close�D�� � move�R�� R��
� grasp�obj� � �� close�D���
� open�D��� �� open�D��
� move�R�� R�� �� move�R�� C��
� close�D��� �� close�D��

This plan took the planner �� sec�� expanding ��� worlds� to �nd�

G�
 We reset the initial state to one where all of the doors are open and set the
goal to be

����at�obj� � R�� ���
at�obj� � R�� � ��x	opened �x���opened�x��

This is a goal with a tight deadline� The robot must move directly to R� and
move obj� to R�� If it stops to grasp obj� along the way it will fail to get obj�
into R� on time� Also we conjoin at subgoal of not closing any open doors� As
we will discuss below this safety constraint acts as a form of search control�
it stops the planner pursing useless �for this goal� close actions� The planner
generates the plan	

Time Action Time Action

� move�C�� R�� � move�R�� R��
� move�R�� R�� � grasp�obj� �
� grasp�obj� � � move�R�� R��
� move�R�� R�� � move�R�� R��
� release�obj� � �� move�R�� R��
� move�R�� R��

This plan took the planner ��� sec�� expanding �� worlds� to �nd�

G�
 If we change the time deadlines in the previous goal and set the goal to be

���at�obj� � R�������at�obj� � R�� � ��x	opened �x���opened�x��

The planner generates the plan	
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Time Action Time Action

� move�C�� R�� � release�obj� �
� grasp�obj� � � move�R�� R��
� move�R�� R�� � move�R�� R��
� move�R�� R�� � grasp�obj� �
� move�R�� R�� � move�R�� R��

It took the planner ���� sec� to �nd this plan� expanding ��� worlds on the
way�

G	
 Working from the same initial state we set the next goal to be

��
��	at�obj� � R�� ����at�obj� � R��� at�robot � C���

The planner generates the plan	

Time Action Time Action

� move�C�� R�� � move�R�� R��
� grasp�obj� � � move�R�� R��
� move�R�� R�� � move�R�� R��
� move�R�� R�� � release�obj� �
� move�R�� R�� � move�R�� C��

It took the planner ����� sec� to �nd this plan� expanding ��� worlds on the
way� Note that obj� is in fact in R� at least once during the required time
period ��� ��� and that the �nal state is the same con�guration as the initial
state� This is an example of a temporally extended goal that requires visiting
the same state twice�

Search Control
Although our planner can generate an interesting range of plans� problems remain� By
itself it is not heuristically adequate for most planning problems� For example� when it is
only given the goal of achieving some �nal state� it has to resort to blind search to �nd a
plan� Similarly� it has no special mechanisms for planning for quanti�ed goals� it simply
searches until it �nds a state satisfying the goal� Safety goals o�er better performance� as
such goals prune the search space of sequences that falsify them� This is why we included
safety conditions on open doors in the fourth and �fth tests above	 they allow the planner
to �nd a plan faster� Again for goals with complex timing constraints� the planner does
not utilize any special temporal reasoning�

As mentioned in the introduction� a major advantage of our approach lies in the ability
of the planner to utilize domain dependent search control information� Such information
can be expressed as formulas of MITL and conjoined with the goal� This approach to
search control has been explored in our previous work �BK���� where we demonstrate
some impressive results� In particular� we were able to construct polynomial time domain
dependent planners for a range of domains� by adding domain speci�c control knowledge
expressed in a temporal logic that was similar but simpler to MITL� No other approach to
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increasing the eciency of planners� that we know of� has been able to produce polynomial
time behavior in these domains�

To see how such control information could be utilize consider the following examples�

G�
 Say that we modifyG�� described above� by conjoining two clauses	

���at�robot � C��� at�obj� � R���
� ��o	object�o�� o �� obj� 
 ��holding�o�
� ��d	opened �d���opened�d�

This new goal simply takes advantage of the fact that to achieve the goal of
moving obj� into R� it is not necessary to pickup any other object� nor is it
necessary to close any doors�
The planner takes ���� sec� to generate the same plan as before� expanding
only �� worlds�

G�
 Modifying G� by conjoining the clause

��d	opened �d���opened �d��

since this goal does not require closing any doors� we generate the same plan
as before in ���� sec�� expanding �� worlds�

G�
 Modifying G� by conjoining the clause

��o	object�o�� o �� obj� 
 ��holding�o��

since this goal also does not require picking up �or moving� any object besides
obj� � we generate the same plan as before in �� sec�� expanding ��� worlds�

G	
 Modifying G	 by conjoining the clauses

��o	object�o�� o �� obj� 
 ��holding�o�
� ��d	opened �d���opened �d��

since this goal does not require moving any object besides obj� nor closing any
doors� we generate the same plan as before in ��� sec�� expanding �� worlds�

To summarize� these simple control formulas generate the following speedups	

Example Time Worlds New�Time New�Worlds

� ��� ��� ���� ��
� ��� �� ���� ��
� �� ��� �� ���
� ��� ��� ��� ��

The columns give the planning time and the number of worlds expanded� before and
after we add the search control clauses� Note in particular� the speedups obtained on the
harder problem G	� Furthermore� it should be noted that these are only the simplest
and most obvious of control formulas for this domain�
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� Conclusions and Future Work

We have presented a clean and expressive formalism for expressing temporally extended
goals� This formalism can be useful simply as a representation� no matter how one wants
to compute plans� We have also demonstrated that the formalism has a direct compu�
tational interpretation� upon which we have constructed and implemented a planning
algorithm�

As we have discussed� the key to making practical the approach to planning for tem�
porally extended goals that we have advanced lies in utilizing search control information�
This information� as shown in our examples� is domain dependent� Nevertheless� there
are certain cases where control information can be automatically derived from the domain
description� It will be the ability to automatically derive control formulas that will make
our approach feasible�

Hence� a key component of our future work is to examine mechanisms for automat�
ically generating and analyzing search control knowledge� There are a lot of interesting
questions that arise when dealing with search control for quanti�ed goals and goals with
complex quantitative temporal constraints� One avenue we are pursuing is to statically
analyze the goal formula and employ more sophisticated temporal reasoning prior to
planning to construct control formulas� We hope to experiment with this approach and
compare its eciency with the approach of performing temporal constraint reasoning at
every stage of plan generation �as is done in many other temporal planners� e�g�� the
ZENO system �PW�����
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