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Abstract: Agents interacting with an incompletely known
dynamic world need to be able to reason about the effects of
their actions, and to gain further information about that world
using sensors of some sort. Unfortunately, sensor information
is inherently noisy, and in general serves only to increase the
agent’s degree of confidence in various propositions. Build-
ing on a general logical theory of action formalized in the sit-
uation calculus developed by Reiter and others, we propose a
simple axiomatization of the effect on an agent’s state of be-
lief of taking a reading from a noisy sensor. By exploiting Re-
iter’s solution to the frame problem, we automatically obtain
that these sensor actions leave the rest of the world unaffected,
and further, that non-sensor actions change the state of belief
of the agent in appropriate ways.

1 Introduction

An intelligent agent interacting with a dynamic and incom-
pletely known world faces two special sorts of reasoning prob-
lems. First, because the world is dynamic, it will need to rea-
son about change: how its actions and the actions of others af-
fect the state of the world. For example, an agent will need to
reason that if a fragile object is dropped then it will break, and
regardless of what else happens, the object will remain broken
until it is repaired. Second, because the world is incompletely
known, the agent will need to make do with partial descrip-
tions of the state of the world. As a result, the agent will of-
ten need to augment what it knows by performing perceptual
actions. For example, a robotic agent may not know initially
how far away it is from the nearest wall, but may have a sensor
that it can use to obtain information about this distance. How-
ever, because sensors are inherently noisy, it may be necessary
to read this sensor (or additional sensors) a number of times to
get a sufficiently reliable measurement. In this paper, we pro-
pose a representational formalism for dealing with both sorts
of reasoning problems.

Somewhat surprisingly, although the importance of deal-
ing with dynamic and incompletely known worlds has long

� The work of Fahiem Bacchus and Hector Levesque was sup-
ported in part by the Canadian government through their NSERC and
IRIS programs. Hector Levesque is a Fellow of the Canadian Insti-
tute for Advanced Research. The work of Joseph Halpern supported
in part by the Air Force Office of Scientific Research (AFSC), under
Contract F49620-91-C-0080.

been argued within AI, very few adequate representation for-
malisms have emerged. We can classify existing ones into
two broad camps. On the one hand, we have probabilistic
formalisms such as Bayesian nets [Pea88] for dealing with
uncertainty in general, and the uncertainty that would arise
from noisy sensors in particular. However, with the excep-
tion noted below, these probabilistic formalisms have not at-
tempted to incorporate a general model of action, i.e., repre-
senting what does and does not change as the result of per-
forming an action. In addition, while it is possible to express
in these formalisms probabilistic dependencies among vari-
ables, which are in essence atomic propositions, it is not easy
to deal with many other forms of incomplete knowledge about
the state of the world. For example, it is difficult to say that
one of two conditions holds, or that all objects of a certain type
have a certain property when it is not known what those ob-
jects are. Logical formalisms, on the other hand, with features
like disjunctionand quantification, are well suited for express-
ing incomplete knowledge of this type. Moreover, logical for-
malisms like dynamic logics, process logics, or the situation
calculus, allow us to reason about the prerequisites and effects
of actions. However, none of these logical formalisms allow
us to represent what an agent would need to know about sen-
sors, and how the beliefs of the agent should evolve as the re-
sult of taking multiple sensor readings. Furthermore, although
it is becoming clear that it is possible to combine reasoning
from both the probabilistic and logical camps within a single
framework [Bac90, Hal90], actions have not yet been incor-
porated into this framework.

Thus it appears that as yet there is no representational for-
malism that would allow us to reason in a general way about
both ordinary actions that change the world as well as percep-
tual actions involving noisy sensors. An exception to this is
the action network formalism [GD94]. Action networks ex-
tend Bayesian nets to allow probabilistic reasoning about ac-
tion and observation sequences and their effects. However,
like Bayesian nets, they have difficulties in dealing with fea-
tures like disjunction and quantification.

In this paper, we propose another formalism for reasoning
about actions including sensor-based perceptual ones. Rather
than building on Bayesian nets and this form of probabilistic
reasoning, our solution builds on a logical formalism for rea-
soning about action. Specifically, we use a variant of the situa-



tion calculus [MH69] that incorporates a solution to the frame
problem proposed by Reiter [Rei91] for reasoning about ac-
tion, and has been augmented to include perceptual actions by
Scherl and Levesque [SL93].

There are several reasons for going this way. First of all,
our solution ends up being remarkably simple: all we need to
do is to extend the Scherl and Levesque work to ground per-
ceptual actions on noisy sensors. We then preserve the ability
to express incomplete knowledge about the state of the world,
as well as inheriting the solution to the frame problem for rea-
soning about both ordinary and perceptual actions. As we
shall show, the resulting formalism also allows certain forms
of probabilistic reasoning to emerge as logical consequences.

Compared to other logics of action, the situation calculus
itself has proved to be a very convenient formalism for mod-
eling actions, their prerequisites, and effects. Although Re-
iter’s solution to the frame problem is limited in a number of
ways, it has been extended to handle aspects of the ramifi-
cation problem [LR94], agent ability [LLLS95], and contin-
uous time [Pin94]. Another extension of the theory to deal
with complex actions (sequence, iterations, concurrency, non-
determinism, etc.), briefly described in Section 2, has led to a
novel logic programming language called GOLOG. GOLOG

has proven to be useful for describing high-level robot and
softbot control [LLR95]. An implementation of GOLOG ex-
ists at the Universityof Toronto, and a number of small sample
programs (includingan elevator controller and a mail delivery
robot) currently run in simulation mode. By casting our work
within this framework we hope to take advantage of these par-
allel developments.

The format of the rest of the paper is as follows. In the
next section, we briefly review the theory of action in terms
of which our account is formulated: the situation calculus, the
solution to the frame problem proposed by Reiter, and the ex-
tension, proposed by Scherl and Levesque, for dealing with
knowledge. In Section 3, we consider how knowledge is af-
fected by readings from noisy sensors. In Section 4, we aug-
ment the framework with probabilities, and present a simple
formalization within the situationcalculus of the degree of be-
lief an agent has in propositions expressed as logical formu-
las. This allows us to formalize in more quantitative terms
the changes in belief that arise from readings of noisy sensors.
Examples of the formalism at work are presented in Section 5,
and some conclusions are drawn in Section 6.

2 A Theory of Action

Our account of sensors is formulated as a logical theory T in
an extended version of the situation calculus [MH69]. The sit-
uation calculus is a many-sorted dialect of the predicate cal-
culus, containing sorts for (among other things) situations,
which are like the possible worlds of modal logic, for prim-
itive deterministic actions, and, since we will be dealing with
probabilities, for real numbers. We assume the reader is fa-
miliar with the basic intuitions underlying the situation calcu-
lus; we briefly review the main ideas here.

2.1 The situation calculus and the frame problem
In this formalism, the world is taken to be in a certain state
(or situation). Changes to the world arise only as the result
of actions. This is modeled by having actions map situations
to new situations using a special binary function symbol do.
This function maps action-situation pairs to new situations,
i.e., s� � do�a� s� means that s� is the new situation that is the
outcome of performing a in situation s. Predicates and func-
tions whose values vary from situation to situation are called
fluents and, by convention, take a situation as their last argu-
ment. We read, e.g., P ��x� s� as “�x has propertyP in situation
s”.�

The background theory T will contain axioms for the usual
arithmetic operations on the real numbers, unique name ax-
ioms for actions, and various other foundational axioms for
the situation calculus that need not concern us here. The
domain-dependent part ofT consists of axioms characterizing
the initial state of the world S�, and the following: for every
action type �, a precondition axiom of the form

POSS��� s� � ���s��

where s is the only situation term mentioned in the formula
���s�; for every fluentP , a successor-state axiom of the form

POSS�a� s� � �P ��x� do�a� s�� � �P ��x� a� s���

where s is the only situation term mentioned in the formula
�P ��x� a� s�.�

For example, the precondition axiom for the drop ac-
tion might assert that it is possible for the agent to drop
an object x in situation s iff the agent is holding x in s:
POSS�drop�x�� s� � Holding�x� s�. For the fluent Broken,
a successor-state axiom might assert that x is broken after
the action a iff x was fragile and the agent dropped it, or x
was broken and the agent did not repair it: POSS�a� s� �
Broken�x� do�a� s�� � �a � drop�x� � Fragile�x� s�� �
�Broken�x� s� � a �� repair�x���

These axioms incorporate a treatment of the classic frame
problem [MH69] proposed by Reiter [Rei91], extending pre-
vious proposals by Pednault [Ped89], Schubert [Sch90] and
Haas [Haa87]. In particular, Reiter shows how the successor-
state axioms above can be automatically generated from a col-
lection of simple effect axioms describing only the changes
that result from performing an action. Frame axioms need
not be enumerated since they are entailments of the successor-
state axioms.�

Reiter’s solution to the frame problem applies only to prim-
itivedeterministic actions. However, Levesque et al. [LLR95]
show how, as in dynamic logic [Har79], primitive actions can

�Of course, in a modal logic, the possible worlds are not part of
the syntax, and we would write s j� P ��x� rather than P ��x� s�.

�This is the axiom for predicate fluents; the axiom for functional
fluents would be analogous.

�Reiter’s solution ignores the ramification problem; a treatment
compatible with the approach has been proposed by Lin and Reiter
[LR94].



be composed in various ways to generate an expressive class
of complex actions. Specifically, they show that there is a sit-
uation calculus formula, which we abbreviate by Do�A� s� s��,
that expresses the proposition that s� is one of the possible out-
comes of doing complex action A starting in situation s� Here
we only need one type of complex action: the nondeterminis-
tic choice of an action from a parameterized family of actions.
Let a�x� be a family of primitive actions parameterized by x.
For example, a might be the action “approach the wall” and
x might be a numeric parameter specifying the distance to be
moved. The complex action ��x��a� can be read as “perform
primitive action a�x� for some nondeterministically selected
value of x”, and it is defined as follows:

Do���x��a� s� s��
def
� �x�POSS�a�x�� s� � s� � do�a�x�� s��

Note that since complex actions ultimately reduce to primitive
ones, their preconditions, effects and non-effects are automat-
ically entailed.

2.2 Knowledge and action
Scherl and Levesque [SL93] provide another extension to Re-
iter’s basic approach by incorporating an epistemic state for
the agent. To characterize this epistemic state in the language
of the situation calculus, they follow Moore [Moo85] and in-
troduce a new binary fluent K. The K fluent acts as a binary
relation on situations, just like the accessibility relation be-
tween possible worlds in modal logics. Intuitively, K�s�� s�
holds if in situation s� the agent considers the situation s � to
be possible. As in modal logic, knowledge is defined as truth
in all accessible situations. And we define the following ab-
breviation:

KNOW��� s�
def
� �s��K�s�� s� � ��s���

where we assume that the situation argument has been re-
moved from the fluents in � and ��s�� is the result of intro-
ducing s� as a new situation argument. Thus, for example,
KNOW�	Broken�x�� s� is an abbreviation for �s��K�s�� s� �
	Broken�x� s��. For simplicity, we take K to be transitive
and Euclidean, which ensures that the agent always knows
whether or not it knows something (i.e., the agent has the
power of positive and negative introspection).

In Scherl and Levesque’s treatment many actions affect
knowledge in a particularly simple way: the agent knows that
the action has been performed and thus comes to know that
the action’s preconditions must have held prior to its execu-
tion. Actions such as drop and repair are examples of such ac-
tions, which we call ordinary actions. Ordinary actions have a
uniform effect on knowledge, and this effect can be captured
by a single clause appearing in K’s successor state axiom.
Some actions, however, have effects on the agent’s knowl-
edge that go beyond simple awareness of their execution, and
we call such actions knowledge-producing actions. For ex-
ample, the agent might have available an action exactRead,
whose effect is to change the agent’s knowledge state so that
it comes to know the exact distance to the wall in front of it.

For each knowledge-producing action we must have a clause
in K’s successor state axiom that characterizes its effect on
the agent’s knowledge. For example, if exactRead is the only
knowledge-producing action, we end up with the following
successor-state axiom for K:

POSS�a� s� � K�s�� do�a� s�� �
�s���s� � do�a� s��� �K�s��� s� � POSS�a� s��� �
a � exactRead � wallDist�s��� � wallDist�s��

(1)

This entails

POSS�exactRead� s� �
�d�KNOW�d � wallDist� do�exactRead� s��:

after doing exactRead� the agent knows the distance to the
wall. To see this, consider the situations that are K-related
to do�exactRead� s�, the successor of s. All such situations s�

have the property that they are the successor states of some
other situation s�� in which the distance to the wall is the same
as it is in s. Since, exactRead does not change the distance to
the wall, the successor-state axiom for wallDist ensures that
wallDist�s�� � wallDist�s���. Hence, all of the situations K-
related to do�exactRead� s� have the same value for this flu-
ent, and our observation follows.

3 Sensors and Noise
One problem with the Scherl and Levesque account is that it is
unrealistic to assume that an agent has available an exactRead

action that allows it to learn the exact distance to the wall.
A more realistic assumption is that the agent is in possession
of a number of sensors, that give it some information about,
but not exact knowledge of, various fluents. We expect a sen-
sor reading to be correlated with, but not a deterministic func-
tion of, the quantity being measured. For example, we might
imagine that there is a sonar sensor that can be used to mea-
sure the distance to the nearest wall. There might also be a
laser range finder used to measure the distance to the wall, but
it might be correlated with the actual distance in a different
way.

There are various ways of modeling this. We present one
here, motivated by our desire to have the basic actions be de-
terministic (and thus preserve the simple solution to the frame
problem). Assume we have an action of the form observe�x�,
that occurs whenever the agent observes reading x on the
sonar. If we assume that the sonar reading is always within
b units of the true distance to the wall (rather than being equal
to the distance to the wall, as in the previous example), then
we get the following precondition axiom:�

POSS�observe�x�� s� � jwallDist�s� 
 xj � b�

If we now assume, as did Scherl and Levesque, that an agent
learns that an action is possible by successfully performing
it, it will follow that after an observe action, the agent will

�This particular precondition axiom only mentions the error
bound, but other conditions can be included here as well.



learn the distance to the wall to within b units. In other
words, the Scherl and Levesque successor-state axiom for
K from the previous section entails POSS�observe�x�� s� �
KNOW�jwallDist
 xj � b� do�observe�x�� s��� by an argu-
ment analogous to the one for exactRead� but now using the
POSS predicate. In this case, with a precondition axiom as
above, it is not necessary to treat observe, or similar observa-
tion actions from other sensors, any differently from ordinary
actions such as drop and repair.

Of course it is somewhat odd to say that the agent performs
an action such as observe���	�, as if it had the choice of per-
forming, say, observe���
� instead. What we would prefer to
say is that the agent decides to read the sonar, and that what
happens is that 3.7 is observed.

This can be modeled by using a nondeterministic composi-
tion of the primitive observe�x� actions. We define a complex
action read as follows:

read
def
� ��x��observe�x��

Given the abbreviation Do defined above, this means that

Do�read� s� s�� �
�x�jwallDist�s� 
 xj � b � s� � do�observe�x�� s��

Using the successor-state axiom for K, we get the following:

Do�read� s� s�� � �x�KNOW�jwallDist
 xj � b� s���

So reading the sonar in s entails getting to a state where the
agent has observed a (non-deterministically selected) consis-
tent sonar value x. Moreover, the agent knows in that state
an appropriate bound on the true distance to the wall. It is
easy to check that doing several consecutive sonar readings
can increase the agent’s knowledge about the true distance to
the wall (i.e., tighten the interval that the agent knows con-
tains the true distance to the wall) and never decrease it. Sim-
ilar considerations apply to other sensors whose read actions
would be defined analogously.

4 Probability
Suppose we have a sensor with an error bound of b � �, and
we make a number of readings of a particular fluent using the
sensor, all of which are clustered around the value 3. For con-
creteness, suppose they are all between 2.8 and 3.1. As far as
knowledge goes, all the agent will be able to conclude is that
he knows the fluent to have a value in the range [1.1,4.8]. Get-
ting numerous readings of 3 will not change this knowledge.
Yet, even if the agent is using a cheap sensor, we might hope
that getting such readings would increase the agent’s degree
of belief that the true value of the fluent is very close to 3.

To formalize these intuitions, we introduce a probability
distribution over the agent’s set of K-related states. In par-
ticular, we associate with each situation in this set a relative
weight. Intuitively, the relative weight measures the degree to
which the agent believes that situation to in fact be the real sit-
uation. However, it is convenient to avoid forcing this weight
to be a probability; instead we only require that these weights

be non-negative and that their sum over all of the K-related
states be finite. To obtain a true probability, we will simply
normalize these weights so that they do in fact sum to 1.

Syntactically, we introduce a new functional fluent p�s�� s�
whose value is the weight the agent assigns to situation s�

when it is in situation s. This weight is unnormalized, and
we introduce an abbreviation BEL��� s� to refer to the agent’s
probabilistic degrees of belief. Specifically, BEL��� s� is a
number from � to 
 that is intended to stand for the agent’s
degree of belief in the assertion expressed by �, when it is in
situation s. As with KNOW, the first argument to BEL will be
a formula containing fluents that are missing a situation argu-
ment, and we use the notation ��s�� as before for the formula
that results when s� is introduced as the new situation argu-
ment. Informally, BEL��� s� will be defined to be the sum of
the p weights of the accessible situations where � holds, di-
vided by the sum of the p weights of all accessible situations:

X
s��K�s��s�� �	s�


p�s�� s�

� X
s��K�s��s�

p�s�� s��

These summations can be formalized within the situation cal-
culus. In conjunction with Equation 2 below, the logical con-
sequence of this formalization is that BEL is a probability dis-
tribution. The details of this development will be provided in
a later full report on this work. For now, what matters is that
we have something of the form

BEL��� s� � x
def
� � � � formula involving p � � � �

and that BEL��� s� is a probability distribution over the situa-
tions K-related to s.

To ensure that BEL is in fact a probability requires a con-
straint on the values of p in the initial state S�. The following
constraint must be added to the background theory T :

�s�K�s� S�� � �p�s� S�� 
 � � �s��p�s�� s� 
 ��� (2)

Since p is a fluent, we need to say how it is affected by ac-
tions. As with our treatment of every other fluent, we want
to develop a successor-state axiom for p. Many actions will
have only an indirect effect on the agent’s beliefs; the agent
will only come to know that the action was successfully per-
formed and this will affect its beliefs about the fluents changed
by the action. For such actions, we want

p�s�� do�a� s�� � if s� � do�a� s��� then p�s��� s� else ���

This simply projects the relative degree of belief in s�� to its
successor s�.

Notice that in making the projection we are transferring the
agent’s beliefs to situations with different properties. (This is

�This, of course, is an abbreviation for the formula

�s���s� � do�a� s��� � p�s�� do�a� s�� � p�s��� s�
� ��s���s� � do�a� s��� � p�s�� do�a� s�� � ��

We continue to use such abbreviations below.



related to Lewis’s notion of imaging [Lew76].) In these new
situations, all of the changes due to action a have occurred.
For example, say that approachW�x� is the action “move pre-
cisely x units towards the wall”. In this case, the above equa-
tion will imply

BEL�wallDist � z� do�approachW�x�� s��
� BEL�wallDist � z � x� s��

Thus, if the agent believed it highly likely that she was 10 units
from the wall in situation s, then she would believe it just as
likely that she was 9 units from the wall after moving towards
the wall 1 unit.

Things are a little more complicated when we have to deal
with primitive actions like observe�x�. As we mentioned be-
fore, we do not really think of this as an action that the agent
performs; the agent is actually performing the read action. Al-
though we have modeled read as a nondeterministic choice
among observe�x� actions, it is actually better thought of as
a probabilistic choice. Moreover, the probability of getting x
as the reading depends on the situation and the accuracy of the
sensor. In the simplest case, we would expect that in situation
s, the smaller jwallDist�s�
xj is, the greater the probability
of observe�x�; the exact distribution,however, will depend on
the sensor.

To make this precise, we propose that for every sensor
i, there is a likelihood function �i, where �i�x� s� denotes
the probability of obtaining a reading of x from sensor i in
situation s. Different applications will want to characterize
these likelihood functions values differently, dependent on
how complicated a model of sensor error is desired; here we
simply assume that for each sensor i, the background theoryT
contains a sensor noise axiom characterizing each likelihood
function, having the form

�i�x� s� � �i�x� s��

where �i�x� s� is a term whose value is always between � and

� and is equal to � when x exceeds the error bounds of the
sensor (if there are any error bounds).

For example, we might want to say that the likelihood of
getting a sonar reading of x depends only on the difference
between x and the current wallDist, and that this difference,
i.e., the sonar’s noise, is normally distributed with mean � and
standard deviation	. In this case, we would have an axiom of
the form

�sonar�x� s� � Normal

�
wallDist�s� 
 x

	

�
�

where Normal�z� is a (discrete version of) the normal density
function with mean 0 and standard deviation 1. This function
could be defined in T by a simple table of values.�

Given such a function, for a situation s� � do�observe�x�,
s��� accessible from do�observe�x�� s�, we want to weigh the

�Here we are using the standard transformation: Normal��z �
m���� is the density function of a normal distribution with mean m
and standard deviation �.

degree of belief in s� by �sonar �x� s
���. That is, we want

p�s�� do�observe�x�� s�� � if s� � do�observe�x�� s���
then p�s��� s�� �sonar �x� s���
else ��

More generally, if observe�, ..., observek are the only sens-
ing actions, then to get this property for these actions along
with the one above for ordinary actions, we use the following
general successor-state axiom for p� which we include as part
of the background theory T :

p�s�� do�a� s�� � if s� � do�a� s���
then p�s��� s�� L�a� s���
else ��

(3)

where

L�a� s�
def
� if a � observe��x� then ���x� s�

else if a � observe��x� then ���x� s�
...

else if a � observek�x� then �k�x� s�
else 
�

This completes our formal characterization of adding prob-
ability to the situation calculus. So apart from the abbrevi-
ations noted above, we have exactly 3 situation calculus ax-
ioms: the Scherl and Levesque successor-state axiom for K,
a constraint on p in the initial state, and a successor-state ax-
iom for p.

5 Properties of the Formalization
Our formalization of noisy sensors in the situation calculus
is extremely simple. We have modeled the agent reading its
sensors as the execution of read, a nondeterministic choice
among observe�x� actions. It would seem to be more appro-
priate to model read as a probabilistic action, since in each
situation the probability of observe�x� varies with x. Proba-
bilisticactions have been explored in other works, e.g., the ap-
proach of Halpern and Tuttle [HT93]. Nevertheless, although
we did not model read as a probabilistic action, the varying
probabilities of its different nondeterministic outcomes are
captured in our model. This is accomplished by the likelihood
functions used in our definition of the successor-state axiom
for p. In fact, we can show an exact correspondence between
the probabilities over situations generated by our approach
and those that would be generated by a probabilistic read ac-
tion using the framework of Halpern and Tuttle [HT93]. Fur-
thermore, as we show below, our formalism has a number of
other appealing properties.

Observations. In our framework, it can be shown that the
agent updates its beliefs after making an observation via
standard Bayesian conditioning. First consider the standard
Bayesian model of sensors.

The standard model assumes two pieces of probabilistic
information: a prior distribution Pr�t� on the value t being
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Figure 1: Example of Belief Update

sensed, and a conditional distributionPr�xjt� that gives us the
probability of sensing x given that the true value is t. Fur-
thermore, the standard model requires the assumption that the
value read from the sensor is dependent only on the true value,
and is thus independent of other factors given this value.

Bayes’ Rule is now applied to obtain a posterior probability
Pr�tjx� over the values t given that the sensor read the value
x: Pr�tjx� � Pr�xjt� Pr�t�
Pr�x�. The denominator is the
only expression we do not know, but it can be easily com-
puted. Since

P
t� Pr�t

�jx� � 
, we must take Pr�x� to be the
normalizing factor

P
t� Pr�xjt

�� Pr�t��. The key factor is the
numerator Pr�xjt� Pr�t� that describes the relative probabil-
ity of different values of t given the observation x.

If we make a similar set of assumptions in our framework
we obtain exactly this probabilisticmodel of the effect of sens-
ing on the agent’s beliefs. Let I be a set of sensor noise axioms
of the form �i�x� s� � Err i�x� ei�s��, where ei is the fluent
that is sensed by sensor i and Erri�x� e� is some expression
with just two free variables (both numeric), x and e� By us-
ing a sensor noise axiom of this form, we capture in the lan-
guage of the situation calculus the assumption that the proba-
bility of obtaining a reading of x from sensor i in situation s,
i.e., �i�x� s�, is dependent only on the value (in s) of the fluent
being sensed. That is, no other properties of s affect this prob-
ability. In this case we get the following as a consequence:

Proposition 1 Let T be the background theory that includes
the axioms given in Eq. 1–3. Then T � I j�

BEL�ei � t� do�observei�x�� s��

�
BEL�ei � t� s�Err i�x� ei�s��X

t�

BEL�ei � t�� s�Erri�x� ei�s��
�

(4)

Again, the denominator here is simply a normalizing factor. If

the sensor is informative, i.e., if it is more likely to read val-
ues closer to the true value than values further away, then this
proposition ensures that the agent’s beliefs about the fluent he
is sensing will become sharpened about the sensed value.

Looking at things more generally, the probability of sens-
ing a particular value x could depend on many other features,
not just the fluent’s true value. For example, this probability
could depend on the time the sensor was last calibrated. This
generality is allowed for in our framework, as the likelihood
functions �i�x� s� can in general depend on complicated fea-
tures of the situation s. Nevertheless, it is not difficult to see
that an analogue of Proposition 1 still holds, and what is oc-
curing is simply Bayesian conditioning.

Example 5.1: Suppose that the agent is sensing the distance
to the wall, wallDist, using a read of its sonar sensor. Let
�sonar�x� s� � Err�x 
 wallDist�s��. That is, not only do
we assume that the sonar’s error is dependent only on the true
value of the fluent being sensed (assumption I above), but we
also assume that this error is characterized by a simple noise
model: the sonar reads the true value plus a noise component.
Hence, the probability of obtaining the reading x given that
the true value is wallDist�s� is a function of the difference be-
tween the two (i.e., a function of the noise). For definiteness,
let Err��� � ���, Err�

� � ����, and Err�
� � ����.
(Thus, the probability is zero that the sonar will read a value
that is more than 1 unit away from the true value.) Let the
agent’s beliefs about wallDist in S�, for y � 

, 12, 8, and
9, be BEL�wallDist � y� S�� � 

� , and BEL�wallDist �

�� S�� � 

�. Initially, the agent does not ascribe positive
probability to any other possible value for the distance. This
distribution of beliefs for the various values of wallDist in S �

are shown in Figure 1.
Suppose that the agent reads its sonar and observes the



value 11. In the new situation S� � do�observe�

�� S��, a
simple calculation using Equation4 shows how the agent’s be-
liefs have been altered. The new distribution is shown in the
figure. Since the sonar has probabilityzero in being more than
1 unit away from the true value, the agent now has zero degree
of belief in the values 8 and 9.


Note that Figure 1 shows that the agent still believes that
wallDist � 
� is the most likely value, even though its sonar
returned the value 11. This arises from the agent’s high prior
belief in wallDist � 
�.

Sequences of sensor readings of the same fluent, including
sequences of readings from different sensors, are also handled
correctly in our framework. Such sequences correspond to se-
quences of sensing actions, and thus are handled by a simple
iteration of Eq. 4. The independence of a sensor reading from
all of the previous readings is implied by assumption I and
by the fact that the sensors do not change the value being ob-
served (this is captured in the successor-state axiom for the
sensed fluent). As a result, after a sequence of sensing actions,
the agent will come to have greater or less certainty about the
value of the sensed fluent, dependent on whether or not the se-
quence of readings agree or not.

Example 5.2 : Suppose that the agent executes another
read action in the state S�. Further, suppose that the
agent observes the same value as before 11, and let S� �
do�observe�

�� S��. Then, another application of Eq. 4 (ap-
plied to the agent’s beliefs inS�), yields the belief distribution
shown in Figure 1. That is, the agent’s beliefs have converged
more tightly around the value 11, since it has now sensed that
value twice.

This example of sensor fusion is simplified by the discrete
nature of the agent’s initial beliefs and likelihood function.
Nevertheless, more practical models are easily accommo-
dated. For example, if the agent’s initialbeliefs about wallDist
are characterized by a Gaussian, and the sensor yields a linear
transform of wallDist plus some Gaussian noise factor, then
the agent’s beliefs about wallDist after doing some sequence
of observations will continue to be characterized by a Gaus-
sian. Furthermore, the mean and variance of this Gaussian can
easily be computed.�

Actions. As mentioned briefly in the previous section, the
manner in which probability mass is transferred when ordi-
nary actions like approachW also yields appropriate changes
to the agent’s beliefs.

Example 5.3 : Suppose that the agent is in state S�, and
then moves exactly 2 units closer to the wall. Let S� �

�If the agent knows these error bounds, i.e., if these bounds are
part of the preconditions for the sonar, it will come to know that
wallDist is in the range 10–11. On the other hand, if the agent only
has zero degree of belief in these outcomes, it will come to believe
with degree 1 that wallDist is in that range. That is, our framework
can distinguish between full belief and knowledge.

�This corresponds to a trivial case of Kalman filtering, where the
value being sensed is static [DW91].

do�approachW���� S��. Then, the successor-state axiom for
p and wallDist imply that the agent’s beliefs are shifted to
worlds in which it is 2 units closer to the wall. Hence, for all
y, BEL�wallDist � y 
 �� S�� � BEL�wallDist � y� S��.
The agent’s shifted beliefs are shown in Figure 1. This is ex-
actly how one would expect the agent’s beliefs to change after
moving closer to the wall.

Furthermore, changes in the agent’s beliefs due to ordinary
actions integrate correctly with sensing actions.

Example 5.4 : Suppose that the agent again executes a
read action in S� and observes the value 9. Let S� �
do�observe���� S��. This reading is consistent with its previ-
ous readings of 11 since the agent has moved 2 units closer
to the wall. Hence, as shown in Figure 1, it results in a
further tightening of the agent’s beliefs, around the value 9.
If the agent subsequently moves back from the wall by 2
units, executing an approachW�
�� action, so that S� �
do�approachW�
��� S��, its beliefs will then be clustered
around 11, as shown on the figure.

Intuitively, since the agent’s approachW action incurs no
error, we would expect that if the agent had sensed the value
11 in situationS�, then its beliefs about the distance to the wall
should not change after moving forwards and backwards an
equal distance. Our model respects this intuition, as indicated
in the figure by the diagonal arrow from S� to S�.

Finally, we can observe that if the agent executes an action
that has no effect on a particular fluent, then that action will
cause no change in the agent’s beliefs about that fluent. For
example, if the agent executes a drop action that has no effect
on its distance to the wall, it will have exactly the same be-
liefs about the distance to the wall in the successor state. This
again arises from the direct transfer of probability mass to the
successor states, all of which have exactly the same distance
to the wall as before.

6 Conclusion
We have demonstrated that noisy perception can be modeled
in the situation calculus by a simple extension of previous
work. Although the resulting formalism is limited in some
ways, e.g., currently we do not handle noisy effectors, it does
succeed in providing an interesting integration of noisy per-
ception and ordinary actions. In particular, from the succes-
sor state axiom for p, Eq. 3, and a constraint on its values
in S�, Eq. 2, we obtain as consequences what many have
argued to be the natural models for belief update from per-
ception (Bayesian conditioning) and from actions (a form of
Lewis’s imaging) [Pea95]. Most importantly, our formalism
succeeds in capturing some key features of the interaction be-
tween these two models for belief change.

Much of our approach can be exported to alternate for-
malisms. For example, instead of the situation calculus a
modal logic could have been used. Similarly, the probabilis-
tic component could be replaced with an alternate formalism,
like Dempster-Shafer belief functions [Sha76] or possibility
measures [DP88]. All that would be required is to replace the



functional fluent p and axioms for BEL with fluents and ax-
ioms to support an alternate measure of belief. The likelihood
functions could then be replaced with non-probabilistic func-
tions to support an alternate rule of belief update.

As for future work, apart from addressing limitations of the
formalism, there is its application in high-level agent control.
In the GOLOG work mentioned in the introduction, the ability
of an agent to execute a program depends on what it knows
about the truth value of the test conditions in that program
[LLLS95]. When an agent only has a degree of belief in the
truth of a test condition in a program, it is much less clear what
it ought to do. A suitable programming formalism in this case
remains to be developed.
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