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Abstract

Probabilistic independence can dramatically sim-
plify the task of eliciting, representing, and com-
puting with probabilities in large domains. A key
technique in achieving these benefits is the idea
of graphical modeling. We survey existing no-
tions of independence for utility functions in a
multi-attribute space, and suggest that these can
be used to achieve similar advantages.

Our new results concern conditional additive in-
dependence, which we show always has a per-
fect representation as separation in an undirected
graph (a Markov network). Conditional addi-
tive independencies entail a particular functional
form for the utility function that is analogous to a
product decomposition of a probability function,
and confers analogous benefits. This functional
form has been utilized in the Bayesian network
and influence diagram literature, but generally
without an explanation in terms of independence.
The functional form yields a decomposition of
the utility function that can greatly speed up ex-
pected utility calculations, particularly when the
utility graph has a similar topology to the proba-
bilistic network being used.

1 Introduction

Work over the past decade in artificial intelligence concern-
ing probabilities has been extremely successful. Charges
of epistemological inadequacy [MH69] have become much
easier to rebut since the advent of Bayesian networks and
similar techniques.

But probabilities are not an end in themselves. Their most
important purpose is in classical decision theory, as part of
the maximum expected utility paradigm (see, e.g., [Fre88,
GS88, Sav54]). This leads to the concern that other parts
of decision theory might not be keeping pace with the new

developments in probabilistic modeling. In particular, we
are interested in the problem of representing, and reasoning
about, utility and preference.

There are a number of important questions in this area, and
here we report on our early observations and results and
make a few conjectures about promising directions for fu-
ture research. The approach we take is based on the idea of
drawing a close analogy between probabilities and utilities.
It is clear that some of the issues are similar:

• The “too many numbers!” criticism of probability
theory can apply to utilities as well. The number of
possible worlds grows exponentially in the number
of properties (i.e., attributes or variables) used to de-
scribe them. In principle, each world might require
an independently assigned utility. Of course, we may
be lucky enough that a world’s utility depends on just
a few attributes. In this case many different possible
worlds will have the same utility and we will have far
fewer distinct values to deal with. But we cannot rely
on this in general.

• Probabilities can be difficult to elicit and to compute
with. For this reason, there have been many attempts
to deal with uncertainty in a way that avoids proba-
bility, even though many (although not all) of these
approaches are ad hoc and lack any solid foundation.

Correspondingly, there are several common ways to
describe how one wants a complex system to behave
short of actually giving utilities: e.g., one can list pre-
ferred goals, impose hard or soft constraints on be-
havior, and so on.

Graphical models, such as Bayesian networks, address
many of the perceived problems of probability in a fairly
successful fashion (see, e.g., [Pea88, SP90] for an introduc-
tion to this area). The key trick, of course, is probabilistic
independence. Independence can vastly reduce dimension-
ality, in the sense of the number of independent parameters
we must discover. We can make many judgments of inde-
pendence based on a qualitative (typically causal) under-



standing of the domain, and afterwards elicit or learn the
remaining conditional probabilities. But reduction of di-
mensionality is not the whole story: probabilistic indepen-
dence lends itself to graphical representations that greatly
aid intuition and support relatively efficient computational
techniques.

Can a similar story be told for utilities? This is plausible
because utility, like probability, is often highly structured.
Furthermore, much (but not all) of this structure can be de-
scribed in terms of independence, using one or all of sev-
eral independence concepts that already exist in the litera-
ture. We begin this paper, in Section 2, with background
material including a brief survey of some existing indepen-
dence concepts in utility theory. We note that these con-
cepts are part of a well established field known as multiple-
objective decision theory, for which [KR76] is an excellent
reference.

So far as we are aware, the relevance of the results in this
field for artificial intelligence is a largely unexplored topic
(although [DW91, DSW91, DW94, DW92] are exceptions
to this, and there is a growing collection of work concerned
with other aspects of utility such as [Bou94, TP94]). Our
main results in this paper are in Section 3 and concern con-
ditional additive independence (CA-independence), whose
definition is reviewed in Section 2. This concept seems to
strike a good balance between being too weak (thus lead-
ing to few useful conclusions) and too stringent (thus being
infrequently applicable).

Our first result in Section 3 shows that this notion has a
precise representation as separation in undirected graphs.
This result is closely related to the theory of graphoids and
Markov fields; see [Pea88] for a description of these no-
tions.

A utility function satisfies a CA-independence if and only
if it can be written in a particular functional form. This
functional form is an additive decomposition of the utility
function, that is analogous to a product decomposition of
a probability function and leads to a similar reduction of
dimensionality. Our results show how this functional form
can be read directly from the graph that represents the CA-
independencies of the utility function.

As we briefly discuss in Section 3.1, an additive utility de-
composition can simplify expected utility and related com-
putations. Tatman and Shachter [ST90] show one way to
take advantage of this phenomenon in influence diagram
computation. If we are given a probabilistic network with a
topology that is “similar” to our utility graph, the potential
for computational speedup would appear to be especially
great. This is implicitly reflected in Jensen et al.’s work
[JJD94], which gives another technique for evaluating in-
fluence diagrams.

Both [JJD94] and [ST90] take an additive utility function

as their starting point. They do not address the question
of where the decomposition comes from. In that sense the
results of this paper can be seen to be complementary to
these works. We discuss the notions of utility independence
that allow such decompositions of the utility function, and
make a start at providing some graphical modeling tools for
dealing with these notions of independence. The final part
of this paper, Section 4, briefly mentions some topics that
we believe are promising directions for future work.

2 Preliminaries

Decision theory is useful in a setting where the system (the
world) may end up in one of several possible states. If we
have some control (via our actions) as to which state ob-
tains, we need to know how to choose the best action. As is
well known, there are several axiomatizations of “rational”
decision making that lead to the maximum expected utility
criterion (see, e.g., [Fre88, GS88, Sav54]). This says that
we should attempt to maximize the sum, over all states, of
the product of the probability and the utility of each state.
So if the probability distribution depends on the action we
take, this criterion can determine the best action. We begin
with a very quick review of the relevant concepts, mainly
to set up the necessary notation. This review is based on
the following sources [Fis82, Fre88, KR76, KLST71].

If there are N states a probability distribution and util-
ity function have N−1 and N−2 independent parameters,
respectively.1 Unfortunately N is often very large, expo-
nential in the number of attributes or variables we use to
describe a state. Thus it is important that the utility function
possess some structure so as to simplify the tasks of elici-
tation, representation, and computation. This is of course
exactly what graphical models based on independence try
to achieve for probabilities.

As in the probabilistic network literature, our first assump-
tion is that the set of states can be represented as a product
space over some set of attributes or variables.

Notation: Throughout this paper, we assume that V =
{v1, . . . , vn} is a fixed set of n variables. Each variable
v has a domain dv of two or more elements.2 We will gen-
erally use lower case letters to denote variables and upper
case letters to denote sets of variables. (Note that this is
somewhat nonstandard.) Where necessary, Greek letters
will denote values for particular variables.
The set of states S consists of the set of points in the prod-
uct space

∏n
i=1 dvi . Each s ∈ S is thus a vector of n values,

one value for every variable. Clearly the size of S is expo-
1Utility theory is invariant with respect to affine transforma-

tions of the utility function, which is why only N−2 independent
utilities need be found.

2Everything we say applies for infinite domains as well. Al-
though we implicitly assume that domains are finite in parts of the
following, this is for notational and conceptual simplicity only.



nential in the number of variables.
If X ⊆ V then f(X) stands for some real valued function
all of whose arguments are in X , i.e.,

f(X) :
∏
v∈X

dv −→ IR

The general form of a utility function is u(V ), which can
thus require exponentially many independent utility assess-
ments.

A utility function u induces a preference ordering �u on
lotteries3 (probability distributions) over S as follows:

p1 �u p2 iff
∑
s∈S

p1(s)u(s) ≥
∑
s∈S

p2(s)u(s),

where p1 and p2 are two distributions over S. That is, we
prefer p1 to p2 if p1 induces greater expected utility. Thus
utility serves to characterize not only the agent’s values but
also its attitudes towards risk: it ranks probabilistic gam-
bles between various outcomes.

In the development of decision theory, it is natural to take
the preference relation as primitive. Any relation satisfy-
ing fairly weak rationality conditions (which we don’t re-
peat here, but see, e.g., [Sav54, Fis82, Fre88]) corresponds
to some utility function exactly as above (that is, further-
more, unique up to affine transformations). This exact cor-
respondence between preference and utility is one of the
fundamental theorems of decision theory. In the following,
whenever we talk about a preference over V we mean a
preference over lotteries over S =

∏
v∈V dv satisfying the

standard rationality postulates.

The first definition of independence we consider is utility
independence. Intuitively, a set of attributes X is utility in-
dependent of everything else, if when we hold everything
else fixed (i.e., the values of attributes V −X), the induced
preference structure over X does not depend on the partic-
ular values that V −X are fixed to. Given utility indepen-
dence we can assert preferences over (lotteries on) X that
hold ceteris paribus—i.e., all else being equal.

Definition 2.1: Consider preference � over V , X ⊂ V ,
Y = V −X . Let γ̃ be any particular element of

∏
v∈Y dv.

That is, γ̃ is a particular assignment of values to the vari-
ables in Y . Every probability distribution p over

∏
v∈X dv

corresponds to a distribution p∗ on S =
∏

v∈V dv such that
p∗’s marginal on X is p and p∗’s marginal on Y gives prob-
ability 1 to γ̃. We define the conditional preference over X
given γ̃, �γ̃ , to be the preference ordering such that

p �γ̃ q iff p∗ � q∗,
3“Lotteries” is one of the traditional terms. It can be mislead-

ing in that it tends to imply that the probabilistic structure arises
from explicit randomization or “objective” randomness. This may
be the case, but on the other hand the probabilities can also be an
entirely subjective measure of uncertainty.

where p and q are any two distributions over
∏

v∈X dv .

Definition 2.2: The set of attributes X is utility independent
of V −X when conditional preferences for lotteries on X
do not depend on the particular value given to V −X . That
is, (

∀γ, γ′ ∈
∏

v∈V −X

dv

)
p �γ q iff p �γ′ q,

where p and q are any two distributions over
∏

v∈X dv .

Utility independence fails, for instance, if one has a pref-
erence reversal between two mixtures of the attributes X ,
when some attribute in V −X is changed. Judgments of
utility independence would appear to be fairly natural and
common; see [KR76] for a very extensive discussion. They
are, at heart, judgments about relevance and people seem to
be fairly good at this in general.

Example 2.3: Say that there are only two attributes health,
with values H and H (healthy and not healthy), and wealth
with values W and W (wealthy and not wealthy). If
the agent’s utility function u is defined as u(HW ) = 5,
u(HW ) = 2, u(HW ) = 1, and u(HW ) = 0, then it can
be seen that for the agent health is utility independent of
wealth and wealth is utility independent of health. Intu-
itively, no matter what the agent’s wealth is fixed to, it will
always prefer gambles that yield H with higher probability.
That is, the agent’s preference for being healthy is the same
no matter if the agent is wealthy or not. The same can be
said about its attitude towards being wealthy.

Utility independence is known to have several strong im-
plications. We list a few, using [KR76] as our source. First,
utility independence is equivalent to the existence of a util-
ity function with a special functional form:

Proposition 2.4: X is utility independent of its complement
in a preference structure � if and only if � corresponds to
some utility function of the form:

u�(V ) = f(V −X) + g(V −X)h(X)

where g is positive.4

Thus we must assess three functions, but each has fewer
than |V | arguments. This may mean that there are far fewer
independent numbers to learn and to store. Most of the in-
terest in utility independence in standard decision theory
concerns the case of mutual utility independence where ev-
ery subset of variables is independent of its complement:

Proposition 2.5: Every subset of variables is independent
of its complement in � if and only if there exists n functions

4It is also clearly possible to arrange f and g so that h(X) =
u�(X, γ̃) where γ̃ is an arbitrary fixed assignment to V −X.
The function u�(X, γ̃) is sometimes called a conditional utility
function.



fi(vi) (i.e., each fi depends on a single variable), such that
either

u�(X) =
n∏

i=1

fi(vi) + c

for some constant c, or

u�(X) =
n∑

i=1

fi(vi).5

This is an extremely strong conclusion, allowing enormous
simplification. The precondition of the theorem might
seem to require O(2n) utility independence conditions, but
since utility independence satisfies various closure proper-
ties we do not need this many. There are in fact several sets
of n independencies that suffice; see [KR76]. However,
the n assertions that each attribute individually is indepen-
dent of the rest are not sufficient. In this case, the result is
weaker:

Proposition 2.6: If every variable is utility independent of
the rest there is a function fi(vi) for each variable, such
that u�(V ) is a multilinear combination of the fi’s.

Thus we must assess n functions as well as (potentially
exponentially many) constants to capture the interactions
among the fi’s. This may still represent a net gain. We
suggest in Section 4 that this case might be important for
artificial intelligence, and deserves future work.

A much stronger form of independence is additive indepen-
dence. This can be defined in several ways, but the most
useful for us is:

Definition 2.7: Let Z1, . . . , Zk be a partition of V . Z1, . . . ,
Zk is additively independent (for �) if, for any probability
distributions p1 and p2 that have the same marginals on Zi

for all i, p1 and p2 are indifferent under �, i.e., p1 � p2

and p2 � p1.

In other words, one’s preference only depends on the
marginal probabilities of the given sets of variables, and
not on any correlation between them.

Example 2.8: Consider the utility function given in Exam-
ple 2.3 involving health and wealth. As the previous exam-
ple pointed out, health was utility independent of wealth.
However health is not additively independent of wealth.
Consider the two probability functions p1 and p2, where
p1(HW ) = p1(HW ) = p1(HW ) = p1(HW ) = 1/4, and
p2(HW ) = p2(HW ) = 0, p2(HW ) = p2(HW ) = 1/2.
We have p1(H) = p2(H) = 1/2 and p1(W ) = p2(W ) =
1/2. That is, p1 and p2 have identical marginals over health
and wealth. Yet the expected utility under p1 is 2, while the

5It is more usual to express the fi in terms of conditional con-
ditional utility functions and multiplicative constants. This repre-
sentation is easy to derive, or see [KR76].

expected utility under p2 is 5/2. This shows that there ex-
ists two distributions with the same marginals that are not
indifferent under the given utility function. That is, health
and wealth are not additively independent.

Intuitively, the agent prefers being both healthy and
wealthy more than might be suggested by considering the
two attributes separately. It thus displays a preference for
probability distributions in which health and wealth are
positively correlated.

Proposition 2.9 : Z1, . . . , Zk are additively independent
for � iff u� can be written as

u�(V ) =
k∑

i=1

f(Zi)

for some functions fi.

Naturally, the most interesting case is where all variables
are additively independent separately, so that we only need
to find one single-argument function for each variable. In
the rest of the paper, we will be interested in additive inde-
pendence for a partition of V into two parts, V = X ∪ Y ,
unless we say otherwise. It would seem reasonable that
these are easier to reason with than independence assertions
about arbitrary partitions.

Conditional versions of both additive and utility indepen-
dence can be defined. The definitions require that the spec-
ified independence hold whenever some subset of variables
are held fixed. For instance,

Definition 2.10: X and Y are conditionally additively in-
dependent (CA-independent) given Z (X, Y, Z disjoint,
X ∪ Y ∪ Z = V ) iff, for any fixed value γ̃ of Z , X and
Y are additively independent in the conditional preference
structure over X ∪ Y given γ̃.

In this case, we write CAI (X, Z, Y ).

Proposition 2.11 : X and Y are additively independent
given Z iff u� can be written in the form f(X, Z) +
f(Z, Y ).

3 Conditional Additive Independence

Our main new results concern CA-independence and are
presented in this section. As mentioned above, the concept
of CA-independence has been defined in the literature, but
we have found rather little development of the idea. We
nevertheless feel that CA-independence is a useful notion
for artificial intelligence. In particular, it is not as strong
a requirement as additive independence: it is quite feasi-
ble that some variables that are not additively independent
become additively independent when the values of some
other variables are fixed. Furthermore, while it is not as



generally applicable as utility independence, utility inde-
pendence often does not yield a decomposition of the utility
function that is as computationally useful. In fact, the de-
composition yielded by CA-independence can significantly
improve the efficiency of computing expected utility (see
Section 3.1).

Our results here are that CA-independence is particularly
well suited for graphical modeling. In brief, we show the
following. First, every utility function has a perfect CA-
independence graph: a graph in which vertex separation
corresponds exactly to CA-independence. And second, it
is possible to read directly from the graph the most general
functional form for utility functions satisfying the repre-
sented independencies. In the presence of nontrivial inde-
pendencies, this form typically has a much reduced “di-
mensionality”, making elicition, representation, and rea-
soning far easier.

Our first definition defines the type of functional form we
are after. We want the utility to be composed from func-
tions with proper subsets of V as arguments—the fewer
the arguments the better, as the complexity of specifying
a function explicitly (i.e., as a table) is exponential in the
number of arguments. Furthermore, as mentioned above,
the utility should be a linear combination of these subfunc-
tions.

Definition 3.1: Let Z1, . . . , Zk be (not necessarily disjoint)
subsets of V . A function f(V ) has an additive decomposi-
tion over Z1, . . . , Zk if

f =
k∑

i=1

fi(Zi)

for some functions fi.

Clearly there is no loss of generality to assume that for no
i, j is Zi ⊆ Zj .

This form of functional decomposition has been used be-
fore in the literature [JJD94, DDP88, ST90], but without
any justification in terms of notions of utility independence.
As Proposition 2.11 shows a utility function can be written
in this form only if some collection of CA-independencies
hold.

Using this definition, we may rephrase Proposition 2.11 as
saying that a utility function satisfies CAI (X, Z, Y ) if and
only if it has an additive decomposition over X ∪Z, Z∪Y .
Although we are ultimately interested in the components
present in an additive decomposition (in particular, making
them as few and as small as possible), proving the main
theorems below sometimes requires that we focus on com-
ponents that are absent instead.

Definition 3.2: Let Z1, . . . , Zk be (not necessarily disjoint)
subsets of V . A function f(V ) has an additive decomposi-

tion that avoids Z1, . . . , Zk if

f =
�∑

i=1

fi(Yi)

for some fi and some � subsets Yi ⊂ V such that for no i, j
is Zi ⊆ Yj .

It is easy to
verify using Proposition 2.11 that CAI (X, Z, Y ) iff there
is an additive decomposition avoiding all {x, y} such that
x ∈ X and y ∈ Y ; we use this in the proofs below.

If u has a decomposition avoiding X , and another avoiding
Y , does it have another decomposition avoiding both? It
might seem plausible that there are functions in which an
interaction term in either X or Y is necessary, but such that
either one of these suffices. However, this is not in fact
possible, and the answer to the question above is always
yes. The next lemma, which generalizes this claim, will be
used in several places subsequently.

Lemma 3.3: If a utility function u(V ) has decompositions
avoiding each of X1, X2, . . . , Xk ⊂ V separately then it
has a decomposition avoiding them all.

Proof: See the appendix.

Now we are in a position to prove our first main result.
This says that, for any utility function, there is an undi-
rected graph G = (V, E) (i.e., the nodes are the attributes)
such that CAI (X, Z, Y ) (for X∪Y ∪Z = V ) if and only if
Z separates X from Y , i.e., every path from a node in X to
a node in Y passes through some node in Z . In the termi-
nology of [Pea88] such a graph is said to be a perfect map
of the independence structure. Pearl and Paz [PP89] have
given necessary and sufficient conditions for an indepen-
dence relation to have such a map (see also [Pea88]), and
we can simply apply this result in the proof below. Note
that if follows that if two attributes are linked by an edge in
a perfect graph for CA-independence, then we always care
about the (probabilistic) correlation between their values.
If there is no edge then, once all the remaining variables
are given fixed values, we do not care whether the endpoint
attributes are determined independently or not (i.e., this is
irrelevant to our preferences).

Theorem 3.4: The set of CA-dependencies generated by
any utility function has a perfect map.

Proof: It is sufficient to simply check each of the five
conditions given by Pearl and Paz. The main difficulty
is that these conditions concern expressions of the form
I(X, Y, Z) in which X ∪ Y ∪ Z need not equal V , but
we have not defined CA-independence in this case. So, for
the purposes of this proof only, we make the following def-
inition. If R = V −X−Y −Z 
= ∅, then CAI (X, Y, Z)



holds iff there is some partition R = R1 ∪ R2 such that
CAI (X ∪ R1, Z, Y ∪ R2). We now simply verify the con-
ditions, which must hold for all sets of disjoint arguments.

Symmetry: CAI (X, Z, Y ) ⇒ CAI (Y, Z, X). This is im-
mediate by the definition.

Decomposition: CAI (X, Z, Y ∪ W ) ⇒ CAI (X, Z, Y ) ∧
CAI (X, Z, W ). This follows from the extended defi-
nition give above (because we can choose R2 to con-
tain W or Y as appropriate).

Intersection: CAI (X, Z∪W, Y )∧ CAI (X, Z∪Y, W ) ⇒
CAI (X, Z, Y ∪ W ). Let R = V −X−Y −Z−W . By
assumption, there are two partitions of R, R1, R2 and
R′

1, R
′
2 say, such that CAI (X ∪ R1, Z ∪ W, Y ∪ R2)

and CAI (X ∪ R′
1, Z ∪ Y, W ∪ R′

2) hold. Let R′′
1 =

R1 ∩R′
1 and R′′

2 = R2 ∪R′
2; note that R′′

1 ∪R′′
2 = R.

From the above it is easy to verify that, for each v1, v2

with v1 ∈ X ∪ R′′
1 and v2 ∈ Y ∪ W ∪ R′′

2 , there is
an additive decomposition avoiding {v1, v2} . By the
lemma, there is an additive decomposition avoiding
them all at once. Thus CAI (X∪R′′

1 , Z, Y ∪W ∪R′′
2 ),

i.e., CAI (X, Z, Y ∪ W ) as required.

Strong union: CAI (X, Z, Y ) ⇒ CAI (Y, Z∪W, X). This
follows easily, because each v ∈ W is either in R1 or
R2 and so, according to the antecedent, the utility can
be decomposed so that v appears with X∪Z or Y ∪Z
but not both. The consequent allows it to appear with
both, and so is strictly weaker.

Transitivity:
CAI (X, Z, Y ) ⇒ CAI (Y, Z, w) ∨ CAI (w, Z, Y )

where w is any single variable. By disjointness, we
do not consider w ∈ Z . Otherwise, find R1 and R2

such that CAI (X∪R1, Z, Y ∪R2); these must exist by
definition. But then w ∈ R1 or w ∈ R2, and in either
case the result follows immediately using decomposi-
tion.

Thus, we can appeal to Pearl and Paz’s result to conclude
the proof.

It follows from the proof of this theorem that any CA-
independence model induced by a utility function is a
graphoid, in the sense of [PP89]. The book [Pea88] dis-
cusses graphoids, and their graphical maps, in considerable
detail. Note that an undirected graphical model of the type
we consider is also called a Markov network.

Part of the utility of this theorem is that we can represent
and reason about CA-independencies graphically, which is
often far more natural. However, another benefit is that
we can read the functional form of the utility function di-
rectly from its corresponding Markov network in the stan-
dard fashion (i.e., by identifying the cliques of the graph).

Theorem 3.5: G = (V, E) is a CA-independence map for
a utility function u (i.e., all independencies suggested by
vertex separation in the graph hold of u) if and only if u has
an additive decomposition over the set of maximal cliques
of G.

Proof: First, suppose u has such an additive decomposi-
tion, and let X, Y, Z be a partition of V such that Z sepa-
rates X from Y in G. We must show that CAI (X, Z, Y )
holds of u. But no clique in G can contain an element
from both X and Y (otherwise, no separator would exist).
Thus, the hypothesized decomposition has no term involv-
ing variables from both X and Y . The result now follows
from Proposition 2.11.

Conversely, suppose G is a CA-independence map of u.
Let Y be a proper superset of any maximal clique. There
exists an additive decomposition over cliques if there is a
decomposition avoiding all such Y . By Lemma 3.3, it suf-
fices to consider each Y separately. Suppose, for a contra-
diction, that it is impossible to avoid Y . Let X ⊂ Y be
a maximal clique. There must be some y ∈ Y such that
not all members of X are connected to y in G. (Otherwise,
X ∪ y is a larger clique). Let x ∈ X not be connected to
y by an edge. But then V −{x, y} separates x and y, and
so CAI ({x} , V −{x, y} , {y}), hence there is a decompo-
sition avoiding {x, y}, and hence avoiding Y . This gives
the necessary contradiction.

This means that we can read a suitable function form di-
rectly from the graph, by finding cliques. Unless the
graph is complete, this gives us a nontrivial decomposi-
tion of u. By Theorem 3.4, the procedure of finding a
graph using CA-independence and then using it this way
is capable of revealing all the information inherent in CA-
independencies. In a sense, this is quite a strong result.
Probabilistic independence does not always admit perfect
Markov networks. Thus, while probabilistic independence
maps are certainly a useful technique, they do not have the
same power as if we were to just reason about indepen-
dence directly. On the other hand, this contrast is a bit
misleading. Although graphical models can capture CA-
independence perfectly, the concept of CA-independence
itself is somewhat weak.

Example 3.6: Consider all utility functions over three vari-
ables of the form

u(x, y, z) = f(x, y) + f(y, z) + f(x, z).

It is easy to verify that there are no independencies (utility
or additive, conditional or otherwise) that are common to
all such functions. The CA-independence is a complete
graph (a triangle) and so does not reflect the fact that u has
quite a simple form.

This shows that certain linear functional forms, that entail
just the computational and representational advantages we



seek, are not revealed by the independence concepts seen
so far. Are there other concepts of independence that do
not have this weakness? The answer is yes.

Definition 3.7: Let Z1, . . . , Zk be sets of variables not nec-
essarily disjoint such that V =

⋃
i Zi. Z1, . . . , Zk is gener-

alized additively independent (for �) if, for any probability
distributions p1 and p2 that have the same marginals on Zi

for all i, p1 and p2 are indifferent under �.

This notion of independence is just like additive indepen-
dence except that the Zi do not need to be disjoint. Now
it can be shown that Proposition 2.9 still holds, but with
generalized additive independence instead of additive in-
dependence.

Proposition 3.8: Z1, . . . , Zk are generalized additively in-
dependent for � iff u� can be written as

u�(V ) =
k∑

i=1

f(Zi)

for some functions fi.

In other words, from Definition 3.1, the Z i are generalized
additive independent iff the utility function u has an addi-
tive decomposition over them.

This shows that any additive decomposition corresponds
exactly to a single assertion of general independence. We
have not seen the idea of generalized independence as given
above defined explicitly in the literature, or Proposition 3.8
noted. We prove this proposition using the following de-
ceptively powerful result of Fishburn’s [Fis82].

Theorem 3.9: [Fishburn] Let � be a preference structure
over some collection of states S ′ ⊂ S =

∏
v∈V dv . We say

that some partition Z1, . . . Zk of V are additively indepen-
dent over S ′ if all probability distributions p1 and p2 with
support in S ′, that have the same marginals on Zi for all i,
are indifferent under �.

Then Z1, . . . , Zk are additively independent over S ′ iff
there exist functions fi such that

u�(V ) =
k∑

i=1

fi(Zi)

is valid on S ′.

Fishburn’s theorem basically says that Proposition 2.9 con-
tinues to hold over subsets of the product space (with the
appropriate notions restricted to that subset). The ability to
restrict to a subset of the product space, and thus impose
fixed interdependencies among the variables, is nontrivial;
see [KLST71] for other relevant discussion.

Proof of Proposition 3.8: Our proof utilizes a technique
suggested by Fishburn in [Fis82]. Let S =

∏
v∈V dv,

and consider any Zi = {v1, . . . , v�} say. Corresponding
to this, we can construct a new variable zi, whose do-
main is isomorphic to

∏�
j=1 dj . Now consider the space

T =
∏k

j=1 zi. Each s ∈ S corresponds to an element of
T (because S implies a unique value for each of the sets
of variables Zi and thus for zi), and thus S corresponds
to a subset T ′ of T . Instead of probability and prefer-
ence over S, we can equivalently consider probability and
preference over T ′. But note that the marginal probabil-
ity of Zi in S is equal to the marginal probability over
zi in T ′. Thus the assumption of Theorem 3.9 is in fact
equivalent to the precondition of Proposition 3.8. Hence,
the preference structure corresponds to a utility function
u(V ) =

∑k
i=1 f(zi) ≡

∑k
i=1 f(Zi).

Of course, even though any additive decomposition corre-
sponds to a single generalized independence assertion, it is
probably unreasonable to try to discover the latter directly.
Thus simpler but more accessible concepts such as (plain)
CA-independence will remain important.

3.1 Computation

It should be clear that an additively decomposable utility
function has advantageous computational implications. For
instance, if we have no more concise representation of util-
ity than just u(V ), we must consider each possible state in
|S| individually. This is true no matter how the probabil-
ity distribution is given to us. But towards the other ex-
treme, if u has an additive decomposition over v1, . . . , vk

(i.e., u(V ) =
∑n

i=1 fi(vi)) then we only need to find n
marginal probabilities, because the expected utility of u is
the sum of the expected utilities of the fi, by linearity of ex-
pectation. Finding these probabilities can be very easy (for
instance, linear time given a singly connected Bayesian net-
work; see [Pea88]). This example shows that the advantage
of additive utility independence is not simply the reduction
of dimensionality. Other decompositions may be as good
in this respect, but not offer any clear benefits for compu-
tation; for example, consider the product utility functions
that can be entailed by mutual utility independence (Propo-
sitions 2.5 and 2.6).

To show the possible advantages in somewhat more de-
tail, consider probability distributions given by general
Bayesian networks. One of the most popular ways of com-
puting probabilities from a network is to form a join tree;
see [LS88, Pea88]. Without going into details, we note that
the join tree is a tree of sets of variables. If, for instance,
C = v1, v2, . . . , vk is a node in the join tree then the do-
main of C is just the product space

∏k
i=1 dvi . Join trees

can be used to maintain the marginal distribution over all
nodes C; the complexity of this process is determined by
the domain sizes of nodes such as C (which can of course
be exponential, although in many cases will be of reason-



able size).

Suppose, however, that u is decomposable over Z1, . . . , Zk

and each Zi is a subset of some node in the join tree. In
this case, expected utility computations can be performed
essentially for free, “piggy-backing” on the probability cal-
culations in the probabilistic join tree. Again, this is a
consequence of linearity of expectation and the fact that
the marginal over C is enough to calculate the expectation
of any f(Zi) with Zi ⊆ C. If this containment property
(see [DDP88]) property does not hold, we may need to add
edges to the Bayesian network or join tree to establish it.
In this case, the extra cost involved in calculating expected
utility is a function of the number of edges we need to add.
Roughly speaking, the greater the similarity between the
Bayesian network (or join tree) and the utility graph, the
less extra work will be required to compute expected util-
ity. The technique presented by Jensen et al. [JJD94] for
evaluating influence diagrams uses such ideas, as does the
somewhat related proposal of Dechter et al. [DDP88] in
the context of constraint satisfaction.

Another very relevant work is [ST90], which also uses de-
composable utility functions (there called “separable”) for
evaluating influence diagrams. But this paper deals with
both additive and multiplicative decompositions, and so
perhaps does not offer as much potential savings as, say,
Jensen et al.’s proposal. Finding out whether this is really
so would be helped by a more precise analysis of how a
utility independence independence structure, and its simi-
larity (or otherwise) to a given probabilistic independence
structure, can affect computational efficiency. We hope to
address this issue in future work.

4 Conclusions and Future Work

A direct extension of this work would be to investigate the
possibility and usefulness of graphical models for other rel-
evant concepts of independence. Von Stengel [vS88], uti-
lizing the work of Gorman [Gor68], has shown that a utility
function can be graphically represented as a composition
tree that captures its utility independencies. The nodes of
this tree are subsets of variables, with the root being equal
to V . Besides this work on utility independence however,
there seems to have been little else done in this area.

For instance, are there models using directed graphs (like
Bayesian networks) for additive independence? What
about generalized additive independence? The case of util-
ity independence also deserves further attention. Gorman’s
composition tree approach leaves us with a graphical model
that is quite distinct from graphical probabilistic models
where the nodes represent single variables rather than sets
of variables. Hence, it is not clear how such a model can
be utilized in conjunction with modern techniques of prob-
ability structuring.

It may turn out that the use of graphical models for utility
representation only has a limited usefulness. On a broader
level, though, we are convinced that decision theory is a
critical part of artificial intelligence and thus there should
be more work, in various directions, towards more sophisti-
cated utility modeling. Having said this, research in utility
modeling need not start from nothing, but can and should
draw on the considerable amount of existing ideas and tech-
niques in other disciplines.

We close by discussing one fairly speculative topic for fu-
ture research. Although we are firm believers in the stan-
dard decision theory paradigm, it is surely the case that util-
ity (like, perhaps, probability) is not always a concept that
the AI “end-user” should have to deal with directly. Util-
ities determine the purpose of a decision making process,
but it seems at least as common and sometimes more nat-
ural to specify this purpose using such concepts as goals,
constraints, and so on. If we could give the idea of a “goal”
clear and complete semantics in terms of utility functions,
we could compile a specification in terms of goals into one
in terms of utility (so that decision theory could then be
used). But finding such semantics is certainly not a trivial
task. We must cope with interacting and even contradic-
tory goals, conditional goals, and more. We should also
interpret goals in a natural fashion, which is likely to de-
mand default reasoning of some sort. For instance, given
two separate goals A and B, it is often reasonable that the
conjunction A ∧ B is a desirable thing to achieve as well,
unless there is a specific reason to believe otherwise. This
is something like a default assumption of independence
over goals. Taking this idea literally would involve ideas
such as Proposition 2.6, but there appear to be numerous
complicating factors including: the rich structure of goals
and preference stated in a logical language, which may not
match the nice factorization of the state space assumed in
Section 2; the implications of making this independence
a default, and the interaction with all the other default as-
sumptions that might be necessary; the notion of condi-
tional goals and the various logical issues they raise; and
so on. As we have said, some work in this direction exists
[Bou94, DW91, DSW91, DW94, TP94], but there remains
much to be done.
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A Proof of Lemma 3.3

Lemma: If a utility function u(V ) has decompositions
avoiding each of X1, X2, . . . , Xk ⊂ V separately then
it has a decomposition avoiding them all.

Proof: We prove this by contradiction, so suppose that
an additive decomposition avoiding all the X i is not pos-
sible. Roughly speaking, we will consider instead some
additive decomposition that comes “as close as possible”
in a certain sense to the desired form and then, for a con-
tradiction, show that it can be always be improved. For
any decomposition of u, over some Y1, . . . , Yl, identify
the “largest” Yi as that set which 1) contains some Xi,
2) subject to 1, has the maximum cardinality, and 3) sub-
ject to 2 is the greatest in some arbitrary, but fixed, or-
der of subsets of V with a given size. For instance, if
we have just X1 = {v1}, then largest term in u(V ) =
f(v1, v3)+ f(v3, v4, v5, v6)+ f(v1, v3, v4)+ f(v1, v2, v3)
will correspond to either {v1, v3, v4} or {v1, v2, v3}, de-
pending on how ties are broken. Under our assumption,
that it impossible to avoid all the Xi simultaneously, each
decomposition of u has a largest term.

Among all the additive decompositions of a function u (of
which there are surely some, since we can take Y1 = V if
necessary) select one whose largest element is as small as
possible. (Smallness is decided as above, i.e., by cardinal-
ity and then with ties broken according to some fixed rule.)



The rest of the proof shows that it is possible to improve
this decomposition to one with a smaller largest term, giv-
ing the desired contradiction.

The structure of the proof is easy to see if we imagine that
all the vi have continuous domains and that all relevant
functions have continuous derivatives. We then argue as
follows. Consider the chosen decomposition, and let f(Y i)
correspond to the largest term. By assumption, Xj ⊂ Yi

for some j. It is easy to see that ∂ u
∂ Yi

(i.e., the iterated par-
tial derivative with respect the variables in Yi, in some or-
der) is identical to ∂ f(Yi)

∂ Yi
, because every other term in the

hypothesized decomposition is missing at least one of the
variables in Yi (otherwise Yi would not be the largest set).
On the other hand, we also know that ∂ u

∂ Yi
is 0. This is

because, by the assumption of the theorem, there is some
other decomposition that avoids Xj and thus ∂ u

∂ Xj
= 0.

Hence (strictly speaking, using the commutativity of partial
differentiation) ∂ u

∂ Yi
= 0 because Yi contains Xj . Putting

these together, ∂ f(Yi)
∂ Yi

= 0. We can now re-integrate 0,
with respect to each variable in Yi, to find the form of
f . Each integration step introduces an additive “constant”
which may depend on all the other variables except the one
currently being integrated. These “other variables” only
include variables in Yi, though, because we are trying to
recover f(Yi). This shows that any function g of Yi such
that ∂ g(Yi)

∂ Yi
= 0 is equivalent to the sum of |Yi| terms, each

of which involves only |Yi| − 1 of the variables in Yi. Thus
f this form. But if we replace f(Yi) by this sum in our hy-
pothesized decomposition, we get a contradiction, because
the revised composition surely has a smaller largest term.

We did not really need to assume differentiability. Define
a difference operator as follows. For any f(x1,. . . , xi, . . . ,
xm) define δ f

δ xi
as the m + 1 argument function:

δ f
δ xi

(f(x1, . . . , xi, x
′
i, . . . , xm))

= f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′
i, . . . , xm).

It is easy to verify that every property of partial differentia-
tion used in the above proof (linearity, commutative, inver-
sion (integration), and the conditions for a derivative being
0) hold in this setting as well. Since the ideas are straight-
forward, we omit the details.


