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Abstract

Qualitative accounts of utility modeling and
decision theory offer the prospect of rea-
soning about preference and decision-making
without requiring hard-to-obtain numerical
probabilities and utilities. It is plausible that
such accounts can be found because qualita-
tive criteria (in particular, dominance) seems
to play a large role in human decision making;
the formal quantitative apparatus of maxi-
mum expected utility tends to be invoked only
in the most critical, most finely-balanced,
cases.

In this paper, we show how non-probabilistic
independence concepts—such as preferential
independence and utility independence—can
be integrated with other sources of quantita-
tive information. It turns out that there are
some subtleties involved in making sense of
these ideas in a logical framework. The main
contribution of this paper is to demonstrate
these subtleties, and then give semantics that
avoid many of the problems. We then argue
that knowledge of utility independence can
be a useful addition to the qualitative rea-
soner’s tool-kit.

1 Introduction

It is often suggested that rational decision-making
should be based on the principle of mazimum ezpected
utility (MEU). To use MEU one must have a numeric
utility function that quantifies how desirable or un-
desirable each particular state of the world is, and a
family of probability distributions over the states of
the world. This family of distributions is indexed by
the actions one might take, each distribution telling us
the probability that any particular state of the world
will be brought about by the associated action. The
MEU principle advocates selecting that action which
leads to the greatest expected utility. For an introduc-
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tion see, for example, [Fre88, GS88, Sav54].

However, it is well known that there are several epis-
temological and computational difficulties involved in
using MEU. In particular, it is often extremely dif-
ficult or even impossible to obtain the probability
and utility functions required. People tend to ex-
press their beliefs, goals, and preferences in different,
generally qualitative, terms and have trouble trans-
lating these into numerical distributions and utility
functions. Even when it is possible to obtain them,
it might not be practical to use numeric probabilities
and utilities directly. For instance, if there are n in-
dependent Boolean propositions the state space may
have size 2", so that an explicit listing of probabilities
or utilities quickly becomes unmanageable. Further-
more, such a listing might obscure valuable structure
or heuristic information that is apparent in a more
“natural” specification. For example, we might lose
the ability to quickly recognize when dominance argu-
ments render detailed utility calculations redundant.

Such problems are one motivation for recent inter-
est in qualitative theories of probability and uncer-
tainty, utility (i.e., preference), and their combina-
tion (i.e., decision making). There has been greatest
progress on qualitative theories of probability. This
includes theories of probabilistic independence (no-
tably Bayes nets [Pea88]) which use qualitative in-
formation to simplify the acquisition and use of nu-
merical probabilities, theories of extreme probabilities
such as e-semantics [Pea89], and the related area of
non-monotonic reasoning [Gin87] which (according to
some interpretations) seeks to replace probabilities en-
tirely with a qualitative counterpart.

Work concerning qualitative theories of utilities and
decision theory is more recent, and far less developed.!
Among the papers of direct relevance to us include

"However, we acknowledge the large body of existing
work on deontic logics (e.g., [vonbl]) and preference logics
(e.g., [vonT72]). This appears to be only weakly relevant to
our work, however, because these logics do not generally
appeal to the expected-utility paradigm.



those by Boutilier [Bou94], Pearl and Tan [Pea93,
TP94a, TP94b], and Doyle, Wellman, and Shoham
[DW9I1, DW94, DSW91]. We discuss these and other
papers in more detail in Section 3.

In some previous works the approach taken has been
to dispense with numeric utility and probability func-
tions, instead replacing them with qualitative analogs.
For instance, [Pea93] suggests using probabilities of the
form €* for natural numbers % and € a small positive
number, and utilities of the form +(1/¢)*. By consid-
ering the limit € — 0 (i.e., where probabilities are “very
small”, utilities are “very large”, and all we care about
are order-of-magnitude distinctions) one can hope to
simplify the reasoning process. There are many in-
teresting variants of this basic idea, including the use
of qualitative probabilities alone (such as k-rankings
[Pead3]) or qualitatively ranked utilities alone [TP94al.

In this paper we also consider the problem of decision-
making using qualitative, or limited amounts of quan-
titative, information. An important contrast with pre-
vious work is that we will not assume that probabil-
ities or utilities are themselves qualitative (although
they may be). Instead, our goal is to work towards a
decision theory that can handle qualitative knowledge
about probabilities and utilities. The particular fo-
cus of this paper is knowledge about independence for
utilities and preferences. Whether or not the probabil-
ities and utilities about which we make independence
assertions are in any sense qualitative is generally an
orthogonal issue.? In Section 4 we give a result il-
lustrating one way in which these two notions can be
usefully combined.

We have investigated independence concepts for pref-
erence and utility in recent work [BG95]. Most of these
concepts have been known for a long time, albeit per-
haps not in the A.I literature, as part of an area known
as multi-attribute utility theory [KR76]. In [BG95] we
were interested in the possibility of graphical models
for these concepts, analogous to graphical techniques
for probabilistic independence (such as Bayes Nets). In
this paper we suggest a different (although related) use
for these concepts: that independence assertions are an
important source of information about utilities.> Like
probabilistic independence, these notions are qualita-
tive, relatively easy for people to access, and can sim-
plify computation. Thus, they can help in achieving a
more usable version of (qualitative) decision theory.

There are perhaps two reasons why independence con-

ZNote that the phrase “qualitative decision theory” is
occasionally used to denote theories in which probabilities
and/or utilities are themselves qualitative. This is not our
usage here.

3Unlike probabilistic independence, there are a number
of distinct notions of independence relevant to preference
and utility. We will simply use the term “independence”
to refer to any of these notions when the distinction is not
important.

cepts are relatively unexplored in A.I. One, which
we will address later in the paper, is simply that
they are relatively weak (in contrast to the theory of
probabilistic independence, which is mathematically
richer). Another is that they have only been defined
in a rather simple context, involving product spaces
of attributes. In contrast, much of the work in quali-
tative decision theory uses concepts from logic. Stan-
dard multi-attribute utility theory might consider a
space described by several attributes including, for ex-
ample, health and wealth. The standard theory can
make sense of the assertion that, for instance, one’s
health is utility independent of the set of all other
attributes (including wealth). But the standard for-
mulation would have problems saying 1) one’s health
is utility independent of wealth simpliciter, or 2) that
the logical sentence health V wealth is independent of
everything else, or 3) coping with logical constraints,
such that the lowest level of wealth is incompatible
with the highest level of health.

A principal contribution of this paper is to show how
to define the standard independence notions in a logi-
cally rich context. Although our approach is not tech-
nically complex, it has several interesting (and possibly
controversial) philosophical aspects, because there are
several other definitions one might use. The heart of
this paper is Section 3, which presents our proposal
and discusses some of the difficulties it tries to ad-
dress. This section also contains some more detailed
comparisons with related work. Section 4 explores fur-
ther consequences of our definitions. In particular, we
state results showing how certain independencies inter-
act with other pieces of qualitative information. For
example, there are many cases in which the dominance
arguments that one might wish to use are invalid un-
less appropriate independencies are given. In Section 2
we present the basic background material.

2 Standard Independence Concepts

As we have said, we assume familiarity with the ba-
sic ideas and techniques of decision theory and the
expected-utility paradigm. In particular, it is outside
the scope of this paper to defend the MEU principle
or to examine the many alternative decision theories
that are occasionally proposed. The purpose of this
section is to establish some notation and to then give
a brief survey of independence concepts for preference
and utility.

We often assume that the set of states S is defined by
a set of binary attributes (i.e., propositional variables)
V ={p1,...,pn}. Hence, S can be considered to be
the set of all truth assignments over V. Furthermore,
we can use propositional logic to talk about events over
S. In general, it is very useful to also allow non-binary
attributes, corresponding to concepts or resources that
have more than two levels. Of course, it is trivial to



formulate a “propositional”-style logic which can talk
about such attributes as well. Everything in this pa-
per applies whenever all attributes take on a discrete
number of values; we will to present our results and
discussion in terms of binary-valued attributes, but
this is solely for notational simplicity. Continuous or
real-valued attributes raise distinct issues, and so will
not be considered in this paper.

In the following, if X C V then f(X) stands for some
real valued function all of whose arguments are in X,
ie, f(X):2¥ — IR is a function that depends on
the truth value of the variables in X only. A wutil-
ity function, u, is a function over complete states,
i.e., u(V), and thus it can potentially take on expo-
nentially many unrelated values, one for every state.

We will also need to refer to probability distributions
over S. More generally, when X C V' and we say that
Pris a probability distribution over X, we mean that
Pr is a probability distribution over the set of truth
assignments to the variables in X.

A utility function u induces a preference ordering >
on the probability distributions over S as follows:

iff Z Pri(s)u(s) > ZPT’Q(S)’U,(S),

ses seS

P7"1 t PTQ

where Pr; and Pry are two distributions over S. That
is, we prefer Pry to Pry if Pry induces greater expected
utility. Thus utility serves to characterize not only the
agent’s values but also its attitudes towards risk: it
ranks probabilistic gambles between various outcomes.

Sometimes, instead of considering a preference order-
ing over probability distributions on states, we are only
interested in the order among the states themselves. In
particular, note that any utility function w induces a
unique preference ordering over the individual states:
s » s for two states s and s’ iff u(s) < u(s'). But
the converse is not true: since utility functions also
reflect one’s attitude towards risk, many distinct util-
ity functions can lead to the same preference ordering
over states.*

We now briefly summarize a number of standard in-
dependence notions for utility and preference. With
the exception of the final definition (conditional ad-
ditive independence [BG95]) these are standard ideas
from the field of multi-attribute decision theory. This
review is based on the following sources [Fis82, Fre88,
KR76, KLST71] and our paper [BG95].

The first definition we give is that of preferential in-
dependence. This is the weakest notion we discuss be-
cause it only considers the preference ordering among

If +/' is a monotonic function of u, then v and v’ will
lead to the same preference ordering over states. But only
if w and u’ are linearly related are they equivalent as utility
functions (i.e., generate the same preferences over proba-
bility distributions).

individual states. Intuitively, a set of attributes X is
preferentially independent of everything else, if when
we hold everything else fixed (i.e., the values of at-
tributes V —X), the induced preference ordering over
assignments to X does not depend on the particular
values that V—X are fixed to. Thus, we can assert
that preferences over X hold ceteris paribus—i.e., all
else being equal.

Definition 2.1 : Recall that each state s € S is a
truth assignment to the variables in V. If X C V we
can write s as (a, ), where « is a truth assignment to
the variables in X and v is a truth assignment to the
remaining variables V — X.

The set of attributes X is preferentially independent of
V' —X when one’s preference order among truth assign-
ments to X does not depend on the particular values
that the variables V—X are set to. That is,

Vv,v" € “truth assignments over V. — X7 :
(a,7) = (B,7) iff (a,") = (8,7,

where a and 8 are any two truth assignments to the
variables in X. 1

The concept of wutility independence is similar, but
somewhat stronger because it is concerned with the
induced utility function (and not just preferences be-
tween individual states). Thus, the relative strength
of preference between states (and not just the order of
these preferences) must stay the same. Put another
way, one’s attitude towards risk should not change.
Like preferential independence, utility independence
can also be viewed as a formalization of ceteris paribus.

Definition 2.2: Let X C V be some set of attributes,
and suppose 7 is a truth assignment to the remaining
variables V' — X. Given a probability distribution Pr
over X, there is a unique distribution Pr” over V such
that (1) Pr”’s marginal over X is Pr, and (2) Pr” gives
probability 1 to .

Given a utility function with associated preference or-
dering >, we define the conditional preference over X
given vy, =, to be the preference ordering such that

Pry =, Pry iff Pr] = Prj,

where Pr; and Pry are any two distributions over X. H

Definition 2.3: The set of attributes X is wtility in-
dependent of V—X when conditional preferences over

X do not depend on the particular value given to
V—X. That is,

Vv,v' € “truth assignments over V. — X7 :
P?"l t’y PT‘Q iﬁ'PT'l tfyr PT‘Q,

where Pr; and Pr, are any two distributions over X.
Here >, and >,/ are the conditional preferences over
X given v and 7' respectively. I



It is worth noting that, if we are just concerned with
a single binary attribute being independent of all the
others, then utility independence and preferential in-
dependence coincide, but this is not the case when
the set X contains more than one attribute or if the
attributes can take more than one value. In the single-
attribute binary case (only), both preferential and util-
ity independence reduce to the particular formaliza-
tion of ceteris paribus given in [DW91].

In general, preferential (resp., utility) independence
fails to hold if one has a preference reversal among
values of (resp., probabilistic mixtures of values of)
the attributes X, when some set of attributes in V—X
is changed. Judgments of utility independence and
preferential independence appear to be fairly natural
and common; see [KRT76] for a very extensive discus-
sion. They are, at heart, judgments about relevance
and people seem to be fairly good at this in general.

We close by considering an even stronger notion: ad-
ditive independence.

Definition 2.4: Let Z;, ..., Z; be a partition of V.
Zi, ..., Zy are additively independent (for >) if, for
any probability distributions Pr; and Pr, that have
the same marginals on Z; for all i, Pr; and Pry are
indifferent under =, i.e., Pry = Pry and Pry > Pri. |

In other words, one’s preference only depends on the
marginal probabilities of the given sets of variables,
and not on any correlation between them. Condi-
tional versions of both additive and utility indepen-
dence can be defined. The definitions require that the
specified independence holds whenever some subset of
variables are held fixed. For instance, the following in-

dependence concept was developed in our earlier work
[BG95].

Definition 2.5: X and Y are conditionally additively
independent given Z (X,Y, Z disjoint, XUYUZ = V)
iff, for any fixed value v of Z, X and Y are addi-
tively independent in the conditional preference struc-
ture over X UY given v. |1

All of these notions of independence have interesting
consequences for the form of the utility function. Al-
though knowing these consequences might help some-
what in understanding our results in Section 4, they
are not essential and so we omit them. Just to give a
flavor, though, here is one of the strongest and most
important:

Proposition 2.6: ([KR76]) Zy,...,Z, are additively
independent for = iff the utility function representing
> can be written as

for some functions f;.

3 Independence for Formulas

Most existing research in qualitative decision theory is
concerned with assertions about logical formulas. For
instance, both [Bou94] and [TP94a] give semantics to
the assertions of the form “if @ is known then ¢ is
preferred to —p”, where ¢ and v can propositional
logic formulas. The related area of deontic logic also
supposes that one should reason about preference and
obligation in a logical setting.

In contrast, the various definitions of independence
given in Section 2 only deal with attributes (which
for us tend to be individual propositional variables) or
sets of attributes, not arbitrary formulas. This is a
significant restriction, and the purpose of this section
is to show how it can be relaxed.

To see part of the difficulty caused by formulas, first
consider the simple case where one variable (p; say) is
preferentially independent of the remaining variables.
To simplify the discussion, suppose that the direction
of the preference is towards p; being true. Then the
definition of preferential independence says that, for
every pair of states s, s’ that agree on the values given
to all the n — 1 remaining variables, we will always
prefer the one in which p; is true.

Why is this case so straightforward? There are two
distinct reasons. First, it seems to be a reasonable
formalization of the idea that p, is preferred to —p;
ceteris paribus, i.e., preferred given that “all else is
equal”. The point is that there is little doubt as to
what “all else” should refer to: we should fix the val-
ues of all the propositional variables other than p;.
Second, once we fix the values of the other variables,
we are left with only two states: one satisfying p; and
the other —p;. There is no doubt as to what “prefer-
ence” means here: the former state should have higher
utility than the latter.

But now suppose that, instead of a primitive proposi-
tional variable, it is an arbitrary logical formula that
is “preferred” to its negation. To be concrete, we con-
sider the formula ¢ = p; ® ps (i-e., the exclusive-or of
p1 and p2.) What is the “all else” that we are supposed
to hold fixed when comparing ¢ with —¢? There is no
clear answer to this. Furthermore, as we see shortly,
once we have fixed “all else”, we may be left with more
than one ¢ state and more than one —p state. How
should we compare them?

Such questions have been considered by Doyle,
Shoham, and Wellman [DSW91], and also by Tan
and Pearl [TP94b]. Roughly speaking, in the case of
@ = p1 ® po they would fix the values of all proposi-
tional variables other than p; and ps. (In general, they
fix all propositional variables that are not required to
appear in the formula being considered. This is how
the ceteris paribus condition is interpreted.) Note that,
for any fixed values of the other variables, we are left



with a set of four states, corresponding to the four
truth assignments to p; and p,. Their interpretation of
preference is that, among each such set of four states,
the two in which ¢ is true are preferred to the other
two, in which ¢ is false. (That is, each state satisfying
 has higher utility than both of the — states.)

In Section 3.1, we argue against this interpretation of
preference. Instead, we endorse an interpretation pro-
posed by Jeffrey [Jef65] that is based on the idea of de-
sirability or (as we prefer to call it) conditional expected
utility. We also disagree with the [DSW91, TP94b]
interpretation(s) of ceteris paribus. In Section 3.2 we
present our concerns and give an alternative approach.
Our approach uses conditional expected utility as the
base semantics for preference and to make sense of the
ideas of utility (resp., preferential, additive) indepen-
dence over arbitrary collections of formulas.

3.1 Conditional Expected Utility

Given that one has a collection of ¢ states and —p
states, what does it mean that the former are pre-
ferred to the latter? The [DSW91, TP94b] proposal is
that all of the former are preferred to all of the latter.
This is an extremely strong condition with undesirable
consequences.

One important problem is that it becomes im-
possible to override preferences given more specific
information.® One cannot say, for instance, that ¢ is
preferred to - and at the same time that, conditioned
on some other information v, we prefer —¢ to ¢. How-
ever, the pattern in which a general preference is over-
ridden by its reverse in more specific situations occurs
frequently. For example, there is a preference for not
having surgery over having surgery, yet in the circum-
stance where surgery would improve one’s long term
health this preference might be reversed.® Hence, it is
essential to be able allow for preference overriding. We
note that Tan and Pearl, in [TP94a], acknowledge this
and propose a modification to their earlier theory that
allows statements about overriding preferences. How-
ever, their proposal essentially amounts to the simple
stipulation that one should ignore general preferences
when they are overridden: the underlying semantics
are not changed. This seems unsatisfactory to us. Fur-
thermore, if the underlying semantics is incompatible
with such a basic pattern of preference, then one can
have little confidence that this is the only problem.

5See [TH96] for other criticisms of these semantics for
preference.

®Note that stating that this preference holds ceteris
paribus does not address the problem. The assertion that
the preference holds ceteris paribus still means that it is
required to hold under any fized setting of the other condi-
tions. So given the fixed condition of needing surgery, these
semantics still force a preference for not having surgery over
surgery.

Instead, we prefer Jeffrey’s proposal from [Jef65],
which we refer to as conditional expected utility. This
is defined if one has a probability function Pr over the
underlying space S. Then the conditional expected
utility over any subset 7" C S can be defined as

 Zer PO "

where we use U to denote the aggregate utility func-
tion. Thus, if the collection of states satisfying ¢ has
higher conditional expected utility than the collection
of states satisfying —¢, then we assert that ¢ is pre-
ferred —.

U(T)

In general, if ¢ and 1 are arbitrary formulas, then we
write ¢ > ¢ to assert that U(p) > U(¢), where we
identify a formula with the set of states satisfying it.
(Similarly, ¢ = ¢ just if U(p) > U(¢)).) Conditional
preferences are also easy to interpret: 1 > o given ¢
means that U(p1 Av) > U(pz A9). It is easy to see
this semantics is compatible with statements involving
overridden preferences. For instance, the two state-
ments ¢ > 1 and ¥y Aw > ¢ A w can be consistently
asserted together.

Perhaps the best intuitive reading of preferences based
on conditional expected utility is that they correspond
to how one might react to various pieces of news. If
¢ > 1 one should be happier to hear that ¢ is true than
to hear that ¢ is true. (In Section 5 we briefly discuss
how actions might be introduced.) In this paper, we
will not give any further defense of Jeffrey’s semantics
for utility aggregation, mostly because many of the
best arguments are in his book [Jef65].

Another important difference between the notion of
= just defined and those proposed in [DSWOI,
TP94b] is that we have not (as yet) invoked any form
of ceteris paribus condition. In contrast, as discussed
earlier, when [DSW91, TP94b] assert ¢ = ¢ they are
making an assertion that holds (roughly speaking)
when other propositions are fixed, i.e., holds ceteris
paribus. To express ceteris paribus conditions in our
context, we provide a general mechanism where by
a variety of utility independence assertions can be
stated. These assertions can be (but need not be)
stated independently of assertions about preference.
We present the details of this proposal in the next sec-
tion.

3.2 Independence and Ceteris Paribus

[DSW91, TP94b] give semantics to preference state-
ments that embeds a notion of ceteris paribus. In par-
ticular, their interpretation of ceteris paribus involves
considering fixed values for all the propositional vari-
ables not mentioned in the formulas being considered.

One problem is that such semantics are very syntax
dependent, and thus the conclusions they support can
be rather arbitrary. To see why, consider again the



formula p; ® p» (exclusive-or) and suppose that we
redefine our vocabulary so that p; is replaced by a
new propositional symbol pf, such that p| = p; ® ps.
In this new language, the old p; would be expressed
using a compound sentence; in fact, p1 = p| ® pa.
Since p; and p) are interdefinable, the new vocabulary
is just as expressive as the old, and so it may only
be a matter of convention as to which is used. Yet
preferential independence of ¢ is given two different
meanings according to whether p; or p} is primitive.

An even more important problem is that such seman-
tics are inflexible. These semantics commit to a single,
fixed, interpretation of ceteris paribus that applies to
all assertions about preferences. For instance, these
semantics do not easily allow one to say that p; = —p;
independent of the value of py and ps, while at the
same time allowing this preference to possibly be de-
pendent on the value of py.

Our proposal, which avoids these problems, depends
on the concept of the set of atoms formed from a col-
lection of formulas, defined as follows.

Definition 3.1: If ¥ is a set of formulas, the atoms
of W is the set of all consistent conjunctions that can
be formed from the members of ¥ by including each
¥ € ¥ or its negation. For example, if ¥ = {p,q Ar}
then the atoms of ¥ are {p A (g A7), =pA(qgAT),
pA-(gAT), "pA-(gAT)}

For any k formulas, there will be (at most) 2% atoms.
We say “at most” because all combinations might not
be consistent, and in this paper we restrict the term
“atom” to logically consistent formulas.

The collection of atoms over any set of formulas can be
thought of as a new space of states, in which the given
formulas play the role of primitive attributes. Each
of these atoms corresponds, in general, to a collection
of states from the original state space. From the pre-
vious section, we know that it is possible to give any
collection of states a “utility” value using the idea of
conditional expected utility. Thus, an induced utility
function can be defined over the space of atoms. Any
assertion of utility independence involving the collec-
tion of formulas can now be interpreted as an assertion
about this induced utility function. Since the formu-
las are primitive attributes in the new state space, we
can use the standard definitions to interpret these in-
dependence assertions.

More formally, let ® = {41, ..., 9} be a collection of
formulas. Let the underlying space be S, with utility
function u and probability distribution Pr. Consider
the set of atoms of ¥. Each such atom corresponds
to a consistent truth assignment to the formulas in ¥,
where the formula ; is assigned the value true just
if it appears positively in the atom. We define a new
space S¥ consisting of all of these truth assignments.
A utility function u¥ over S¥ is defined using condi-

tional expected utility. Specifically, the utility ¥ of a
state s in SV is defined to be the conditional expected
utility, in the original space, of the atom that corre-
sponds to s. Similarly, a probability distribution pPr?
over SY is defined using marginalization. That is, Pr"
of a state s in SY is the probability under Pr (i.e., in
the original space) of the set of worlds satisfying the
corresponding atom.

For example, if ¥ = {11,)2,%3} then S¥ will be the
set of 8 truth assignments to the v; (assuming that all
atoms are consistent). Thus, using the above defini-
tions, U,\II(’L/Jl AN —I’L/JQ AN 1/)3) = U(I/)l A —|I/}2 A ’QZJ3) (Re—
call that U is defined by Equation 1.) Note that here
we write the atom itself to refer to the corresponding
truth assignment. Similarly, Pr‘y(i/h A =)o A h3) =
Pr(y1 A =pa A yh3).

Using the above correspondences, we interpret asser-
tions of independence among a set of formulas ¥ as
making assertions about the utility and probability
functions on the induced space SY. Since, the formulas
of ¥ are primitive attributes in the induced space, the
standard definitions given in Section 2 can be applied
almost without change. The only difference arises be-
cause not all possible truth assignments are consistent.

Example 3.2: Suppose that we wish to assert that
the set of formulas {p, ¢} is preferentially independent
of the formula pV (¢ Ar). Then we let ¢y = p, 2 = g,
Y3 =pV(gAr)and U = {¢1,9,03}. If we were
to ignore the issue of inconsistent atoms and apply
Definition 2.1 literally, then this assertion states that
the preference ordering among the truth assignments
(written as atoms) {—t)1 A —ths A —h3, —hy Aha A —tbg,
1 A =y A s, 1 Abs A —ip3} must be the same as
that among the truth assignments {—t1 A —p2 A )3,
—P1 Aha A3, b1 A=pa Az, by Ao A¢g . That is, the
truth or falsity of 13 should not affect one’s preferences
between the various valuations of ¢; and s.

However, this is not entirely meaningful: 1, A —bs A
—p3 and 1 A 1o A —p3 are both inconsistent (since if
11 = p is true then ¢35 = pV (¢ A r) must be as well),
and so are not part of the space S¥. To address this,
we weaken the definition of preferential independence
slightly to simply require that all induced orderings
be consistent with each other. In this example, the
preference ordering between =)y A—o A—p3 and - A
1o A —p3 must be the same as between =y A —ha At)g
and )1 A s A p3. However the preferences between
the first two atoms and the atoms 1, A =p2 A 1P3 and
1 A 2 A )3 are not constrained by this assertion. N

Definition 3.3 : (Preferential independence for
formulas.) Let ¥ = o,...,9;,¥j41,... 9. The set
of formulas 11, ...,v; is preferentially independent of
Yjt1,--.,%r when one’s preference order among the
truth assignments to q,...,%; consistent with par-
ticular values given to the remaining formulas, does



not depend on the values given to these other formu-
las.

Formally: For any «, § that are truth assignments
to ¢1,...,%;, and v, 7' that are truth assignments
t0 Y41, ..., Yk, then, if all four combinations {(a, ),
(a,7"), (B,7), (B,7")} are logically consistent, we must

have:
(o, ) = (8,7) iff (e,7') = (8,7")
where > is the preference relation induced by u”. Il

The modified definition of utility independence is suf-
ficiently similar in spirit that we do not repeat it
here. The definition of additive independence, Defini-
tion 2.4, can by applied without any change in word-
ing. Many of the interesting properties of these inde-
pendence concepts can be shown to carry over to the
new definitions. For instance, we note that the analog
of Proposition 2.6 still holds.

With these definitions we have the flexibility to make
independence assertions entirely separately from state-
ments about the direction of preference. But, as
[DSW91, TP94b] have recognized, it is often conve-
nient to be able to assert both together. Suppose
we wish to assert, for instance, that ¢ is utility in-
dependent of ¢;,12 and that (no matter what par-
ticular values we give to ¢; and o) we prefer ¢ to
—p. To do this, one could assert the utility indepen-
dence and then state the direction of preference rela-
tive to any single (arbitrary) consistent valuation for
{%1,2}. For instance:

CAYL Aha = A1 Ao,

together with the assumption of utility independence,
implies that, e.g.,

@AY A by = APy A ahy

(and similarly for any other consistent valuation for ¢
and 12). But it is useful to create a more natural no-
tation for such cases, which avoids the need to choose
an arbitrary valuation for ¢; and . We interpret an
expression of the form

P17 i P2

as asserting (1) that {y1,¢2} is independent of
{t1,...,¥1}, and (2) that, conditioned on any fixed
consistent valuation of {¢y,...,9¥r}, ¢1 has higher
conditional expected utility than ;.

It should be noted that @1 > y, ... 4,2, does not en-
tail @1 = 2, nor does the converse hold (even in the
presence of utility independence). That is, it is possi-
ble to partition the state space and assert that ¢ > @2
in every member of the partition, yet simultaneously
assert that ¢o > @1 unconditionally. Consider, for ex-
ample, the case where ¢ > = given ¥ and p = —p
given —p. To see why ¢ > —p need not hold uncondi-
tionally, suppose that i is a very much more desired
alternative to - than ¢ is to —p, and that ¢ and

—p are strongly correlated, so that when —y is true ¥
tends to be true also. Then we would much prefer to
learn = than ¢ if this is all we learn (hoping of course
that v is also true). But, if we know the value of ¢
(no matter whether we know it to be true of false), we
would prefer ¢.

If p; is a basic proposition, the [DSW91] interpretation
of p; being preferred to —p; can be written as

p1 = p2,y...,pn PL

using our notation (where ps, ..., p, are the rest of the
basic propositions). But our proposal is far more gen-
eral than this, because there is freedom to use other
collections of formulas instead of {ps,...,p,}.” In-
deed, we can assert several comparisons between pq
and p, simultaneously, each relative to a different set
of formulas. Of course, as we have noted, we also have
the ability to state independence (of various types)
independently of any specific preferential comparison.
Finally, note that our proposal has no built-in syn-
tax dependence. One can, and must, explicitly decide
what formulas are actually relevant to a comparison.

The key to understanding how one can reason with
a collection of independence assertions is to realize
that assertions of independence involving formulas im-
pose algebraic constraints on both the utilities and the
probabilities over the original space.

Example 3.4: Let the basic propositions be p, ¢, and
r. The original space then consists of 8 states, and can
be specified by 8 basic probabilities pyqr, Ppqr, - - -
and the 8 basic utilities upq,, Upgr, -

» Ppar
ey Upgr-
Consider the assertion that p is utility independent
of ¢ A r. According to our semantics, this means
that we consider the four atoms of the set {p,q A r}
(Defn. 3.1). Each atom is attributed a utility as de-
termined by Equation 1. The definition of utility in-
dependence reduces in this case to the assertion that
that U(pA(gAr)) —U(=pA(gAr)) have the same sign
as U(pA—(gAr))—U(=pA=(gAr)). This is equivalent
to the assertion that

Upgr — Upgr
and

DpgrUpgr + Ppgrlpgr + Ppgrtpgr
Ppgr T Ppgr + Dpgr

Dpgr + Ppgr + Dpar
have the same sign. That is, it reduces to an algebraic
constraint over the utilities and probabilities of the
original space. HI

"We note that [DW94] have a proposal that allows some
more flexibility than [DSW91], but it still only allows one
interpretation of ceteris paribus to apply to any particular
set of formulas. Furthermore, their interpretation is built
into the semantics of preference assertions, and cannot be
modified by assertions in the language they present.



The fact that an assertion about utilities also con-
strains probabilities may seem surprising, but makes
sense philosophically. As we have said, the basic in-
dependence concept is ceteris paribus. But the con-
dition that “everything else be the same” except for
the formula of interest (¢ say) is unrealistic. It makes
more sense to think of everything else being as simi-
lar as possible given that ¢ changes truth value. This
phrasing makes the similarity to counterfactual and
conditional logic clear (see for instance [Lew73]). In
counterfactual logic, for instance, one is interested in
what would happen if some assertion were to be true
even though it is known to be false. There is general
agreement that the appropriate semantics for counter-
factuals and conditionals should not consider all the
states in which ¢ is true, but only the most “normal”
such states. So we should not be surprised if a robust
formalization of ceteris paribus should also need a no-
tion of how plausible particular states are. And this is
precisely the role of probabilities—to tell us how likely
or unlikely we consider various states to be.®

Standard independence definitions do not appear to be
invoking anything other than utilities or preference.
However, this is somewhat misleading because infor-
mation about the similarity of states is hidden in the
choice of attributes or framing [DW91]. [DW94] dis-
cuss this further, and also argue that making sense of
ceteris paribus requires more structure than just the
utilities (unlike us, however, they do not suggest prob-
abilistic semantics). [DSW91] also speculates upon the
connection to counterfactual logics, but does not de-
velop the suggestion.

4 Reasoning

4.1 The problem

We suspect that the sound “logic” corresponding to
any particular notion of preference is likely to be
a weak one. For instance, the sequence of papers
[DSW91, DW91, DW94] present various (related) def-
initions of preference, each of which is, in itself, far
stronger than the technique of comparing of condi-
tional expected utility. Yet the associated logics are
quite limited. As Doyle, Shoham, and Wellman say in
the conclusion of [DSW91]:

“While the logic displays some intuitive prop-
erties ... some common and seemingly nat-
ural goal operations are not always valid.

81t might seem that we are exaggerating the connection
to counterfactual logic, because semantics for counterfac-
tual logics generally do not use probabilities. However, it
is easy to show that standard counterfactual semantics are
largely equivalent to certain well-known theories of quali-
tative probabilities (such as the k-calculus [Pea93]).

The numerous restrictions ... limit the appli-
cability of the inference rules presented here.”

Even among these inference rules, not all are (at least
in our opinion) reasonable. For example, in the system
of [DSW91], whenever ¢ logically entails 1, then each
of ¢ and v must be at least as desirable as the other.?
In other words, their notion of relative desire cannot
be used to distinguish between stronger or weaker as-
sertions. This seems very unintuitive to us.

The truth seems to be that there are rather few
“logical” laws governing preference which have strong
and general intuitive support. The makes it diffi-
cult to develop a usefully rich logic for qualitative
decision making. We are aware of two responses to
this problem. The first approach is that taken by
[Bou94, TP94a, TP94b]. These papers augment a
rather weak underlying theory with some form of non-
monotonic (and hence, unsound) reasoning. For exam-
ple, [TP94a] are able to draw stronger conclusions by
looking at what follows in preferred models that min-
imize the distinctions between the utilities of states.
[Lou90] gives a general discussion and defense of the
idea of non-monotonically reasoning about utilities.

Although the idea of using non-monotonic reasoning
is surely a promising one, it seems too early to assess
its success. One difficulty is that the choice of non-
monotonic reasoning system used can appear rather
arbitrary. For example, [TP94a] do not provide any
extended justification for the definition they present,
although there are clearly many alternatives that they
could have used instead. Nor we aware of any specific
proposal that has been applied to more than one or
two examples.

The alternative to non-monotonic reasoning, that we
are suggesting, is equally speculative. The idea is that
instead of finding a logic for a single definition of pref-
erence or desirability, one should consider all the di-
verse sources of qualitative or semi-qualitative infor-
mation one has—probabilistic independence, logics of
likelihood, extreme probabilities, logics of preference
and obligation, extreme utilities, independence asser-
tions about utility and preference (the specific contri-
bution of this paper), and more. Even quantitative
information should be considered (so long as one is
not asked for all of the numbers). Our conjecture is
that together all these sources of information may en-
able quite sophisticated reasoning even though (in the
absence of non-monotonic reasoning) this may not be
the case for any one or two of them alone.

This paper is a step towards supporting this hypoth-
esis. By considering in detail a formalism that al-
lows one to state independencies of various types, we

9Note that it does not follow from this that their sys-
tem collapses, because their notion of comparison is not
necessarily transitive.



show that such information can support some useful
inferences about preference. Nevertheless, in isolation
such independence assertions are still not that power-
ful. Examining combinations of various pieces of in-
formation in the context of larger and more realistic
problems remains important future work.

In the next section we present a small selection of
sound reasoning patterns that take advantage of inde-
pendence. These results are no more than suggestive
of the usefulness of independence assertions in more
realistic settings, but they do demonstrate that inde-
pendence can be used to support some intuitive infer-
ences that one might want to make about preferences.
In fact, independence is often needed to ensure that
these inferences are sound.

4.2 Some results

Suppose we prefer ¢ to - and ¢ to —¢ (i.e., p = -
and v > —) using the semantics for > given in Sec-
tion 3.1). Would we prefer to have them both be
true to having just one true, or to them both being
false? At first glance one’s response might be yes, this
seems like a reasonable inference. Yet it is easy to con-
struct counter-examples. Suppose, for instance, that
Sue likes John and she also likes Fred. She might pre-
fer to be married to John over not, and also prefer to
be married to Fred over not. But at the same time
might reasonably prefer to be married to neither over
being married to both!

This leads to the obvious (and important) question of
when it is in fact legitimate to assert that the combina-
tion of preferred goals is preferred. There are presum-
ably many pieces of additional knowledge which could
validate such reasoning. As our first result shows, util-
ity independence can sometimes help.

Proposition 4.1: If o = =, ¢ = =), and either'®
@ is utility independent of 1 or 1 is utility independent
of ¢, then o N = = A=)

Intuitively, if one believes that the direction of pref-
erence for (or against) ¢, say, would not changed ac-
cording to the value of v, then there is a limit to how
undesirable their interaction can be. The result shows
that getting two goods is preferable to getting neither
when independence holds. In the example with Sue it
is clear that utility independence does not hold.

“Monotonicity” of preferences is another very im-
portant pattern of reasoning. That is, when does
e Am =1 Aw follow from ¢ > 1, where 7 is another
formula? This is actually quite a strong conclusion.
One straightforward way of justifying it requires both
utility and probabilistic independence.

1OUtility
symmetric.

and preferential independence are not

Proposition 4.2: If p = ¢, {p, ¥} is utility indepen-
dent of w, and {p,} is probabilistically independent
of ' then p Am = AT.

Both independencies are necessary, and utility inde-
pendence cannot be replaced by preferential indepen-
dence, if this result is to hold. On the other hand,
there are different assumptions that lead to the same
conclusion. For instance, suppose we assume that util-
ities are qualitative, in the sense of [TP94a]. (We omit
a formal definition, but the basic idea is that utili-
ties are ordinal ranks, in which maximization replaces
addition.'?) Then with qualitative utilities of this type
the assumption of probabilistic independence in the
previous result can be dropped.

Proposition 4.3: If ¢ = 9 and {p, ¢} is utility in-
dependent of w, then o A7 = Y Aw if utilities are qual-
itative.

Additive independence can also be used in conjunction
with other knowledge to obtain useful conclusions, as
the next result illustrates. Suppose ¢ is preferred to
1. Although it might seem intuitive at first that ¢
alone (i.e., ¢ A =) should be preferred to 3 alone
(i.e., 7 A ¢), a moment’s reflection shows that this
does not necessarily follow. For example, the news
that one didn’t win the state lottery () is probably
not as upsetting as learning that one’s monthly pay-
check has been canceled (¢). But losing the lottery
and receiving one’s regular pay on time (¢ A —t)) may
well be inferior to winning the lottery but losing one’s
pay (—pA). If we have additive independence (which
may be plausible in this example) and that the second
event is less likely than the first (not true in this case),
such situations cannot occur:

Proposition 4.4: If p = ¢, {p, ¢} is additively in-
dependent, and v is less probable ¢ (i.e., Pr(y) <
Pr(p)), then o A=) = =p A .

5 Actions and Decisions

In the presentation of this paper we have ignored any
explicit discussion of actions and decision-making. In
principle, what one really wants to do is to consider a
family of probability distributions (parameterized by
possible actions). Preferential comparisons are usually
(but not invariably) of interest because they relate to
two or more possible courses of action one might take.

A good response to this concern is given by Jeffrey. As
he notes, it is usually possible to treat actions simply as
new propositions. Thus, we might have propositional

By which we mean that, for any atom A over {i, 1},
Pr(A|r) = Pr(A|-m) = Pr(A).

2 An alternative but equivalent semantics considers stan-
dard utilities of the form #(1/€)*, then considers the limit
as € = 0.



symbols do-A, do-B, ... that are interpreted as true
if and only if the corresponding actions A, B, ... are
being performed. In this fashion, it can be argued, one
avoids the need for any special treatment of actions.
The decision between A and B reduces to deciding if
do-A > do-B, and if we have a detailed domain theory
this may be resolvable within the current framework.

Furthermore, we are advocating that (where possible)
knowledge be used that is in the form of qualitative
assertions that constrain, but by itself does not fully
determine, probability distributions. Such qualitative
knowledge may be sufficiently robust that it applies to
all possible actions being considered.

However, these responses are incomplete. We believe
that the most important extension of the current paper
is to investigate the idea of merging the work in this
paper with a rich model of action. We believe that this
would not require any changes to the basic semantics
of preference and independence assertions that we are
proposing here. Nevertheless, there remain many de-
tails that need to be investigated in order to make the
formalism more useful. For example, an approach that
might be integrated with the current work is the idea
of distinguishing between “controllable” and “uncon-
trollable” propositions (for instance, as in [Bou94]).

6 Conclusions

In this paper, we have argued that independence con-
cepts for utility and preference provides a category of
qualitative information that can be useful for decision
making. This is made more plausible by the analogy
with probabilistic independence. By combining Jef-
frey’s notion of conditional expected utility with def-
initions from multi-attribute decision theory, we have
given formal definitions that allow independence con-
cepts to be used in a very general fashion. Our results
show that these concepts can indeed be useful when
reasoning about preferences.

Despite these results, one of the conclusions we reach
is that the step from a numeric utility function to sim-
ple qualitative information about utilities is a large
one. No single source or class of qualitative informa-
tion seems to be that powerful in isolation. We suspect
that a strong qualitative decision theory will need to
take advantage of many diverse classes of information.
Knowledge about independence is one such class, and
should not be overlooked.

References
[BG95]  F. Bacchus and A. Grove. Graphical mod-
els of preference and utility. In Proceed-
ings 11th Conference on Uncertainty in Ar-
tificial Intelligence (UAI 95), pages 3-19.
Morgan Kaufmann, 1995.

[Bou94]

[DSWO1]

[DW91]

[DW94]

[Fis82]
[Fress]

[Gin&7]

[GSSE]

[Jef65]

[KLST71]

[KR76]

[LewT73]

[Lou90]

[Pea88]

[Pea89]

[Pea93]

C. Boutilier. Towards a logic of qualitative
decision theory. In Proc. Fourth Interna-
tional Conference on Principles of Knowl-
edge Representation and Reasoning (KR
"9/ ), pages 75-86, 1994.

J. Doyle, Y. Shoham, and M. P. Wellman.
A logic of relative desire (preliminary re-
port). In Proc. 6th International Sympo-
stum on Methedologies for Intelligent Sys-
tems, pages 16-31, 1991.

J. Doyle and M. P. Wellman. Preferen-
tial semantics for goals. In Proc. 9th Na-

tional Conference on Artificial Intelligence
(AAAIT ’91), pages 698-703, 1991.

J. Doyle and M. P. Wellman. Representing
preferences as ceteris paribus comparatives.
In AAAI Spring Symposium on decision-
theoretic planning, pages 69-75, 1994.

P. C. Fishburn. The Foundations of Ez-
pected Utility. Reidel, Dordrecht, 1982.

S. French. Decision Theory. Ellis Horwood,
Chichester, West Sussex, England, 1988.

M. L. Ginsberg, editor. Readings in Non-
monotonic Reasoning. Morgan Kaufmann,
San Francisco, CA, 1987.

P. Gérdenfors and N. Sahlin, editors. De-
cision, Probabilility, and Utility: Selected
Readings. Cambridge University Press,
Cambridge, 1988.

R. C. Jeffrey. The logic of decision. Univer-
sity of Chicago Press, 1965.

D. H. Krantz, R. D. Luce, P. Suppes, and
A. Tversky. Foundations of Measurement.
Academic Press, New York, 1971.

R. L. Keeney and H. Raiffa. Decisions with
Multiple Objectives: Preferences and Value
Tradeoffs. Wiley and Sons, New York, 1976.

D. Lewis. Counterfactuals. Blackwell, 1973.

R. Loui. Defeasible reasoning about utilities
and decision trees. In H. Kyburg, R. Loui,
and G. Carlson, editors, Knowledge Repre-
sentation and Defeasible Reasoning, pages
345-359. Kluwer, 1990.

J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufmann, 1988.

Judea Pearl. Probabilistic semantics for
nonmonotonic reasoning: A survey. In
Proc. First International Conference on
Principles of Knowledge Representation
and Reasoning (KR ’89), pages 505-516,
1989.

J. Pearl. From conditional oughts to qual-
itative decision theory. In Proceedings 9th



[Sav54]

[TH96]

[TP94a]

[TP94b]

[von51]

[vonT2]

Conference on Uncertainty in Artificial In-
telligence (UAI 93), pages 12-20. Morgan
Kaufmann, 1993. A version of this paper
appeared in the 1993 AAAT Spring Sympo-
sium Reasoning about Mental States, under
the title ”A Calculus of Pragmatic Obliga-
tion”.

L. J. Savage. The Foundations of Statistics.
Dover, New York, 1954.

R. H. Thomason and J. F. Horty. Nonde-
terministic action and dominance: Foun-
dations for planning and qualitative deci-
sion. In Proceedings of the Sixzth Confer-
ence on Theoretical Aspects of Reasoning
about Knowledge (TARK-96), pages 229-
250, 1996.

S. Tan and J. Pearl. Qualitative decision
theory. In Proc. 12th National Conference
on Artificial Intelligence (AAAI ’94), pages
928-932, 1994.

S. Tan and J. Pearl. Specification and
evaluation of preferences under uncertainty.
In Proc. Fourth International Conference
on Principles of Knowledge Representation
and Reasoning (KR ’94), pages 530-539,
1994.

G. H. von Wright. Deontic logic. Mind,
60:1-15, 1951.

G. H. von Wright. The logic of preference
reconsidered. Theory and Decision, 3:140—
167, 1972.



