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Abstract

Empirical evidence indicates that the most successful backtracking algorithms for solving
constraint satisfaction problems do some level of forward constraint propagation. That is they
check constraints against the as yet uninstantiated variables in the search tree. Two popu-
lar examples are the forward checking and maintaining arc-consistency algorithms. Although
there is a growing body of empirical evidence supporting the superiority of these algorithms,
relatively little is known about the theoretical relationship between these forward looking algo-
rithms and backtracking algorithms that do not employ any constraint propagation, like generic
backtracking and backmarking. In this paper we demonstrate that there is in fact a strong rela-
tionship between these different types of algorithms.

1 Introduction

Constraint satisfaction problems (CSPs) [Mac87] are typical of the NP-complete combinatorial
problems that are so pervasive in AI. A number of techniques have been proposed in the literature
for solving CSPs, but among the class of systematic algorithms (i.e., algorithms that guarantee
finding a solution if one exists) backtracking algorithms remain the most popular technique.

In this paper we will restrict our attention to binary CSPs, where every constraint is between
only two variables (see [BvB98] for more on the relationship between binary and general CSPs),

�Fahiem Bacchus’s research was supported by the Canadian Government through their IRIS project and NSERC
programs. Some of the results of this paper were previously presented at the First International Conference on Prin-
ciples and Practice of Constraint Programming 1995 and appear in [BG95]. Adam Grove was at the NEC Research
Institute, Princeton, New Jersey, U.S.A., during that time.
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and we consider five basic algorithms, generic backtracking (BT), backjumping (BJ), backmarking
(BM), forward checking (FC), and maintaining arc consistency (MAC).

Generic backtracking is the oldest of these algorithm, having been known for at least a century
[BE75]. However, it is far from the best. Backjumping and backmarking are two orthogonal
improvements to BT [Gas78, Gas77]. The first, BJ, avoids visiting some nodes that cannot possibly
lead to a solution, while the second, BM, avoids making some redundant consistency checks at the
nodes it visits. Both of these algorithms can never do worse than BT [KvB95], and generally
do much better. These three algorithms BT, BJ, and BM do all of their consistency checking
backwards. That is, they wait until they instantiate a new variable before checking to see if that
instantiation is consistent with the previous instantiations.

The forward checking [HE80] and maintaining arc consistency algorithms [Gas79] (more re-
cently improved and popularized in [SF94, BR96, Reg95]) operate quite differently. They do all
of their consistency checking forwards, checking every new instantiation against the future (as
yet uninstantiated) variables. FC and MAC differ in that MAC performs more forward constraint
checking than FC. Both of these algorithms are able to detect domain wipeouts (DWO) of future
variables. DWO detection is useful as there can be no solution below a node where a future vari-
able has a DWO. These algorithms can detect thus detect deadends higher up in the search tree and
avoid searching nodes that BT must search.

In a recent paper Kondrak and van Beek [KvB95] presented a insightful analysis of a num-
ber of backtracking algorithms (including four of the five we consider here). They were able to
demonstrate a number of dominance results between these algorithms in terms of the number of
nodes visited and the number of constraint checks performed. However, although they were able
to demonstrate that FC visits fewer nodes than BT, BJ or BM, they were not able to provide any
results concerning the number of constraint checks performed.

This is an important gap to fill, as the number of constraint checks is really the most important
metric, particularly for forward looking algorithms like FC and MAC. Most backtracking algo-
rithms have complexity that is �(number of constraint checks� (although there can be non-trivial
differences in the constant factors involved).1 However, for algorithms that look forward there is
no simple relationship between the number of nodes visited and the efficiency of the algorithm.
In particular, for these algorithms there is a tradeoff between the amount of forward constraint
checking they do at each node and the number of nodes they visit. For example, MAC may do
more total constraint checks than FC on a particular problem even though it is guaranteed to visit
no more nodes than FC.

Because of the different way BT, BJ and BM organize their computation, and the ability of
FC and MAC to detect a domain wipeout higher up in the search tree, a formal comparison seems
to be hard to provide. In particular, there are easily constructed examples where FC performs

1It can be difficult to measure constraint checks for some implementations of MAC. Nevertheless, it is possible
to view the data structures built by some versions of MAC as being cached constraint checks. Hence, with MAC
implementations based on algorithms like AC-4 [MH86], AC-6 [Bes94] or AC-7 [BFR95] we can count an access
to these data structures as being a constraint check. Under this interpretation, these algorithms still have complexity
O(number of constraint checks).
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more consistency checks than even the worst algorithm, generic BT. Nevertheless, in this paper
we demonstrate that there is a precise way of separating the computation performed by FC and
MAC into two distinct components. It turns out that in the case of FC one of these components
is identical to BM, while the other component can be precisely characterized as domain wipeout
detection. Thus we will see that there is in fact a close theoretical relationship between these five
CSP algorithms.

Furthermore, once we understand these two computational components of MAC and FC, we
can use that to our advantage by finding more efficient ways of implementing each component,
and by utilizing each component to its maximum. We will return to this point in Section 4.

This paper is organized as follows. In Section 2 we briefly present some of the necessary
background. Then, in Section 3 we demonstrate the close relationship between FC and BM and
show that this relationship can be extended to understand MAC as well. We also briefly discuss
the orthogonal improvements that can be obtained from BJ style extensions. We close with some
conclusions.

2 Preliminaries

A binary CSP consists of a finite set of variables, each with a finite domain of potential values,
and constraints between pairs of variables. The goal is to assign a value to each variable so that all
of the constraints are satisfied. Depending on the application we may want to find all consistent
assignments, or to find just one.

Definition 2.1 A binary constraint satisfaction problem, P , consists of:

� A finite collection of N variables, V�� � � � � VN .

� For each variable Vi, a finite domain of ki values, Di �
n
vi�� v

i
�� � � � � v

i
ki

o
�

� For some set of pairs of variables fVi� Vjg � a constraint Cfi�jg between Vi and Vj which is
simply a subset ofDi�Dj . If �vil� v

j
m� � Cfi�jg we say that the assignment fVi � vil� Vj � vjmg

is consistent. If there is no constraint between Vi and Vj then all assignments fVi � vil � Vj � vjmg
are consistent.

A solution to P is an assignment
n
V� � v�s�� � � � � Vi � visi � � � � � VN � vNsN

o
such that for all i� j,n

Vi � visi� Vj � vjsj

o
is consistent.

A number of algorithms have been developed for solving CSPs, most of which are based on
backtracking search in a tree of variable assignments (each node in the tree is an assignment of a
value to a variable). See Tsang [Tsa93] for a good description of many of these algorithms.

Backtracking algorithms examine partial solutions which are assignments to a subset of the
variables, and try to extend these until all variables are assigned. BT is the simplest such algorithm.
At every node of the search tree it assigns a value to an as yet uninstantiated variable, and then
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checks the consistency of that new assignment with all of the past assignments on the path from
the root of the tree to the current node. If any of these consistency checks fail, it tries to assign a
different value to the variable. When no more values remain to be tried, it backtracks to the node’s
parent and tries to assign a different value to the variable there. BM is a variant of BT that saves
a number of redundant consistency checks by keeping track of information about past consistency
checks. It is explained in more detail below. BJ is another variant of BT that like BM keeps track
of information about past consistency checks. With this information it is able to improve over BT
in a manner that is orthogonal to BM, by skipping some parts of the tree that cannot contain any
solutions.

FC and MAC, on the other hand order their consistency checks in a different way than BT,
BJ, and BM. When a new instantiation is made they check that instantiation against the possible
values of the future (as yet uninstantiated) variables, pruning all values inconsistent with the new
instantiation. If a future variable has all of its values pruned a domain wipeout occurs (DWO),
and the algorithms backtrack. Since all the consistency checks have been done in advance, these
algorithms do not need to check the new instantiation against previous instantiations—if the new
instantiation was inconsistent that value would have already been pruned.

FC does the “minimal” amount of forward constraint checking. In particular, it does just
enough to insure that any new instantiation is consistent with the past variables. MAC on the
other hand does additional forward constraint checking.

2.1 Forward Checking

The forward checking algorithm [HE80] constructs solutions by considering assignments to vari-
ables in a particular order, which for concreteness we take to be V�� V�� V�� � � � � VN .2 Suppose that
we have found a consistent assignment to the first i�� variables, which means that all constraints
involving only these i�� variables are satisfied. At this point, we call V�� � � � � Vi�� the past vari-
ables, Vi the current variable, and the others the future variables. The characteristic data structure
of the FC algorithm is a two dimensional array Domain. The idea is that Domainjm will contain
0 if and only if the assignment Vj � vjm is consistent with the assignments chosen for all the past
variables. Otherwise, it contains the index of the first assigned variable (i.e., the shallowest node
in the search tree) with which Vj � vjm is inconsistent.

It follows that, when we are considering a possible value vil for the current variable Vi, it is
sufficient to look for a zero in Domainil . Any such value is guaranteed to be consistent with all
past choices; we do not need to do the backwards consistency checks that are characteristic of BT
and its variants. The price, of course, is that when we make a successful assignment to the current
variable, we must check it against all outstanding values of the future variables, updating there
Domain arrays as necessary. Figure 1 gives the important parts of the algorithm in more detail;
after initialization, the call FC(1) will print all solutions. Note that the current partial assignment

2For simplicity we assume a static ordering. Nevertheless, our results can be extended to dynamic orderings in a
straightforward way, see Section 3.6.
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procedure FC(i)
%Tries to instantiate Vi, then recurses

for each vil � Di

si � vil
� if Domainil � �

if i � N

print s�� � � � � sN
else

if Check-Forward(i)
FC(i+1)

Restore(i)

procedure Restore(i)
%Returns Domain to previous state

for j � i� � to N

if Cfi�jg exists
for each vjm � Dj

if Domainjm � i

Domainjm � �

function Check-Forward(i)
%Checks si against future variables

for j � i� � to N

if Cfi�jg exists
dwo = true
for each vjm � Dj

if Domainjm � �
if �si� vjm� � Cfi�jg

dwo = false
else

Domainjm � i

if dwo
return(false)

return(true)

Figure 1: Pseudo-code for Forward Checking

is remembered in program variables s�� � � � � sN . An assignment to si fails if there is a “domain
wipe-out” (DWO), which means that we have discovered that every value of some future variable is
inconsistent with our choices so far. DWO means that no solution can exist in the subtree below this
assignment. Note also that, after we finish considering a choice for si, we must undo any changes
made to the Domain array before continuing.3

It may seem as if FC can end up doing many redundant checks, as it checks against future
variables that may never be visited. For example, checking V� against VN is wasted work if the
assignment to V� ends up forcing V� and V� to be completely inconsistent with each other. But
balanced against this is the chance that it can detect domain wipe-outs and avoid parts of the
search tree explored by the backward checking algorithms.

There is strong empirical evidence [HE80, Nad89, Pro93, vR94], that the work expended by
FC to perform DWO detection results in a net gain.4 Another major advantage of FC is that the

3We have designed this code for clarity; there are many alternatives that are more efficient. The Restore procedure
could be improved, and a common presentation of the FC algorithm [HE80] uses a loop over Vi’s current domain,
i.e., the elements of Domaini that are zero, instead of over Di. (The latter “improvement” may or may not be more
efficient in practice as it requires maintaining a data structure containing the current domain.)

4In fact, there is a growing body of evidence that it is profitable to expend even more work. An number of recent
studies have indicated that MAC (which does much more work than FC) performs better than FC on very hard problems
[BR96, Reg95, Liu98, GS95].
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number of remaining consistent values for each of the future variables can be computed without any
additional constraint checks—this is simply the number of entries in Domaini that are zero. This
means that the highly effective minimal remaining values (MRV) heuristic, in which we instantiate
next that variable with fewest remaining values (also known as the fail-first (FF) heuristic), can be
used “for free” to perform dynamic variable ordering [BvR95].

2.2 MAC

The MAC (maintain arc consisency) algorithm [Gas79, SF94] works in essentially the same man-
ner as FC. It considers the variables in sequence and chooses a value for each variable just like FC.
Once a variable is instantiated we reduce the domains of the future variables to ensure that they
are all consistent with this new instantiation. MAC goes beyond FC in that we then also check
the future variables against each other removing any arc-inconsistent values from their domains.
Thus a future variable may have values removed either because that value is inconsistent with a
past variable, or because it has no support in the domain of a future variable. Figure 2 gives a more
detailed presentation of MAC-3,5 i.e., MAC that uses the AC-3 algorithm [Mac77].6

2.3 Backmarking

Gashnig’s backmarking algorithm [Gas77] is an improvement over generic backtracking. In ex-
plores exactly the same search tree as BT, doing all of its checks backwards just like BT. However,
it offers a considerable improvement over backtracking by eliminating many redundant consistency
checks. Recall that when an assignment Vi � vil of the current variable Vi is made, BT checks the
consistency of this assignment against all of the previous assignments

n
V� � v�s�� � � � � Vi�� � vi��si��

o
.

If any of these consistency checks fail, BM takes the additional step of remembering the first point
of failure in an array Mcli

l (“maximum check level”). This information is used to save later consis-
tency checks. Say that later we backtrack from Vi up to the variable Vj , assign Vj a new value, and
then progress down the tree, once again reaching Vi. At Vi we might again attempt the assignment
Vi � vil . The assignments

n
V� � v�s�� � � � � Vj�� � vj��sj��

o
have not changed since we last tried

Vi � vil , so there is no point in repeating these checks. Furthermore, if Vi � vil had failed against
one of these assignments, we need not make any checks at all; the assignment will fail again, so we
can immediately reject it. To realize these savings, BM uses an additional array Mbl (“minimum
backtrack level”) which for each variable keeps track of how far we have backtracked since trying
to instantiate this variable. (In our example Mbli will store the information that we have only
backtracked to Vj since last visiting Vi.) Figure 3 gives the backmarking algorithm in more detail.

In empirical tests BM is a considerable improvement over BT [vR94, Nad89].

5Again this code is designed for clarity not efficiency. Many optimizations are possible, including specialized
treatment of single valued variables (e.g., the variable instantiated at the current level). See Liu [Liu98] for a good
discussion of MAC implementation issues, and Sabin and Freuder [SF97] for additional ways of improving MAC.

6There are many different choices of arc-consistency algorithm that could be used by MAC, e.g., Sabin and Freuder
[SF94] used the AC-4 algorithm [MH86] while Regine [Reg95] used the AC-7 algorithm [BFR95].
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procedure MAC(i)
%Identical to FC(i), (Figure 1)
%except we call Check-Forward-AC(i)
%rather than Check-Forward(i).
%Restore(i) remains identical.

procedure Revise(j,k,i)
%Remove all domain elements of Vj
%that lack support on Vk. Revision is being
%performed at level i in the search tree.

updated = false; dwo = true
for each v

j
l � Dj

if Domainjl � �
notfound = true
for each vkm � Dk while notfound

if Domainkm � � and �vjl � v
k
m� � Cfj�kg

notfound = false
if notfound

Domainjl � i; updated� true
else

dwo� false

function Check-Forward-AC(i)
%Checks si against future variables
%and maintains arc-consistency

for j � i� � to N

if Cfi�jg exists
enqueue((j,i),RevQueue)

while notempty(RevQueue)
(j,k)� dequeue(RevQueue)
Revise(j,k,i)
if dwo

return(false)
if updated

for a � i� � to N

if a �� k and Cfa�jg exists
enqueue((a,j),RevQueue)

return(true)

Figure 2: Pseudo-code for MAC

3 Formal Relationships

3.1 Bounded Inferior Performance

On some problems (e.g., N-Queens) BM can actually perform as well as FC, however the differ-
ences can be enormous (particularly on harder problems). It is easy to see that FC can do much
better. For example, if the first and last variables are incompatible with each other FC will realize
this almost immediately, whereas BM might search the entire search tree—which can be expo-
nentially large—before declaring failure. Kondrak and vanBeek [KvB95] have shown that FC
always explores a subset (not necessarily proper) of the nodes that BM, BT, or backjumping (BJ)
visit. Nevertheless, since FC can perform more checks per node, FC may in fact perform more
consistency checks.

Example 1 Suppose V� and V� are mutually inconsistent. The backward checking algorithms can
discover this quickly, searching only three variables deep (thus making at most k�k�� k�k�� k�k�
consistency checks). Forward checking can take much longer. For each assignment to V�, it checks
against all subsequent variables, so that it does as many as k�

PN
i�� ki additional checks over the
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procedure BM(i)
%Tries to instantiate Vi, then recurses

for each vil � Di

si � vil
if Mclil � Mbli

ok� true
for j � Mbli to i� � while ok

Mclil � j

if �sj � si� �� Cfi�jg

ok� false
� if ok

if i � N

print s�� � � � � sN
else

BM(i+1)
Mbli � i��
Restore(i)

procedure Restore(i)
%Updates Mbl

for j � i� � to N

if Mblj � i

Mblj � i��

Figure 3: Backmarking

backward checking algorithms. These extra checks do not reveal the inconsistency between V� and
V� and hence are wasted work.

The problem is, of course, that FC delves deeply into the search tree to find DWOs, and this
does not always pay off. But the cost is never exponential in the size of the problem. The following
simple corollary of Kondrak and van Beek’s result is worth making explicit.

Remark 3.1 Let K be the largest domain size. FC never performs more than NK times as many
consistency checks as BT, BJ or BM (where N is the number of variables), but the performance
loss can be arbitrarily close to this bound. On the other hand, there are families of problems in
which BT, BJ and BM all perform e��N lnK� more checks than FC.

Proof: Reasoning as in Example 1, we see that forward checking from a node costs at most NK
checks. The example can be arranged (by choosing N large enough, k� � k� � �, and ki � K
for i � �) so that the actual number of checks divided by NK is arbitrarily close to one. Our first
claim now follows from Kondrak’s result showing that FC explores no more nodes than BT, BM
or BJ. There is a slight subtlety in the case of BM, as at some nodes BM does not perform any
consistency checks. However, these nodes correspond to inconsistent assignments to the current
variable so FC never visits these nodes.

For our second claim, simply consider a CSP problem in which BM, BJ, and BT do an expo-
nential amount of work without finding a solution. Modify the problem by adding a new variable
VN	� that is incompatible with all assignments to V�. In the new tree FC will detect that no solution
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exists in no more than NK� checks, while BT, BM and BJ will still require an exponential amount
of work.

It is easy to extend this observation to MAC.

Remark 3.2 Let MAC be implemented with an arc-consistency algorithm that is order O�NiKj�,
where N is the number of variables and K is the largest domain size. Then MAC never performs
more than N jK i times as many consistency checks as BT, BJ or BM. On the other hand, as above,
BT, BJ and BM can perform exponentially more checks than MAC.

Proof: The previous proof applies mutatis mutandis .

For example, if MAC uses AC-4 we would have N�K� (there is a O�N�� bound on the number
of edges in the constraint graph) as a bound on how much more work MAC could do over BT, BJ
or BM.

It is obvious that the important feature of FC and MAC is that they can use DWO detection to
prune large parts of the search space, and in doing so save themselves a considerable amount of
work over BT (as well as over BJ and BM). However, it turns out that FC improves over BT in
another way as well. In particular, FC avoids many redundant checks in a manner that is exactly
the same as BM.7

Taking account of the similarity between FC and BM allows us to separate the computation
FC performs into two distinct components, a component that is identical to BM and the remaining
component, which turns out to be exactly domain wipeout detection.

3.2 FC and BM

BM is often characterized as obtaining two types of savings over BT.

A. When Mcli� � Mbli we have previously checked the assignment Vi � � only down to a level
Mcli� that is shallower than the level where we have changed the past assignments, Mbli.
Thus this assignment is in conflict with past assignments that have not yet been changed,
and we need not consider this assignment again.

B. When Mcli� � Mbli we have previously checked the assignment Vi � � down to a level Mcli�
that was deeper than the level where we have changed the past assignments, Mbli. Thus
we need only check this assignment against the new assignments, from Mbli down to the
current level.

An important fact is that FC includes both of these types of savings. Intuitively, the reason that FC
includes type B savings is that FC does its constraint checking incrementally. Say we previously
checked the assignment Vi � � down to a level h� (the value of Mcli�), then we backed up to level

7We first reported this connection in [BG95] but did not provide a proof in that paper.
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h
 (the value of Mbli) and then came back down to the assignment Vi � �. As we come back
down FC would only check Vi � � against the new assignments we make as we move down from
h
 to the current level (i.e., from Mbli down to the current level just as in BM).

Type A savings are similar. Say we previously checked the assignment Vi � � only down to
a level h� (the value of Mcli�), then we backed up to level h
 (the value of Mbli), with h� � h

(Mcli� � Mbli). FC would have pruned � from the domain of Vi at level h� and � would not be
restored by backing up only to level h
. Thus as we come back down to the level where Vi would
be assigned we would never make any checks against the assignment Vi � �, as � is not in Vi’s
domain during this descent.

To make these intuitions precise requires a considerably deeper analysis. However, our analysis
is also able to show that the converse also holds: although FC incorporates BM savings it does not
incorporate any additional savings beyond BM. That is, in the sense made precise below, FC is the
BM algorithm with an added component that turns out to be exactly DWO detection. To formalize
our argument we first define the concept of a tree-check.

Definition 3.3 A particular consistency check �si� v
j

� � � Cfi�jg performed during the execution
of the FC algorithm (Figure 1) is called a tree-check if the algorithm later attempts the partial
assignment sj � vj� ,

8 while s�� � � � � si remain the same as at the time the check was made. (That
is, sj � vj� is later attempted in the subtree below the node where the check was make).

Example 2 Consider the example shown in Figure 4. The diagram shows a backtracking tree
explored by FC. In the CSP there are four variables each with the two element domain fa� bg.
At the top level of the tree the variable V� is instantiated with the value a. Then the domains of
the future variables are checked against this instantiation. The checks performed at this stage are
shown in the box below the assignment statement. Six constraints are checked: all possible values
of the future variables against the assignment V� � a. The search tree shows that a node that
makes an assignment to V� is never visited by FC. Hence, the checks against V� � a and V� � b
are non-tree checks. The other four checks are, on the other hand, all tree checks, as is indicated by
the label “T” that follows them. In all cases a node that “attempts” that instantiation is later visited
by the search process.

It should be noted that the node V� � b is in a sense never visited by the search process, since
this value for V� has been pruned prior to arriving at this node. Nevertheless, we consider FC to
have visited that node as soon as it executes the assignment s� � v�l (line 4 in FC procedure) even
if the subsequent line of code discovers that the value v�l has already been pruned. We show this
node as being connected via a dotted line, and we count the checks against V� � b above this node
to be tree checks. Even though we are counting these phantom nodes9 we are only counting real

8We consider an assignment to be attempted as soon as FC executes the code si � vil (line 4 in FC procedure),
even if the subsequent code immediately discovers that this value has already been pruned from the current domain of
Vi.

9In contrast Kondrak and van Beek [KvB95] do not count such nodes in their analysis of the nodes visited by FC.
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V2 = a     T

V2 = b     T

V3 = a     T

V3 = b     T

V4 = a

V4 = b

V4 = a

V4 = b

V2 = a V2 = b

V3 = a     T

V3 = b     T

V4 = a

V4 = b

V1 = a

V3 = bV3 = a

V4 = a

V4 = b

V3 = a     

V3 = b     

Pruned

DWO

DWO

Figure 4: Tree Checks: only the checks labeled with “T” are tree checks.

consistency checks. That is, the set of consistency checks we consider are exactly those performed
by any implementation of the FC algorithm. Counting these phantom nodes does not change the
shape of the tree searched by FC. The main purpose in including such nodes is to allow us to more
easily characterize tree-checks.

Many of the checks are non-tree checks. For example, all the checks performed at a node where
DWO is detected are non-tree checks. More generally, all checks against a variable that is never
visited in the subtree below are non-tree checks.

The intuition behind tree-checks and non-tree-checks is that non-tree-checks have the sole
purpose of looking for DWO’s, and if no DWO is found they are, in a sense, wasted. A tree-check
may help in finding a DWO, but it is also used at least once in evaluating the correctness of a
proposed instantiation to the current variable (in a sense, it directly helps in “building” the search
tree). This distinction is an natural one, although it can only be made after the fact.10

10That is, we do not know whether or not a particular consistency check is a tree-check until somewhat later in the
search process. However, should one wish to, it is quite easy to code the FC algorithm so that it keeps an accurate
count of the tree-checks.
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The concept of tree-checks is not the only idea we need. The other issue that makes a direct
comparison between BM and FC impossible is simply that BM explores a different set of nodes:
it does not detect DWO. To overcome this, we must imagine that BM is supplied with an DWOFC
“oracle” that, given any partial assignment, can tell whether FC would detect a DWO at some
future variable given the current set of assigned variables. We can imagine line ��� in Figure 3
being replaced by:

� if ok and not(DWOFC(i))

where DWOFC(i) is a call to an oracle testing for DWO (with the same power as FC constraint
propagation) at some variable in the future of Vi. This change now makes the comparison between
BM and FC fair. The surprising result is that, after accounting for this change, FC and BM are
essentially identical algorithms. In particular, we have the following theorem.

Theorem 3.4 BM, supplied with an oracle as described above, explores exactly the same nodes
as FC. Furthermore, the number of consistency checks it makes is the same as the number of
tree-checks FC makes.

Proof: It is easy to see that an oracle supplied BM and FC explore the same nodes. FC will visit
a node (including the phantom nodes mentioned in Example 2) if and only if (1) all constraints
between the past variables (i.e., the already instantiated variables) are satisfied, and (2) no DWO

was detected after any of these past variables were instantiated. Similarly BM will visit a node
if and only if (1) all the constraints between the past variables are satisfied, and (2) since we call
DWOFC after every instantiation, no DWO was detected after any of these past variables were
instantiated.

To show the correspondence in the number of checks we construct a one-to-one onto mapping
between the set of FC tree-checks and the set of BM (with an DWOFC oracle) checks. Suppose that
at node n� BM checks the assignment Ai � Vi � �i against the past assignment Aj � Vj � �j
made at node n
. n
 must lie on the path from the root of the tree down to n�. Since FC visits the
same nodes it also must visit n
 and then descend to n�. We map the BM check of Ai against Aj

performed at n� to the FC tree-check of Aj against Ai performed at n
.
(1) this mapping is well defined. That is, the FC tree-check we map to exists. Since BM checks

Ai against the past assignments from the first assignment downwards (some of these prior checks
could have been made at other nodes where we had previously attempted the instantiation Ai), we
know that if it checked Ai against Aj , Ai must have been consistent with all assignments made
before Aj . Thus, when FC visits n
 we must have that �i is a member of the domain of Vi (i.e., it
was not pruned by any prior assignment) and that FC must check it against the current assignment
Aj . Furthermore, since FC later visits n� where we attempt the assignment Ai, its check of Aj

against Ai is a tree-check.
(2) this mapping is one-to-one. Say that the check Ai againstAj is made by BM at two different

nodes n� and n�. Furthermore, say that both of these checks map to the same check of Aj against
Ai made at node n
 by FC. By the way in which the mapping is defined only checks made at nodes
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in the subtree under n
 can map to the FC tree-check made at n
. Without loss of generality, let
n� be the leftmost node and let n� be the second leftmost node in the subtree below n
 where BM
checks Ai against Aj . Thus when BM visits n� and checks the assignment Ai the previous time it
checked this assignment would be at n�. But then, given that n
 is at level j we have that Mbli � j
at the time BM visits n� (since n� and n� are in the subtree below n
 BM cannot have backtracked
to the level of n
 inbetween). Hence, at n� BM would not have checked Ai against Aj as it does
not check any assignments made above Mbli. This contradicts the existence of two BM checks
mapping to the same FC check.

(3) this mapping is onto. Say that FC makes a tree-check of Aj against Ai at node n
. We
claim that there is a BM check made at a node n� below n
 that maps to this FC tree-check. Since
it is a tree check we know that FC visits a node where we attempt the assignment Ai. Let n� be the
leftmost node in the subtree below n
 at which FC attempts the assignment Ai. BM also visits n�,
and we claim that at n� it performs a check of Ai against Aj . That is, it performs a check that maps
to the FC tree-check in question. There are only two possible reasons why BM would not perform
the check Ai against Aj at n�. First, it could be that BM avoids this check because of condition A.
Since n� is the leftmost node under n
 where the assignment Ai is tested BM must have backed
up above n
 since last testing Ai (BM tests all assignments to a variable when it tests a variable).
That is, if n
 is at level j we must have Mbli � j. But condition A requires that Mcli�i � Mbli.
Hence, the assignment Ai must have failed at a level � j, i.e., above n
. So when FC reaches n

the assignment Ai is inconsistent with an assignment made above n
. This cannot be the case as
then FC would not have made the check against Ai either—�i would be pruned from the domain
of Vi prior to reaching n
. If condition A does not hold condition B, must hold (this includes the
case where we have never tested the assignment Ai before). As before since n� is the leftmost
node under n
 testing Ai we must have that Mbli � j the level of n
. But then under condition
B Ai would be tested against all assignments from Mbli down to the current level. None of the
assignments that lie above n
 can generate a failure—if they did FC would have pruned �i from the
domain of Vi and would not have made any checks against Ai at n
. Thus BM will reach and then
perform the check of Ai against Aj as claimed.

That BM, when equipped with a DWO oracle should visit exactly the same nodes as FC is not
surprising. However, that BM does exactly the same number of checks as the number of tree-
checks performed by FC is. It must be remembered that BM utilizes some subtle bookkeeping in
order to eliminate many redundant checks over BT. FC, on the other hand, simply prunes its future
domains, a process that is, on the surface, quite distinct from BM’s bookkeeping. Our theorem
shows that these seemingly distinct processes actually coincide.

3.3 MAC and BM

As mentioned above the MAC algorithm invests more work than FC in detecting domain wipeouts.
In particular, as in FC some values of the future variables might be pruned because they are incon-
sistent with the past variables, but MAC might also prune some of these values because they are
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arc-inconsistent with the domains of the as yet uninstantiated variables. Hence, MAC can detect
domain wipeouts earlier than FC—MAC’s domain wipeout “oracle” is more powerful than FC’s.
An immediate consequence of this is that MAC visits a subset of the nodes visited by FC. In this
section we restrict our attention to the MAC-3 algorithm, which uses AC-3 as its arc-consisency
algorithm (this is the algorithm sketched in Figure 2). AC-3 explicitly uses consistency checks,
and thus we can compare these checks against the checks performed by BM and FC.11

The following theorem shows that BM equipped with such an oracle will visit exactly the same
nodes as MAC. However, it may perform more consistency checks than the tree-checks that MAC
performs. This means that wipeout detection still “determines” the MAC’s search tree, but that
MAC is able to build its search tree using fewer consistency checks than BM.

As with FC we can separate the checks MAC performs into tree-checks and non-tree-checks.
Our definition of a tree-check is unchanged from Definition 3.3.12 It should be noted that in this
definition only checks against already assigned variables are candidates for being counted as tree-
checks13. In FC this includes all checks, but in MAC there will be many checks that are not of that
category. No check of a future variable against a future variable can be counted as a tree-check.

The reason why MAC is able to save itself some tree-checks over an oracle equipped BM
is that some domain values will have been pruned by arc-consistency processing. For example,
suppose that the assignment made at level k causes the value vj� of variable Vj to be pruned by
arc-consistency processing. That is, Vj � vj� is consistent with all of the instantiated variables (so
it would not be pruned by FC), however it is pruned because it lost all support on the domain of
another uninstantiated variable. Furthermore, suppose that MAC subsequently descends to a level
where Vj is instantiated without undoing the assignment made at level k. As MAC descends it never
performs any checks against Vj � vj� as this value has been pruned. Given that an oracle equipped
BM visits the same nodes it too will reach the level where it tries to instantiate Vj . However, at this
point BM might check the assignment Vj � vj� against assignments that were made below level
k—the wipeout oracle cannot inform it that this value was pruned by arc-consistency at level k.

Formally, we provide BM with an arc-consistency domain wipeout oracle by replacing line ���
in Figure 3 with:

� if ok and not(DWOMAC(i))

where DWOMAC(i) is a call to an oracle testing for DWO at some future variable, where the oracle
has the same domain wipeout detection power as AC constraint propagation.

11Other arc-consistency algorithms, AC-4 and higher [MH86, Bes94, BFR95], utilize support sets. However, it
is not difficult to see that such support sets are simply cached lists of successful consistency checks. Ever time
these algorithms access these support sets (or decrement support counts) they are doing something equivalent to a
consistency check. In particular, one could extend the results below to such algorithms by finding an appropriate
mechanism for counting accesses to the support sets as consistency checks.

12Like FC we regard MAC as having visited a node whenever it attempts the assignment sj � v
j

� (line 4 in the
FC/MAC procedure). For MAC there will be a larger set of such assignments that will subsequently be discovered (on
the next line of code) to be impossible due to the fact that the value has already been pruned from the domain of Vj.

13The definition only considers checks of the form �si� v
j
�� � Cfi�jg, where si is the assigned value for Vi
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Theorem 3.5 BM, supplied with an oracle as described above, explores exactly the same nodes
as MAC. Furthermore, the number of consistency checks it makes is at least as great as, and may
be more than, the number of tree-checks MAC makes.

Proof: That an oracle equipped BM visits the same nodes MAC is not as immediate as with the
FC algorithm. We prove it by induction on the nodes visited. The base case is obvious. The first
node visited is the same for both algorithms.14 By induction assume that we have visited exactly
the same sequence of nodes up to node ni. We need to prove that both algorithms visit the same
the next node ni	�. MAC will descend to the next level after visiting ni iff ni was consistent with
the past variables, and arc-consistency did not detect a DWO among the future variables. An oracle
equipped BM will descend to the next level under exactly the same conditions. Hence in this case
both algorithms will then visit the same next node—they both will attempt to assign the same next
variable its first value. On the other hand MAC can fail to descend to the next level only because
(1) ni is an assignment that is immediately discovered to be illegal because the value used has
already been pruned or (2) the assignment made at ni generates a DWO among the future variables.
In both cases the next node visited by MAC will be an attempt to assign the deepest instantiated
variable that has a next value, its next value (this could be the same variable assigned at ni). Since,
by inductive assumption, all of the previous nodes are the same, if BM fails to descend at ni it also
will try to assign this same variable its next value. That is, BM will visit the same next node as
MAC, if it fails to descend at ni. Clearly in case (2) the oracle will inform BM of the DWO and BM
will not descend at ni. In case (1) the fact that the assignment made at ni was previously pruned
by MAC must mean that this assignment lost all of its support on some variable’s domain. This
implies that the assignment at ni will generate a DWO of that variable. As we move down the tree
variable domains can only decrease in size. Hence, when BM tries this assignment further down
the tree, at ni, it will still generate a DWO and the oracle will inform BM of this fact. In summary,
BM will always visit the same next node ni	� as MAC, and by induction our claim holds.

To show that BM performs at least as many checks as MAC performs tree-checks we construct
a one-to-one mapping from the set of MAC tree-checks to the set of BM (with an DWOMAC
oracle) checks. Suppose that at node n
 MAC checks the assignment Ai � Vi � �i against the
assignment Aj � Vj � �j , and that this check turns out to be a tree-check. This means that in the
subtree below n
 MAC later attempts the assignment Aj at some node n�. Furthermore, let n� be
the leftmost node in this subtree where Aj is attempted. By the above BM also visits n�. Since
MAC tested Aj at n
, Aj must be consistent with the assignments made above n
. Furthermore,
since n� is the leftmost node below n
 where Aj is attempted, the search must have backtracked
above n
 since it previously tested Aj . Putting these two facts together the argument made in case
(3) of Theorem 3.4 applies and we see that BM will check Ai against Aj at n�. We map the MAC

14We are assuming a static variable ordering. In fact, a dynamic variable ordering is fine, as long as both algorithms
make identical choices. Furthermore, as we have written them both algorithms need to iterate over the domain of the
first variable even if the problem is originally arc-inconsistent. If one wishes to code MAC so that it does an initial
arc-consistency pruning of the domains, one can code BM so that it does an initial call to DWOMAC prior to entering
level 1. The theorem will then continue to hold.
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tree check of Ai against Aj to the BM check of Aj against Ai made at n�. Since n� is specified to
be the leftmost node in the subtree under n
 where MAC attempts Aj it is clearly unique. Hence,
the mapping maps each MAC tree-check to a unique BM check—it is a one-to-one map.

It could be that MAC visits n
 and n�, but at n
 it does not check Ai against Aj . The value �j
in Vj’s domain might have been pruned. In particular, it can be that Aj is consistent with all of the
assignments made above n
, but was pruned because it lost support in the domain of some future
variable. In this case it is not difficult to see that BM will still check Aj against Ai at node n�, even
though MAC did not make the reciprocal check at n
. Using this, concrete examples are easy to
construct which demonstrate that BM may make more checks that MAC makes tree checks. The
above mapping, however, shows that the set of MAC tree checks can be no larger that the set of
BM checks.

3.4 FC and MAC

To compare FC and MAC we can again synchronize them in terms of the number of nodes each
visits. We can imagine line ��� in Figure 1 being replaced by

� if Domainil � � and not(DWOMAC(i))

where DWOMAC(i) is a call to an oracle testing for DWO with the same power as AC constraint
propagation. It is not difficult to show (using very similar arguments at those used in Section 3.2)
that FC equipped with a DWOMAC oracle is identical to BM with this oracle. That is, FC will visit
the same number of nodes and perform the same tree-checks as BM performs checks. The results
of the previous section then imply that FC equipped with a DWOMAC oracle explores the same
nodes as MAC, performs at least as many tree-checks as MAC, and sometimes performs more
tree-checks than MAC.

3.5 Backjumping

Besides optimizing its tree-checks in a manner that is at least as efficient as BM, DWO detection al-
lows FC and MAC to achieve backjumping (BJ) savings. This observation is essentially a corollary
of a result proved in [KvB95], but we present a different proof that serves to make the connection
with DWO detection more clearly.

Theorem 3.6 Let n be a node visited by BT that is skipped by BJ. Then any algorithm that uses
DWO detection would never visit n either.15

Proof: BJ16 can skip nodes only when it backjumps from some node n� (which is a partial assign-
ment to the variables V�� � � � � Vi), to a higher node n
 (which is a partial assignment to the variable

15Another corollary of this is the fact that any algorithm that utilizes dynamic variable ordering using the popular
minimal remaining values heuristic also achieves all BJ savings [BvR95].

16Here we assume some familiarity with details of the BJ algorithm see [Pro93] for more details on BJ and CBJ.
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V�� � � � � Vj , j � i). Any skipped node n will be a node in the subtree under some such n
. For the
backjump to have occurred from n� directly to n
, every value of Vi must have been inconsistent
with the assignments made above and at n
. But then DWO detection would have discovered at n

that Vi had a domain wipe-out. Hence, any algorithm that used DWO detection would never have
explored any node in the subtree under n
, and in particular would not have visited n.

The more sophisticated version of BJ, conflict directed backjumping (CBJ [Pro93]) can, on the
other hand, generate savings that are not subsumed by any obvious extension to FC. To be precise
we can imagine algorithms that extend FC beyond the arc-consistency processing of MAC. Enforc-
ing K-consistency as defined by Freuder [Fre78] requires adding k � � arity constraints. Hence
for K � � (i.e., beyond path-consistency) it is not clear how K-consistency can be maintained by
a CSP tree search algorithm geared towards binary constraints. However, there is an alternative
extension of FC that is motivated by the following observation about MAC.

Observation 3.7 When MAC completes its processing at a node n and does not find a DWO we
have the following condition. For every unpruned value v in the domain of any variable V , and
for every variable V � not equal to V , there exists an unpruned value v� in the domain V � such that
the assignments V � v and V � � v� are consistent.

MAC removes any values v that fail to satisfy this condition. Using this idea we can define
MIkC—maintaining inverse k-consistency. Inverse k-consistency first appeared in [Fre85] and
was explored more fully in [FE96].

Definition 3.8 For any k 	 N , whereN is the number of variables in the CSP, the MIkC algorithm
is a tree search algorithm that backtracks when a DWO is detected. After every new instantiation
MIkC performs FC constraint propagation, furthermore it removes all values v from the domain
all future variables V that fail to satisfy the following condition. Given any set of k � � future
variables fV�� � � � � Vk��g not including V , there must exist a set of unpruned values fv�� � � � � vk��g
(with vi � Di) such that the set of assignments fV � v� V� � v�� � � � � Vk�� � vk��g is consistent
with every constraint over the set fV� V�� � � � � Vkg.

MIkC continually removes domain values that fail to satisfy the above condition until it has either
detected a DWO or all unpruned values satisfy the condition. It is not difficult to see that M2IC is
precisely MAC, and that if k � N , MIkC will have a backtrack free search.17

Now we can state our assertion about CBJ more precisely.

Proposition 3.9 For any fixed k there exist CSPs where CBJ will allow MIkC to skip nodes it
would otherwise explore.

Proof: We demonstrate such a CSP. Let V
 be a binary variable, V�� � � � � Vm	� be variables with
m�� values in their domains, andX be some other variable not equal to any of the Vi (� 	 i 	 m)

17Unfortunately, to achieve a backtrack free search in general would require an exponential amount of work at the
root of the search tree!
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and not constrained with any of the variables V�� � � � Vm	�. For each of the variables V�� � � � � Vm	�

the value m� � is a special “don’t care” value. In particular, Vi � m� � is consistent with every
other assignment to every other variable. Besides this “don’t care” value, V�� � � � � Vm	� have a all-
different constraint (expressed as m�m� ���	 binary constraints) over their other values. That is,
if one of the members of the set fV�� � � � � Vm	�g takes on the value h � m�� no other member of
the set can take on this value. Finally, we impose a constraint between V
 and each of the V� thru
Vm	�. The don’t care value m� � for each of these variables is incompatible with the assignment
V
 � false.

Say that MIkC, with k � m, first makes the assignment V
 � false. In the subtree below
the variables V�� � � � � Vm	� are now reduced to having m possible values for m � � variables all
of which have to be different. That is, the subtree below contains no solution. Nevertheless, since
m � k, every value of these variables can be consistently extended to any k � � other variables.
Hence MIkC will not prune any values from these variables.

Say that next MIkC instantiates X and then instantiates the first of the Vi variables, Vi. At some
point (when m� k of the Vi have been instantiated) it will detect a DWO, eventually backtracking
to try the next value of X . If equipped with CBJ, however, once it has tried all assignments to V�
CBJ will allow it to jump back to V
 skipping any further assignments to X . (Clearly, V�’s conflict
set at the time we have tried all of its values cannot include X , since X is not constrained with any
of the Vi variables below it.)

3.6 Summary of the Formal Relationships

Our results are summarized in Figures 5 and 6. Figure 5 shows a hierarchy between the algorithms
in terms of number of nodes visited.

Figure 6 gives the hierarchy in terms of checks. In this diagram the checks performed by the
algorithms are divided into components. For most of the nodes we only have arrows between
components of these algorithms. As discussed above, checks used to look for DWOs can have the
benefit of allowing the algorithm to visit fewer nodes. Hence the total number of checks performed
by these algorithms will vary—there will be a tradeoff between the number of nodes eliminated
because of DWO detection and the extra work performed at each node to do DWO detection. Each
of algorithms may perform more or fewer total checks dependent on the problem being solved.

CBJ does not affect the checks performed at a node, it simply reduces the number of nodes
visited. Hence, for some of the algorithms that include CBJ we draw a thick arrow to indicate a
relationship between the total number of checks performed by the linked algorithms.

We have developed these results using the simplifying assumption of a static variable order-
ing. In fact, these result still hold even when a dynamic variable ordering is used. Clearly, if two
algorithms use distinct variable orderings (dynamic or static) no comparisons can be made—it is
easy to develop examples where one ordering yields a backtrack free search while another takes
exponential time. However, if at each node the two algorithms choose the same variable to instan-
tiate next, then all of our proofs continue to hold. In particular, the algorithms may pursue different
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BT = BM

BJ

FC = BM+DWOFC

MIkC (k > 2)

FC+CBJ

MAC+CBJMAC = BM+DWOMAC = FC+DWOMAC

MIkC+CBJ

Figure 5: Hierarchy with respect to number of nodes visited. An arrow from A to B indicates that
algorithm B visits a subset (not necessarily proper) of the nodes visited by algorithm A.

variable orderings along different branches (i.e., they may use a dynamic variable ordering) as long
as they are both using the same dynamic ordering.

4 Conclusion

Strictly speaking, forward looking algorithms like FC and MAC and backwards looking algorithms
like BT, BJ, and BM, are incomparable by worst-case complexity measures. This, coupled with
the seemingly radical difference between looking forward and looking backward, might lead to the
view that no interesting formal comparison is possible.

We have shown, however, that there is in fact a great deal of similarity in the processing done
by these algorithms. In particular, we have shown that the processing performed by the forward
looking algorithms we have considered can be broken up into two distinct components. One of
these components is a tree-search procedure that is essentially the BM algorithm, while the other
is a component that performs DWO detection.
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BT+DWOFC

Detection
DWO

Checks

Tree
Checks

Tree
Checks Detection

DWO

Checks

MAC+CBJ

Detection
DWO

Checks

Tree
Checks

FC+CBJ

FC+DWOMAC BM+DWOMAC

MAC

BM+DWOFCFC

BM DWOFC
ChecksChecks

BM
ChecksChecks

DWOMAC

Figure 6: Hierarchy with respect to the number of checks. An arrow from box A to box B indicates
that the algorithm component in B makes no more checks than the algorithm component in box A.
A thick arrow indicates that this relationship holds for the total number of checks, not just for a
component of the algorithm.
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Besides increasing our understanding of these algorithms, this insights can also lead to prac-
tical improvements. In closing we mention three possible ways in which these insights might be
exploited.

First, we might look for more efficient ways to implement each component. In particular, we
can look for more efficient ways to do DWO detection. We have previously shown in [BG95],
that applying this principle leads naturally to the “minimal forward checking” (or lazy forward
checking) algorithm developed by Dent and Mercer [DM94]. This algorithm does not forward
check every value of all of the future variables—this is more work than is required to detect a
DWO. Rather, it simply ensures that every future variable has at least one value consistent with the
current set of assignments. A change to the DWO component also requires a change to the “tree-
search” component so that (1) it can fully utilize the work performed by the new DWO component
without introducing redundant computation, and (2) it performs some extra computation to make
up for the fact that the more efficient DWO component cannot provide it with as much information
as before. It may also be possible to apply this principle of minimal DWO detection to MAC by
utilizing the minimal version of arc-consistency developed by Schiex et al. [SRGV96].

Second, we can use the insight that FC’s domain pruning is accomplishing the same thing as
BM to develop more efficient versions and implementations of other CSP algorithms. In particular,
Prosser [Pro95] has developed an algorithm he called forward-checking with backmarking. How-
ever, we have shown that FC already achieves all BM savings. In examining Prosser’s proposal it
becomes clear that he has identified some additional improvements to FC. He develops a method
of taking advantage of these improvements by using BM type data structures, i.e., using Mcl and
Mbl arrays. The resulting algorithm is quite cumbersome, as there are considerable complications
involved in keeping FC’s Domain data structure synchronized with these additional BM data
structures.18 We have shown that the domain pruning processing maintained in the Domain data
structure achieves the same effect as the backmarking processing maintained in the Mcl and Mbl
data structures. In a forthcoming paper [Bac99] it is shown how Prosser’s improvements to FC
(and more) can be achieved without resort to additional data structures, considerably simplifying
the resulting algorithm.

Finally, another practical direction this work points to is the development of analytical and
empirical tools to help predict what level of forward constraint propagation would be best for a
particular problem. There is a cost/benefit tradeoff in doing DWO detection. It may be possible
to develop a greater understanding of the relationship between the tightness of the constraints and
the optimal level of effort to invest in DWO detection. In fact, it may be the case that an adaptive
algorithm that does varying amounts of work at different nodes (dependent on an analysis of the
remaining sub-problem under that node) is the most efficient way of utilizing forward constraint
checking.

18And in fact Prosser’s algorithm does not achieve all of the potential savings due to these synchronization problems.
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