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Abstract

In previous work [BGHK92, BGHK93], we have
studied the random-worlds approach—a particular
(and quite powerful) method for generating degrees
of belief (i.e., subjective probabilities) from a knowl-
edge base consisting of objective (first-order, statisti-
cal, and default) information. But allowing a knowl-
edge base to contain only objective information is
sometimes limiting. We occasionally wish to include
information about degrees of belief in the knowledge
base as well, because there are contexts in which old
beliefs represent important information that should
influence new beliefs. In this paper, we describe three
quite general techniques for extending a method that
generates degrees of belief from objective informa-
tion to one that can make use of degrees of belief as
well. All of our techniques are based on well-known
approaches, such as cross-entropy. We discuss gen-
eral connections between the techniques and in partic-
ular show that, although conceptually and technically
quite different, all of the techniques give the same
answer when applied to the random-worlds method.

1 Introduction

When we examine the knowledge or information possessed
by an agent, it is useful to distinguish between subjective
and objective information. Objective information is infor-
mation about the environment, whereas subjective informa-
tion is information about the state of the agent’s beliefs. For
example, we might characterize the information of an agent
travelling from San Francisco to New York as consisting of
the objective information that the weather is warm in San
Francisco, and the subjective information that the proba-
bility that the weather is warm in New York is 0.2. The
important thing to notice here is that although we can in
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principle determine if the agent’s objective information is
correct (by examining what is actually the case in its envi-
ronment), we cannot so easily say that its subjective beliefs
are correct. The truth or falsity of these pieces of informa-
tion is not determined by the state of the environment.

Although subjective information could take many differ-
ent forms, we will concentrate here on degrees of belief.
These are probabilities that are assigned to formulas ex-
pressing objective assertions. For example, the assertion
“the weather is warm in New York” is an objective one: it
is either true or false in the agent’s environment. But when
we assign a degree of belief to this assertion, as above, we
obtain a subjective assertion: it becomes a statement about
the state of the agent’s beliefs. In the context of probability
theory the distinction between subjective and objective can
appear somewhat subtle, because some form of objective
information (such as proportions or frequencies) obey the
laws of probability, just as do degrees of belief. Yet the dis-
tinctioncan be a significant one if we want to use or interpret
a probabilistic theory correctly. Carnap’s work [Car50] is
noteworthy for its careful distinction between, and study
of, both statistical probabilities, which are objective, and
degree of belief probabilities, which are subjective.

In order to understand this distinction, it is useful to pro-
vide a formal semantics for degrees of belief that captures
the difference between them and objective information. As
demonstrated by Halpern [Hal90], a natural, and very gen-
eral, way to give a semantics to degrees of belief is by
defining a probability distribution over a set of possible
worlds.1 The degree of belief in a formula � is then the
probability of the set of worlds where � is true. In this
framework we can characterize objective information as
consisting of assertions (expressed as formulas) that can
be assigned a truth value by a single world. For example,
in any given world Tweety the bird does or does not fly.
Hence, the formula Fly�Tweety� is objective. Statistical
assertions such as kFly�x�jBird�x�kx � 0�8, read “approx-
imately 80% of birds fly”, are also objective. On the other
hand, Pr�Fly�Tweety�� � 0�8, expressing the assertion that

1Conceptually, this notion of world is just as in classical
“possible-worlds semantics”: a complete picture or description
of the way the world might be. Formally, we take a world to be
an interpretation (model) for first-order logic.



the agent’s degree of belief in Tweety flying is 0.8, is not
objective, as its truth is determined by whether or not the
probability of the set of worlds where Tweety flies is 0.8.

Although we cannot easily characterize an agent’s degrees
of beliefs as being correct or incorrect, it is nevertheless
clear that these beliefs should have some relation to objec-
tive reality. One way of guaranteeing this is to actually
generate them from the objective information available to
the agent. Several ways of doing this have been consid-
ered in the literature; for example, [BGHK92, PV92] each
discuss several possibilities. The approaches in [BGHK92]
are based in a very natural way on the semantics described
above. Assume we have a (prior) probability distribution
over some set of worlds. We can then generate degrees
of belief from an objective knowledge base KB by using
standard Bayesian conditioning: to the formula � we as-
sign as its degree of belief the conditional probability of
� given KB. In [BGHK92] we considered three particu-
lar choices for a prior, and investigated the properties of
the resulting inductive inference systems. In [BGHK93]
we concentrated on the simplest of these methods—the
random-worlds method—whose choice of prior is essen-
tially the uniform prior over the set of possible worlds.

More precisely, suppose we restrict our attention to worlds
(i.e., interpretations of an appropriate vocabulary for first-
order logic) with the domain f1� � � � � Ng. Assuming we
have a finite vocabulary, there will be only finitely many
such worlds. Random worlds takes as the set of worlds all
of these worlds, and uses perhaps the simplest probability
distribution over them—the uniform distribution—thus as-
suming that each of the worlds is equally likely. This gives
a prior distribution on the set of possible worlds. We can
now induce a degree of belief in � given KB by using the
conditional probability of � given KB with respect to this
uniform distribution. It is easy to see that the degree of
belief in � given KB is then simply the fraction of possible
worlds satisfying KB that also satisfy �. In general, how-
ever, we do not know the domain size N ; we know only
that it is typically large. We can therefore approximate the
degree of belief for the true but unknown N by computing
the limiting value of this degree of belief as N grows large.
This limiting value (if it exists, which it may not) is denoted
Prrw
���jKB�, and it is what the random-world method takes

to be the degree of belief in � given KB. In [BGHK93], we
showed that this method possesses a number of attractive
properties, such as a preference for more specific informa-
tion and the ability to ignore irrelevant information.

The random-worlds method can generate degrees of be-
lief from rich knowledge bases that may contain first-order,
statistical, and default information. However, as with any
conditioning process, is limited to dealing with objective
information. When we add subjective formulas to KB, we
can no longer simply condition on KB: the conditioning
process eliminates those worlds inconsistent with our infor-
mation, while the truth of a subjective formula cannot be
determined by a single world.2 Hence, we would like to

2In the context of random worlds (and in other cases where
the degrees of belief are determined using a prior on the set of

extend the random-worlds method so as to enable it to deal
with both objective and subjective information.

Why do we want to take into account subjective beliefs?
There are a number of situations where this seems to make
sense. For example, suppose a birdwatcher is interested
in a domain of birds, and has an objective knowledge base
KBbird consisting of the statistical information

kCardinal�x�j�Red�x�kx � 0�1 �
kCardinal�x�jRed�x�kx � 0�7�

Now the birdwatcher catches a glimpse of a bird b flying by
that seems to be red. The birdwatcher is trying to decide
if b is a cardinal. By the results of [BGHK93], if the
birdwatcher assumes that the bird is not red, random-worlds
gives Prrw

�
�Cardinal�b�jKBbird � �Red�b�� � 0�1. On the

other hand, if she assumes that the bird is red, we get
Prrw
��Cardinal�b�jKBbird � Red�b�� � 0�7. But it does not

seem appropriate for her to do either; rather we would like
to be able to generate a degree of belief in Cardinal�b�
that takes into account the birdwatcher’s degree of belief in
Red�b�. For example, if this degree of belief is 0�8, then
we would like to use a knowledge base such as KBbird �
Pr�Red�b�� � 0�8. It seems reasonable to expect that the
resulting degree of belief in Cardinal�b� would then be
somewhere between the two extremes of 0.7 and 0.1.

As another example, suppose we have reason to believe
that two sensors are independent. For simplicity, suppose
the sensors measure temperature, and report it to be either
high, h, or low, l. We can imagine three unary predicates:
S1�x�, indicating that sensor 1 reports the value x; S2�x�,
a similar predicate for sensor 2; and Actual�x�, indicating
that the actual temperature is x. That the sensors are inde-
pendent (given the actual value) can be represented by the
conjunction over all choices for x, x�, and x�� in fl� hg of:

Pr�S1�x�� � S2�x���jActual�x��
� Pr�S1�x��jActual�x��� Pr�S2�x���jActual�x���

It could be that we have determined that the sensors are
independent through the observation of a number of test
readings. Such empirical evidence could be summarized
by a statistical assertion and thus added to our knowledge
base without requiring a degree of belief statement like the
above. However, this is not the normal situation. Rather, we
are more likely to have based our belief in independence
on other information, such as our beliefs about causality.
For example, the sensors may have been built by different
manufacturers. In this case, it seems most reasonable to
represent this kind of information using an assertion about
degrees of belief.

How, then, can we incorporate information about degrees of
belief into the random-worlds framework? More generally,
given any inference process3 —i.e., a method for generat-
ing degrees of belief from objective information—we would

worlds), this problem can be viewed as an instance of the general
problem of conditioning a distribution on uncertain evidence.

3The term “inference process” is taken from Paris and Vencov-
ska [PV89]. Our framework is slightly different from theirs, but
we think this usage of the term is consistent with their intent.



like to extend it so that it can also deal with subjective infor-
mation. This is an issue that has received some attention re-
cently [PV92, Jae94b, Jae94a]. We discuss three techniques
here, and consider their application in the specific context
of random worlds. As we shall see, all of our techniques
are very closely based on well-known ideas in the litera-
ture. Two make use of cross-entropy, while the third is a
generalization of a method considered by Paris and Vencov-
ska [PV92]. They are conceptually and formally distinct,
yet there are some interesting connections between them.
In particular, in the context of random-worlds they gener-
ally yield the same answers (where the comparison makes
sense; the various methods have different ranges of applica-
bility). Many of the results we discuss are, in general terms
if not in specific details, already known. Nevertheless, their
combination is quite interesting.

We now describe the three methods in a little more detail.
The first method we examine is perhaps the simplest to ex-
plain. We consider it first in the context of random worlds.
FixN . Random worlds considers all of the worlds that have
domain f1� � � � � Ng, and assumes they are equally likely,
which seems reasonable in the absence of information to
the contrary. But now suppose that we have a degree of
belief such as Pr�Red�b�� � 0�8. In this case it is no longer
reasonable to assume that all worlds are equally likely; our
knowledge base tells us that the worlds where b is red are
more likely than the worlds where b is not red. Nevertheless,
there is a straightforwardway of incorporatingthis informa-
tion. Rather than taking all worlds to be equally likely, we
divide the worlds into two sets: those which satisfy Red�b�
and those which satisfy �Red�b�. Our beliefs require that
the first set have probability 0�8 and the second probability
0�2. But otherwise we can make the worlds within each set
equally likely. This is consistent with the random worlds
approach of making all worlds equally likely. Intuitively,
we are considering the probability distribution on the worlds
that is as close as possible to our original uniform distribu-
tion subject to the constraint that the set of worlds where
Red�b� holds should have probability 0�8.

What do we do if we have an inference process other than
random worlds? As long as it also proceeds by generating
a prior on a set of possible worlds and then conditioning,
we can deal with at least this example. We simply use the
prior generated by the method to assign relative weights to
the worlds in the sets determined by Red�b� and �Red�b�,
and then scale these weights within each set so that the sets
are assigned probability 0�8 and 0�2 respectively. (Readers
familiar with Jeffrey’s rule [Jef92] will realize that this is es-
sentially an application of that rule.) Again, intuitively, we
are considering the distribution closest to the original prior
that gives the set of worlds satisfying Red�b� probability
0�8.

Unfortunately, the knowledge base is rarely this simple.
Our degrees of belief often place complex constraints on
the probability distribution over possible worlds. Never-
theless, we would like to maintain the intuition that we are
considering the distribution “closest” to the original prior
that satisfies the constraints imposed by the KB. But how
do we determine the “closest” distribution? One way is

by using cross-entropy [KL51]. Given two probability dis-
tributions � and ��, the cross-entropy of �� relative to �,
denoted C���� ��, is a measure of how “far” �� is from �
[SJ80, Sho86]. Given an inference method that generates
a prior and a set of constraints determined by the KB, we
can then find the distribution on worlds satisfying the con-
straints that minimizes cross-entropy relative to the prior,
and then use this new distribution to compute degrees of
belief. We call this method CEW (for cross-entropy on
worlds).

The next method we consider also uses cross-entropy, but
in a completely different way. Suppose we have the (ob-
jective) knowledge base KBbird given above, and a separate
“belief base” BBbird � �Pr�Red�b�� � 0�8�. As we sug-
gested, if the birdwatcher were sure that b was red, random
worlds would give a degree of belief of 0�7 in Cardinal�b�;
similarly, if she were sure that bwas not red, random worlds
would give 0�1. Given that her degree of belief in Red�b�
is 0.8, it seems reasonable to assign a degree of belief of
0�8�0�7�0�2�0�1 to Cardinal�b�. In fact, if we consider
any inference process I (not necessarily one that generates
a prior probability on possible worlds), it seems reasonable
to define

I�Cardinal�b�jKBbird � BBbird�
� 0�8� I�Cardinal�b�jKBbird � Red�b��

� 0�2� I�Cardinal�b�jKBbird � �Red�b���

More generally, we might hope that given an inference
process I and a knowledge base of the form KB � BB,
we can generate from it a collection of objective knowl-
edge bases KB1� � � � �KBm such that I��jKB � BB� is a
weighted average of I��jKB1�� � � � � I��jKBm�, as in the
example. In general, however, achieving this in a reasonable
fashion is not so easy. Consider the belief base BB�bird �
�Pr�Red�b�� � 0�8� � �Pr�Small�b�� � 0�6�. In this case,
we would like to define I�Cardinal�b�jKBbird �BB�bird� us-
ing a weighted average of I�Cardinal�b�jKBbird�Red�b��
Small�b��, I�Cardinal�b�jKBbird � Red�b� � �Small�b��,
etc. As in the simple example, it seems reasonable to take
the weight of the term I�Cardinal�b�jKBbird � Red�b� �
Small�b�� to be the degree of belief in Red�b� � Small�b�.
Unfortunately, while BB�bird tells us the degree of belief in
Red�b� and Small�b� separately, it does not give us a degree
of belief for their conjunction. A superficially plausible
heuristic would be to assume that Red�b� and Small�b� are
independent, and thus assign degree of belief 0�8� 0�6 to
their conjunction. While this seems reasonable in this case,
at other times it is completely inappropriate. For example,
if our knowledge base asserts that all small things are red,
then Red�b� and Small�b� cannot be independent, and we
should clearly take the degree of belief in Red�b��Small�b�
to be the same as the degree of belief in Small�b�, namely,
0�6. In general, our new degree of belief for the formula
Red�b� � Small�b� may depend not only on the new de-
grees of belief for the two conjuncts, but also on our old
degree of belief I�Red�b� � Small�b�jKBbird�. One reason-
able approach to computing these degrees of belief is to
make the smallest change possible to achieve consistency
with the belief base. Here, as before, cross-entropy is a
useful tool. Indeed, as we shall show, there is a way of



applying cross-entropy in this context to give us a general
approach. We call this method CEF, for cross-entropy on
formulas. Although both CEW and CEF use cross-entropy,
they use it in conceptually different ways. As the names
suggest, CEW uses cross-entropy to compare two probabil-
ity distributions over possible worlds, while CEF uses it to
compare two probability distributions over formulas. On
the other hand, any probability distribution on worlds gen-
erates a probability distribution on formulas in the obvious
way (the probabilityof a formula is the probabilityof the set
of worlds where it is true), and so we can use a well-known
property of the cross-entropy function to observe that the
two approaches are in fact equivalent when they can both
be applied.

It is worth noting that the two approaches are actually in-
comparable in their scope of application. Because CEF is
not restricted to inference processes that generate a prior
probability on a set of possible worlds, it can be applied
to more inference processes than CEW. On the other hand,
CEW is applicable to arbitrary KB’s while, as we shall see,
for CEF to apply we need to make more restrictions on the
form of the KB.

In this paper, we focus on two instantiations of CEF. The
first applies it to the random-worlds method. The second
applies it to a variant of the maximum-entropy approach
used by Paris and Vencovska [PV89] (and similar in spirit to
the method used by Jaeger [Jae94b]), which we henceforth
call the ME (inference) process. Using results of [GHK92,
PV89], we prove that these two instantiations are equivalent.

The third method we consider also applies only to certain
types of inference processes. In particular, it takes as its
basic intuition that all degrees of belief must ultimately be
the result of some statistical process. Hence, it requires an
inference process that can generate degrees of belief from
statistics, like random-worlds. Suppose we have the belief
Pr�Red�b�� � 0�8. If we view this belief as having arisen
from some statistical sampling process, then we can regard
it as an abbreviation for statistical information about the
class of individuals who are “just like b”. For example, say
that we get only a quick glance at b, so we are not certain
it is red. The above assertion could be construed as being
an abbreviated way of saying that 80% of the objects that
give a similar sense perception are red. To capture this
idea formally we can view b as a member of a small set
of (possibly fictional) individuals S that are “just like b” to
the best of our knowledge, and assume that our degrees of
belief about b actually represents the statistical information
about S: kRed�x�jS�x�kx � 0�8. Once all degree of belief
assertions have been converted into statistical assertions,
we can then apply any method for inferring degrees of
belief from statistical knowledge bases. We call this the
RS method (for representative set). The general intuition
for this method goes back to statistical mechanics [Lan80].
It was also defined (independently it seems) by Paris and
Vencovska [PV92]; we follow their presentation here.

Paris and Vencovska showed that the RS method and the
CEF method agree when applied to their version of the ME
process. Using results of [GHK92, PV89], we can show that

the methods also agree when applied to our version of the
ME process and when applied to random worlds. Putting
the results together, we can show that all these methods—
CEW, CEF, and RS—agree when applied to random worlds
and, in fact, CEW and CEF agree in general. In addition,
the resulting extension of random worlds agrees with the
approach obtained when we apply CEF and RS to the ME
process.

The rest of this paper is organized as follows. In the next
section we review the formal model of [Hal90] for degrees
of belief and statistical information, and some material from
[BGHK93] regarding the random-worlds method. We give
the formal definitions of the three methods we consider in
Section 3, and discuss their equivalence. In passing, we
also discuss the connection to Jeffrey’s rule, which is an-
other very well known method of updating by uncertain
information. We conclude in Section 4 with some discus-
sion of computational issues and possible generalizations
of these approaches.

2 Technical preliminaries

2.1 A first-order logic of probability

In [Hal90], a logic is presented that allows us to represent
and reason with both statistical information and degrees of
belief. We briefly review the relevant material here. We
start with a standard first-order language over a finite vo-
cabulary Φ, and augment it with proportion expressions
and belief expressions. A basic proportion expression has
the form k��x�j��x�kx and denotes the proportion of do-
main elements satisfying � from among those elements
satisfying �. (We take jj��x�jjx to be an abbreviation for
k��x�jtrue�x�kx.) On the other hand, a basic belief expres-
sion has the form Pr��j�� and denotes the agent’s degree
of belief in � given �. The set of proportion (resp. belief)
expressions is formed by adding the rational numbers to the
set of basic proportion (resp. belief) expressions and then
closing off under addition and multiplication.

We compare two proportion expressions using the approx-
imate connective � (“approximately less than or equal”);
the result is a proportion formula. We use � � �� as an
abbreviation for �� � � �� � ��� � ��. Thus, for example,
we can express the statement “90% of birds fly” using the
proportion formula kFly�x�jBird�x�kx � 0�9.4 We com-
pare two belief expressions using standard �; the result is
a basic belief formula. For example, Pr�Red�b�� � 0�8 is a
basic belief formula. (Of course, Pr�Red�b�� � 0�8 can be
expressed as the obvious conjunction.) In the full language
L we allow arbitrary first-order quantification and nesting
of belief and proportion formulas. For example, complex
formulas like Pr��x�jjKnows�x� y�jjy � 0�3�� � 0�5 are
in L.

4We remark that in [Hal90] there was no use of approximate
equality (�). We use it here since, as argued in [BGHK93], its
use is crucial in our intended applications. On the other hand, in
[BGHK93], we used a whole family of approximate equality func-
tions of the form �i, i � 1� 2� 3� � � �. To simplify the presentation,
we use only one here.



We will also be interested in various sublanguages of L. A
formula in which the “Pr” operator does not appear is an
objective formula. Such formulas are assigned truth values
by single worlds. The sublanguage restricted to objective
formulas is denoted by Lobj. The standard random-worlds
method is restricted to knowledge bases expressed in Lobj.
The set of belief formulas, Lbel, is formed by starting with
basic belief formulas and closing off under conjunction,
negation, and first-order quantification. In contrast to ob-
jective formulas, the truth value of a belief formula is com-
pletely independent of the world where it is evaluated. A
flat formula is a Boolean combination of belief formulas,
such that in each belief expression Pr���, the formula� is a
closed (i.e., containing no free variables) objective formula.
(Hence we have no nesting of “Pr” in flat formulas nor any
“quantifying in”.) Let Lflat be the language consisting of
the flat formulas.

To give semantics to both proportion formulas and belief
formulas, we use a special case of what were called in
[Hal90] type-3 structures. In particular, we consider type-3
structures of the form �WN � ��, where WN consists of all
worlds (first-order models) with domain f1� � � � � Ng over
the vocabulary Φ, and � is a probability distribution over
WN .5 Given a structure and a world in that structure, we
evaluate a proportion expression k��x�j��x�kx as the frac-
tion of domain elements satisfying ��x� among those sat-
isfying ��x�. We evaluate a belief formula using our proba-
bility distributionover the set of possible worlds. More pre-
cisely, given a structure M � �WN � ��, a world w 	 WN ,
a tolerance � 	 �0� 1� (used to interpret � and �), and a
valuation V (used to interpret the free variables), we asso-
ciate with each formula a truth value and with each belief
expression or proportion expression 	 a number �	�M�w�V�� .
We give a few representative clauses here:


 If 	 is the proportion expression k��x�j��x�kx, then
�	�M�w�V�� is the number of domain elements in w satis-
fying � � � divided by the number satisfying �. (Note
that these numbers may depend on w.) We take this
fraction to be 1 if no domain elements satisfies �.


 If 	 is the belief expression Pr��j��, then

�	�M�w�V�� �
�fw� : �M�w�� V� � � j� � � �g

�fw� : �M�w�� V� � � j� �g
�

Again, we take this to be 1 if the denominator is 0.


 If 	 and 	 � are two proportion expressions, then
�M�w� �� V � j� 	 � 	� iff

�	�M�w���V � �	 ��M�w���V � ��

That is, approximate less than or equal allows a tolerance
of � .

Notice that if 	 is a belief expression, then its value is
independent of the world w. Moreover, if it is closed then
its value is independent of the valuation V . Thus, we can
write �	�M�� in this case. Similarly, if � 	 Lbel is a closed

5In general, type-3 structures additionally allow for a distribu-
tion over the domain (in this case, f1� � � � �Ng). Here, we always
use the uniform distribution over the domain.

belief formula, its truth depends only on M and � , so we
can write �M� � � j� � in this case.

2.2 The random-worlds method

Given these semantics, the random-worlds method is now
easy to describe. Suppose we have a KB of objective for-
mulas, and we want to assign a degree of belief to a formula
�. Let �uN be the uniform distribution over WN , and let
Mu

N � �WN � �
u
N �. Let Pr��rwN ��jKB� � �Pr��jKB��Mu

N
�� .

Typically, we know only that N is large and that � is small.
Hence, we approximate the value for the true N and � by
defining

Prrw
�
��jKB� � lim

��0
lim

N��
Pr��rw

N ��jKB��

assuming the limit exists. Prrw
�
��jKB� is the degree of belief

in � given KB according to the random-worlds method.

2.3 Maximum entropy and cross-entropy

The entropy of a probability distribution� over a finite space
Ω is �

P
��Ω ��
� ln���
��. It has been argued [Jay78]

that entropy measures the amount of “information” in a
probability distribution, in the sense of information theory.
The uniform distribution has the maximum possible en-
tropy. In general, given some constraints on the probability
distributions, the distribution with maximum entropy that
satisfies the constraints can be viewed as the one that incor-
porates the least additional information above and beyond
the constraints.

The related cross-entropy function measures the additional
information gained by moving from one distribution � to
another distribution��:

C���� �� �
X

��Ω

���
� ln
���
�

��
�
�

Various arguments have been presented showing that cross-
entropy measures how close one probability distribution is
to another [SJ80, Sho86]. Thus, given a prior distribution
� and a set S of additional constraints, we are typically
interested in the unique distribution � � that satisfies S and
minimizes C���� ��. It is well-known that a sufficient con-
dition for such a unique distribution to exist is that the set
of distributions satisfying S form a convex set, and that
there be at least one distribution ��� satisfying S such that
C����� �� is finite. These conditions often hold in practice.

3 The three methods

3.1 CEW

As we mentioned in the introduction, our first method,
CEW, assumes as input an inference process I that proceeds
by generating a prior�I on a set of possible worldsWI and
then conditioning on the objective information. Given such
an inference process I, a knowledge base KB (that can con-
tain subjective information) and an objective formula�, we
wish to compute CEW �I���jKB�, where CEW �I� is a



new degree of belief generator that can handle knowledge
bases that can include subjective information.

We say that an inference process I is world-based if there is
some structure MI � �WI � �I�and a tolerance � such that
I��jKB� � �Pr��jKB��MI�� . Notice that Pr��rwN is world-
based for each N (where the structure corresponding to
Pr��rw

N
is Mu

N ). Prrw
�

, on the other hand, is not world-based;
we return to this point shortly.

Given a world-based inference process I, we define
CEW�I� as follows: Given a knowledge base KB which
can be an arbitrary formula in the full language L, let �KB

I

be the probability distribution on W I such that C��KB
I � �I�

is minimized (if a unique such distributionexists) among all
distributions�� such that �WI � �

�� � � j� Pr�KB� � 1. Intu-
itively,�KB

I is the probabilitydistributionclosest to the prior
�I that gives KB probability1. Let M KB

I � �WI � �
KB
I �. We

can then define CEW�I���jKB� � �Pr����
MKB
I

��
.

The first thing to observe is that if KB is objective, then
standard properties of cross-entropy can be used to show
that �KB

I is the conditional distribution � I��jKB�. We thus
immediately get:

Proposition 3.1: If KB is objective, then CEW�I���jKB� �
I��jKB�. Thus, CEW�I� is a true extension of I.

Another important property of CEW follows from the well-
known fact that cross-entropy generalizes Jeffrey’s rule
[Jef92]. Standard probability theory tells us that if we
start with a probability function � and observe that event
E holds, we should update to the conditional probability
function ���jE�. Jeffrey’s rule is meant to deal with the
possibility that rather than getting certain information, we
only get partial information, such as thatE holds with prob-
ability�. Jeffrey’s rule suggests that in this case, we should
update to the probability function � � such that

���A� � ���AjE� � �1� ����AjE��

whereE denotes the complement ofE. This rule uniformly
rescales the probabilities within E and (separately) those
withinE so as to satisfy the constraint Pr�E� � �. Clearly,
if � � 1, then �� is just the conditional probability���jE�.

This rule can be generalized in a straightforward fashion.
If we are given a family of mutually exclusive and ex-
haustive events E1� � � � � Ek with desired new probabilities
�1� � � � � �k (necessarily

P
i �i � 1�, then we can define:

���A� � �1��AjE1� � � � �� �K��AjEk��

Suppose our knowledge base has the form �Pr��1� � �1��
� � �� �Pr��k� � �k�, where the�i’s are mutually exclusive
and exhaustive objective formulas and �1 � � � �� �k � 1.
The formulas �1� � � � � �k correspond to mutually exclusive
and exhaustive events. Thus, Jeffrey’s rule would suggest
that to compute the degree of belief in � given this knowl-
edge base, we should compute the degree of belief in �
given each of the �i separately, and then take the linear
combination. Using the fact that cross-entropy generalizes
Jeffrey’s rule, it is immediate that CEW in fact does this.

Proposition 3.2: Suppose that I is a world-based inference
process and that KB� is of the form KB � BB, where KB
is objective and BB has the form �Pr��1� � �1� � � � � �
�Pr��k� � �k�, where the �i’s are mutually exclusive and
exhaustive objective formulas and�1� � � ���k � 1. Then

CEW�I���jKB�� �
kX

i�1

�iI��jKB � �i��

As we observed above, CEW as stated does not apply di-
rectly to the random-worlds method Prrw

�
, since it is not

world-based. It is, however, the limit of world-based meth-
ods. (This is also true for the other methods considered in
[BGHK92].) We can easily extend CEW so that it applies
to limits of world-based methods by taking limits in the
obvious way. In particular, we define

CEW�Prrw
����jKB� � lim

��0
lim

N��
CEW�Pr��rwN ���jKB��

provided the limit exists. For convenience, we abbreviate
CEW�Prrw

�� as PrCEW
� .

It is interesting to note that the distribution defined by
CEW�Prrw

N � is the distribution of maximum entropy that
satisfies the constraint Pr�KB� � 1. This follows from the
observation that the distribution that minimizes the cross-
entropy from the uniform distribution among those distri-
butions satisfying some constraints S, is exactly the distri-
bution of maximum entropy satisfying S.6 This maximum-
entropy characterization demonstrates that PrCEW

� extends
random worlds by making the probabilities of the possible
worlds “as equal as possible” given the constraints.

3.2 CEF

Paris and Vencovska [PV89] consider inferences processes
that are not world-based, so CEW cannot be applied to
them. The method CEF we now define applies to arbitrary
inference processes, but requires that the knowledge base
be of a restricted form. For the remainder of this section,
we assume that the knowledge base has the form KB�BB,
where KB is an objective formula and BB (which we call
the belief base) is in Lflat.

First, suppose for simplicity that BB is of the form Pr��1� �
�1 � � � � � Pr��k� � �k. If the �i’s were mutually exclu-
sive, then we could define CEF �I���jBB� so that Propo-
sition 3.2 held. But what if the �i’s are not mutually exclu-
sive?

Consider the K � 2k atoms over �1� � � � � �k, i.e., those
conjunctions of the form ��1 � � � � � ��k, where each ��i is
either �i or ��i. Atoms are always mutually exclusive
and exhaustive; so, if we could find appropriate degrees
of belief for these atoms, we could again define things so
that Proposition 3.2 holds. A simple way of doing this

6We remark that in [GHK92, PV89] a connection was es-
tablished between random worlds and maximum entropy. Here
maximum entropy is playing a different role. It is being used here
to extend random worlds rather than to characterize properties of
random worlds as in [GHK92, PV89].



would be to assume that, after conditioning, the assertions
�i are independent. But, as we observed in the introduction,
assuming independence is inappropriate in general.

Our solution is to first employ cross-entropy to find appro-
priate probabilities for these atoms. We proceed as follows.
Suppose I is an arbitrary inference process, BB 	 Lflat,
and �1� � � � � �k are the formulas that appear in subexpres-
sions of the form Pr��� in BB. We form the K � 2k atoms
generated by the �i, denoting them by A1� � � � � AK . Con-
sider the probability � defined on the space of atoms via
��Aj� � I�Aj jKB�.7 There is an obvious way of defining
whether the formula BB is satisfied by a probability distri-
bution on the atomsA1� � � � � Ak (we defer the formal details
to the full paper), but in general BB will not be satisfied by
the distribution �. For a simple example, if we take the
inference procedure to be random worlds and consider the
knowledge base KBbird��Pr�Red�b�� � 0�8� from the intro-
duction, it turns out that Prrw

�
�Red�b�jKBbird� is around 0�57.

Clearly, the distribution � such that ��Red�b�� is around
0�57 does not satisfy the constraint Pr�Red�b�� � 0�8. Let
�� be the probability distribution over the atoms that mini-
mizes cross-entropy relative to � among those that satisfy
BB, provided there is a unique such distribution. We then
define

CEF�I���jKB � BB� �
���A1�I��jKB �A1� � � � �� ���AK�I��jKB �AK��

It is immediate from the definition that CEF�I� extends I.
Formally, we have

Proposition 3.3: If KB� � 	 Lobj, then CEF�I���jKB� �
I��jKB�.

Both CEW and CEF use cross-entropy. However, the two
applications are quite different. In the case of CEW, we
apply cross-entropy with respect to probability distribu-
tions over possible worlds, whereas with CEF, we apply it
to probability distributions over formulas. Nevertheless, as
we mentioned in the introduction, there is a tight connection
between the approaches, since any probability distribution
over worlds defines a probability distribution over formu-
las. In fact the following equivalence can be proved, using
simple properties of the cross-entropy function.

Theorem 3.4 : Suppose I is a world-based inference
process, KB� � 	 Lobj, and BB 	 Lflat. Then
CEW�I���jKB � BB� � CEF�I���jKB � BB�.

Thus, CEF and CEW agree in contexts where both are
defined.

By analogy to the definition for CEW, we define

PrCEF
� ��jKB�BB� � lim

��0
lim

N��
CEF�Pr��rwN ���jKB�BB��

It immediately follows from Theorem 3.4 that

7Since BB � Lflat by assumption, and Pr cannot be nested in
a flat belief base, the �’s are necessarily objective, and so are the
atoms they generate. Thus, I�AjjKB� is well defined.

Corollary 3.5: If KB� � 	 Lobj, and BB 	 Lflat, then
PrCEW
�

��jKB� BB� � PrCEF
�

��jKB � BB�.

As the notation suggests, we view PrCEF
� as the extension

of Prrw
�

obtained by applying CEF. Why did we not define
PrCEF
�

as CEF�Prrw
�
�? Clearly CEF�Prrw

�
� and PrCEF

�
are

closely related. Indeed, if both are defined, then they are
equal.

Theorem 3.6 : If both CEF�Prrw
����jKB � BB� and

PrCEF
� ��jKB � BB� are defined then they are equal.

It is quite possible, in general, that either one of PrCEF
� and

CEF�Prrw
�
� is defined while the other is not. The following

example demonstrates one type of situation where PrCEF
�

is defined and CEF�Prrw
�� is not. The converse situation

typically arises only in pathological examples. In fact, as
we show in Theorem 3.8, there is an importantclass of cases
where the existence of CEF�Prrw

�
� guarantees that of PrCEF

�
.

Example 3.7 : Suppose KB is kFly�x�jBird�x�kx �
1 � Bird�Tweety� and BB is Pr�Fly�Tweety� � 0� �
Pr�Red�Tweety� � 1�. Then, just as we would expect,
PrCEF
� �Red�Tweety�jKB � BB� � 1. On the other hand,

CEF�Prrw
���Red�Tweety�jKB � BB� is undefined. To see

why, let � be the probability distribution on the four atoms
defined by Fly�Tweety� and Red�Tweety� determined by
Prrw
���jKB�. Since Prrw

��Fly�Tweety�jKB� � 1, it must
be the case that ��Fly�Tweety�� � 1 (or, more accu-
rately, ��Fly�Tweety� � Red�Tweety�� � ��Fly�Tweety� �
�Red�Tweety�� � 1). On the other hand, any distri-
bution �� over the four atoms defined by Fly�Tweety�
and Red�Tweety� that satisfies BB must be such that
���Fly�Tweety�� � 0. It easily follows that if �� sat-
isfies BB, then C���� �� � . Thus, there is not a
unique distribution over the atoms that satisfies BB and
minimizes cross-entropy relative to �. This means that
CEF�Prrw

�
��Red�Tweety�jKB � BB� is undefined.

We next consider what happens when we instantiate CEF
with a particular inference process considered by Paris and
Vencovska that uses maximum entropy [PV89]. Paris and
Vencovska restrict attention to rather simple languages, cor-
responding to the notion of “essentially propositional” for-
mulas defined below. When considering (our variant) of
their method we shall make the same restriction.

We say that ��x� is an essentially propositional formula
if it is a quantifier-free first-order formula that mentions
only unary predicates (and no constant or function sym-
bols), whose only free variable is x. A simple knowl-
edge base KB about c has the form k�1�x�j�1�x�kx �
�1 � � � � � k�k�x�j�k�x�kx � �k � ��c�, where
�1� � � � � �k� �1� � � � � �k� � are all essentially propositional.8

The ME inference process is only defined for a simple

8Notice that k��x�j��x�kx � � is expressible as
k���x�j��x�kx � 1 � �; this means we can also express �.
However, because of the fact that we disallow negations in a sim-
ple KB, we cannot express strict inequality. This is an important
restriction.



knowledge base about c and an essentially propositional
query��c� about c. Let KB � KB����c� be an essentially
propositional knowledge base about c (where KB� is the
part of the knowledge base that does not mention c). If the
unary predicates that appear in KB are P � fP1� � � � � Pkg,
then KB� can be viewed as putting constraints on the 2k

atoms over P.9 The form of KB� ensures that there will
be a unique distribution �me over these atoms that maxi-
mizes entropy and satisfies the constraints. We then de-
fine ME���c�jKB� � ��c�� to be �me��j��. Intuitively, we
are choosing the distribution of maximum entropy over the
atoms that satisfies KB�, and treating c as a “random” ele-
ment of the domain, assuming it satisfies each atom over P
with the probability dictated by �me.

To apply CEF to ME, we also need to put restrictions
on the belief base. We say that BB 	 Lflat is an es-
sentially propositional belief base about c if every basic
proportion expression has the form Pr���c�j��c��, where
� and � are essentially propositional. (In particular, this
disallows statistical formulas in the scope of Pr.) A
simple belief base about c is a conjunction of the form
Pr��1�c�j�1�c�� � �1 � � � �Pr��k�c�j�k�c�� � �k, where
all of the formulas that appear are essentially propositional.
We can only apply CEF to ME if the knowledge base has
the form KB � BB, where KB is a simple knowledge base
about c and BB is a simple belief base about c. It follows
from results of [GHK92, PV89] that random worlds and
ME give the same results on their common domain. Hence,
they are also equal after we apply the CEF transformation.
Moreover, on this domain, if CEF�Prrw

�
� is defined, then

so is PrCEF
�

. (The converse does not hold, as shown by
Example 3.7.) Thus, we get

Theorem 3.8: If KB is a simple knowledge base about c,
BB is a simple belief base about c, and � is an essentially
propositional formula, then

CEF�ME����c�jKB�BB� � CEF�Prrw
�
����c�jKB�BB��

Moreover, if CEF�ME����c�jKB � BB� is defined, then

CEF�ME����c�jKB � BB� � PrCEF
� ���c�jKB � BB��

3.3 RS

The last method we consider, RS, is based on the intu-
ition that degree of belief assertions must ultimately arise
from statistical statements. This general idea goes back to
work in the field of statistical mechanics [Lan80], where
it has been applied to the problem of reasoning about the
total energy of physical systems. If the system consists of
many particles then what is, in essence, a random-worlds
analysis can be appropriate. If the energy of the system is
known exactly no conceptual problem arises: some possible
configurations have the specified energy, while others are
impossible because they do not. However, it turns out that it
is frequently more appropriate to assume that all we know is
the expected energy. Unfortunately, it questionable whether

9An atom over P is an atom (as defined above) over the for-
mulas P1�x�� � � � � Pk�x�.

this is really an “objective” assertion about the system in
question,10 and in fact the physicists encounter a problem
analogous to that which motivated our paper. Like us, one
response they have considered is to modify the assump-
tion of uniform probability and move to maximum entropy
(thus using, essentially, an instance of our CEW applied to
a uniform prior). But another response is the following.
Physically, expected energy is appropriate for systems in
thermal equilibrium (i.e., at a constant temperature). But
in practice this means that the system is in thermal contact
with a (generally much larger) system, sometimes called a
heat bath. So another approach is to model the system of
interest as being part of a much larger system, including
the heat bath, whose total energy is truly fixed. On this
larger scale, random-worlds is once again applicable. By
choosing the energy for the total system appropriately, the
expected energy of the small subsystem will be as speci-
fied. Hence, we have converted subjective statements into
objective ones, so that we are able to use our standard tech-
niques. In this domain, there is a clear physical intuition
for the connection between the objective information (the
energy of the heat bath) and the subjective information (the
expected energy of the small system).

A more recent, and quite different, appearance of this intu-
ition is in the work of Paris and Vencovska [PV92]. They
defined their method so that it has the same restricted scope
as the ME method. We present a more general version
here, that can handle a somewhat richer set of knowledge
bases, although its scope is still more restricted than CEF. It
can deal with arbitrary inference processes, but the knowl-
edge base must have the form KB � BB, where KB is
objective and BB is an essentially propositional belief base
about some constant c. The first step in the method is to
transform BB into an objective formula. Let S be a new
unary predicate, representing the set of individuals “just
like c”. We transform BB to KBBB by replacing all terms
of the form Pr���c�j��c�� by k��x�j��x� � S�x�kx, and
replacing all occurrences of � by �. We then add the
conjuncts jjS�x�jjx � 0 and S�c�, since S is assumed
to be a small set and c must be in S. For example,
if BB is Pr�Red�c�� � 0�8 � Pr�Small�c�� � 0�6, then
the corresponding KBBB is �kRed�x�jS�x�kx � 0�8� �
�kSmall�x�jS�x�kx � 0�6� � �jjS�x�jjx � 0� � S�c�. We
then define RS�I����c�jKB�BB� � I���c�jKB�KBBB�.
It is almost immediate from the definitions that if BB is
a simple belief base about c, then RS�Prrw

�����c�jKB �
BB� � lim��0 limN�� RS�Pr��rwN ���jKB�. We abbrevi-
ate RS�Prrw

�
� as PrRS

�
.

In general, RS and CEF are distinct. This observa-
tion follows from results of [PV92] concerning an infer-
ence process CM, showing that RS�CM� cannot be equal
to CEF�CM�. On the other hand, they show that, in
the restricted setting in which ME applies, RS�ME� �
CEF�ME�. Since ME � Prrw

�
in this setting, we have:

10If it is objective, it is most plausibly a statement about the
average energy over time. While this is a reasonable viewpoint, it
does not really escape from philosophical or technical problems
either.



Theorem 3.9: If KB is a simple knowledge base about c,
BB is an essentially propositional knowledge base about c,
and � is an essentially propositional formula, then

CEF�Prrw
�����c�jKB �BB� � CEF�ME����c�jKB � BB�

� RS�ME����c�jKB � BB� � PrRS
� ���c�jKB � BB��

4 Discussion

We have presented three methods for extending inference
processes so that they can deal with degrees of belief. We
view the fact that the three methods essentially agree when
applied to the random-worlds method as evidence validating
their result as the “appropriate” extension of random worlds.

Since our focus was on extending the random-worlds
method here, there were many issues that we were not
able to investigate thoroughly. We mention two of the more
significant ones here:


 Our definitions of CEF and RS assume certain restric-
tions on the form of the knowledge base, which are not
assumed in CEW. Is it possible to extend these methods
so that they apply to more general knowledge bases? In
this context, it is worth noting that RS has quite a dif-
ferent flavor from the other two approaches. The basic
idea involved seems to be to ask “What objective facts
might there be to cause one to have the beliefs in BB?”.
Given an answer to this, we add these facts to KB in lieu
of BB; we can then apply whatever inference process
we choose. We do not see any philosophical reason that
prevents application of this idea in wider contexts than
belief bases about some constant c. The technical prob-
lems we have found trying to do this seem difficult but
not deep or intractable.


 We have essentially assumed what might be viewed as
concurrent rather than sequential updating here. Sup-
pose our knowledge base contains two constraints:
Pr��1� � �1 � Pr��2� � �2. Although we cannot usu-
ally apply Jeffrey’s rule to such a conjunction, we can ap-
ply the rule sequentially, first updating by Pr��1� � �1,
and then by Pr��2� � �2. We have described our meth-
ods in the context of updating by any set of constraints
at once, but they can also be defined to update by con-
straints one at a time. The two possibilities usually give
different results. Sequential updating may not preserve
any but the last constraint used, and in general is order
dependent. Whether this should be seen as a problem
depends on the context. We note that in the very spe-
cial case in which we are updating by objective facts
(i.e., conditioning) sequential and concurrent updating
coincide. This is why this issue can be ignored when
doing Bayesian conditioning in general, and in ordinary
random-worlds in particular. We have only considered
concurrent updates in this paper, but the issue surely
deserves deeper investigation.
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