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Abstract

An intelligent agent will often be uncertain about various properties of its environment�
and when acting in that environment it will frequently need to quantify its uncertainty� For
example� if the agent wishes to employ the expected�utility paradigm of decision theory to
guide its actions� it will need to assign degrees of belief �subjective probabilities� to various
assertions� Of course� these degrees of belief should not be arbitrary� but rather should be
based on the information available to the agent� For example� consider a doctor who must
decide upon the treatment for a particular patient� To do so she would have to evaluate�
for various diseases� a degree of belief in the patient having that disease� In making that
evaluation� the doctor would want to use all of her knowledge about the patient� about
statistical correlations between symptoms and diseases� about physical laws� about default
rules� etc� This paper describes one approach for inducing degrees of belief from very rich
knowledge bases that include all of these types of information� We call our approach the
random�worlds method� The method is based on the principle of indi�erence� it treats all
of the worlds the agent considers possible as being equally likely� The approach is able to
integrate qualitative default reasoning with quantitative probabilistic reasoning by providing
a language in which both types of information can be easily expressed� Our results show that
a number of desiderata that arise in direct inference �reasoning from statistical information
to conclusions about individuals� and default reasoning follow directly from the semantics of
random worlds� For example� random worlds captures important patterns of reasoning such
as speci	city� inheritance� indi�erence to irrelevant information� and default assumptions of
independence� Furthermore� the expressive power of the language used and the intuitive

�A preliminary version of this paper appeared in the International Joint Conference on Arti�cial Intelligence�
���� �BGHK���	 Some of this research was performed while Adam Grove and Daphne Koller were at Stanford
University and at the IBM Almaden Research Center	 This research has been supported in part by the Canadian
Government through their NSERC and IRIS programs� by the Air Force O
ce of Scienti�c Research �AFSC�
under Contract F
��������C������ by an IBM Graduate Fellowship� and by a University of California President�s
Postdoctoral Fellowship	 The United States Government is authorized to reproduce and distribute reprints for
governmental purposes	
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semantics of random worlds allow the method to deal well with problems that are beyond
the scope of many other non�deductive reasoning systems�

� Introduction

Consider an agent with a knowledge base� KB � who has to make decisions about her actions
in the world� For example� a doctor may need to decide on a treatment for a particular
patient� say Eric� The doctor�s knowledge base might contain information of di�erent types�
including� statistical information� e�g�� ��	
 of patients with jaundice have hepatitis�� 
rst�
order information� e�g�� �all patients with hepatitis have jaundice�� default information� e�g��
�patients with hepatitis typically have a fever�� and information about the particular patient
at hand� e�g�� �Eric has jaundice�� In most cases� the knowledge base will not contain complete
information about a particular individual� For example� the doctor may be uncertain about
the exact disease that Eric has� Since the e�cacy of a treatment will almost certainly depend
on the disease� it is important for the doctor to be able to quantify the relative likelihood
of various possibilities� More generally� to apply standard tools for decision making such as
decision theory �see� e�g�� �LR��� Sav����� an agent must assign probabilities� or degrees of
belief� to various events� For example� the doctor may wish to assign a degree of belief to an
event such as �Eric has hepatitis�� This paper describes one particular method that allows such
an agent to use her knowledge base to assign degrees of belief in a principled manner� we call
this method the random�worlds method�

There has been a great deal of work addressing aspects of this general problem� Two large
bodies of work that are particularly relevant are the work on direct inference� going back to
Reichenbach �Rei���� and the various approaches to nonmonotonic reasoning� Direct inference
deals with the problem of deriving degrees of belief from statistical information� typically by
attempting to 
nd a suitable reference class whose statistics can be used to determine the
degree of belief� For instance� a suitable reference class for the patient Eric might be the class
of all patients with jaundice� While direct inference is concerned with statistical knowledge�
the 
eld of nonmonotonic reasoning� on the other hand� deals mostly with knowledge bases
that contain default rules� As we shall show� none of the systems proposed for either reference�
class reasoning or nonmonotonic reasoning can deal adequately with the large and complex
knowledge bases we are interested in� In particular� none can handle rich knowledge bases that
may contain 
rst�order� default� and statistical information� The random worlds approach� on
the other hand� can deal with such complex knowledge bases� and handles several paradigmatic
problems in both nonmonotonic and reference�class reasoning remarkably well�

We now provide a brief overview of the random�worlds approach� We assume that the
information in the knowledge base is expressed in a variant of the language introduced by Bac�
chus �Bac�	�� Bacchus�s language augments 
rst�order logic by allowing statements of the form
kHep�x�jJaun�x�kx � 	��� which says that �	
 of patients with jaundice have hepatitis� No�
tice� however� that in 
nite models this statement has the �probably unintended� consequence
that the number of patients with jaundice is a multiple of �� To avoid this problem� we use
approximate equality rather than equality� writing kHep�x�jJaun�x�kx � 	��� read �approxi�
mately �	
 of patients with jaundice have hepatitis�� Intuitively� this says that the proportion
of jaundiced patients with hepatitis is close to �	
� i�e�� within some tolerance � of 	���
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Not only does the use of approximate equality solve the problem of unintended consequences�
it has another signi
cant advantage� it lets us express default information� We interpret a
statement such as �Birds typically �y� as expressing the statistical assertion that �Almost
all birds �y�� Using approximate equality� we can represent this as kFly�x�jBird�x�kx � ��
This interpretation is closely related to various approaches applying probabilistic semantics to
nonmonotonic logic� see Pearl �Pea��� for an overview of these approaches� and Section � for
further discussion�

Having described the language in which our knowledge base is expressed� we now need to
decide how to assign degrees of belief given a knowledge base� Perhaps the most widely used
framework for assigning degrees of belief �which are essentially subjective probabilities� is the
Bayesian paradigm� There� one assumes a space of possibilities and a probability distribution
over this space �the prior distribution�� and calculates posterior probabilities by conditioning
on what is known �in our case� the knowledge base�� To use this approach� we must specify
the space of possibilities and the distribution over it� In Bayesian reasoning� relatively little is
said about how this should be done� Indeed� the usual philosophy is that these decisions are
subjective� The di�culty of making these decisions seems to have been an important reason
for the historic unpopularity of the Bayesian approach in symbolic AI �MH����

Our approach is di�erent� We assume that the KB contains all the knowledge the agent
has� and we allow a very expressive language so as to make this assumption reasonable� This
assumption means that any knowledge the agent has that could in�uence the prior distribution
is already included in the KB � As a consequence� we give a single uniform construction of a
space of possibilities and a distribution over it� Once we have this probability space� we can use
the Bayesian approach� To compute the probability of an assertion � given KB � we condition
on KB � and then compute the probability of � using the resulting posterior distribution�

So how do we choose the probability space� One general strategy� discussed by Halpern
�Hal�	�� is to give semantics to degrees of belief in terms of a probability distribution over a
set of possible worlds� or 
rst�order models� This semantics clari
es the distinction between
statistical assertions and degrees of belief� As we suggested above� a statistical assertion such
as kHep�x�jJaun�x�kx � 	�� is true or false in a particular world� depending on how many
jaundiced patients have hepatitis in that world� On the other hand� a degree of belief is neither
true nor false in a particular world�it has semantics only with respect to the entire set of
possible worlds and a probability distribution over them� There is no necessary connection
between the information in the agent�s KB and the distribution over worlds that determines
her degrees of belief� However� we clearly want there to be some connection� In particular� we
want the agent to base her degrees of beliefs on her information about the world� including her
statistical information� As this paper shows� the random�worlds method is a powerful technique
for accomplishing this�

To de
ne our probability space� we have to choose an appropriate set of possible worlds�
Given some domain of individuals� we stipulate that the set of worlds is simply the set of all

rst�order models over this domain� That is� a possible world corresponds to a particular way
of interpreting the symbols in the agent�s vocabulary over the domain� In our context� we
can assume that the �true world� has a 
nite domain� say of size N � In fact� without loss of
generality� we assume that the domain is f�� � � � � Ng�

Having de
ned the probability space �the set of possible worlds�� we must construct a
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probability distribution over this set� For this� we give perhaps the simplest possible de
nition�
we assume that all the possible worlds are equally likely �that is� each world has the same
probability�� This can be viewed as an application of the principle of indi�erence� Since
we are assuming that all the agent knows is incorporated in her knowledge base� the agent
has no a priori reason to prefer one world over the other� It is therefore reasonable to view
all worlds as equally likely� Interestingly� the principle of indi�erence �sometimes also called
the principle of insu�cient reason� was originally promoted as part of the very de
nition of
probability when the 
eld was originally formalized by Jacob Bernoulli and others� the principle
was later popularized further and applied with considerable success by Laplace� �See �Hac���
for a historical discussion�� It later fell into disrepute as a general de
nition of probability�
largely because of the existence of paradoxes that arise when the principle is applied to in
nite
or continuous probability spaces� We claim� however� that the principle of indi�erence can be
a natural and e�ective way of assigning degrees of belief in certain contexts� and in particular�
in the context where we restrict our attention to a 
nite collection of worlds�

Combining our choice of possible worlds with the principle of indi�erence� we obtain our
prior distribution� We can now induce a degree of belief in � given KB by conditioning on KB
to obtain a posterior distribution and then computing the probability of � according to this
new distribution� It is easy to see that� since each world is equally likely� the degree of belief in
� given KB is the fraction of possible worlds satisfying KB that also satisfy ��

One problem with the approach as stated so far is that� in general� we do not know the
domain size N � Typically� however� N is known to be large� We therefore approximate the
degree of belief for the true but unknown N by computing the value of this degree of belief as
N grows large� The result is our random�worlds method�

The key ideas in the approach are not new� Many of them can be found in the work of
Johnson �Joh��� and Carnap �Car�	� Car���� although these authors focus on knowledge bases
that contain only 
rst�order information� and for the most part restrict their attention to unary
predicates� Related approaches have been used in the more recent works of Shastri �Sha���
and of Paris and Vencovska �PV���� in the context of a unary statistical language� Chuaqui�s
recent work �Chu��� is also relevant� His work� although technically quite di�erent from ours�
shares the idea of basing a theory of probabilistic reasoning upon notions of indi�erence and
symmetry� The works of Chuaqui and Carnap investigate very di�erent issues from those
we examine in this paper� For example� Carnap� and others who later continued to develop
his ideas� were very much interested in inductive learning �especially the problem of learning
universal laws�� While we believe the question of learning is very important �see Section �����
we have largely concentrated on understanding �and generalizing� the process of going from
statistical information and default rules to inferences about particular individuals� Many of the
new results we describe re�ect this di�erent emphasis�

Having de
ned the method� how do we judge its reasonableness� Fortunately� as we men�
tioned� there are two large bodies of work on related problems fromwhich we can draw guidance�
reference�class reasoning and default reasoning� While none of the solutions suggested for these
problems seems entirely adequate� the years of research have resulted in some strong intuitions
regarding what answers are intuitively reasonable for certain types of queries� Interestingly�
these intuitions often lead to identical desiderata� In particular� most systems �of both types�
espouse some form of preference for more speci
c information and the ability to ignore irrel�
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evant information� We show that the random�worlds approach satis
es these desiderata� In
fact� in the case of random worlds� these properties follow from two much more general the�
orems� We prove that� in those cases where there is a speci
c piece of statistical information
that should �obviously� be used to determine a degree of belief� random worlds does in fact use
this information� The di�erent desiderata� such as a preference for more speci
c information
and an indi�erence to irrelevant information follow as easy corollaries� We also show that ran�
dom worlds provides reasonable answers in many other contexts� not covered by the standard
speci
city and irrelevance heuristics� Thus� the random�worlds method is indeed a powerful
one� that can deal with rich knowledge bases and still produce the answers that people have
identi
ed as being the most appropriate ones�

The rest of this paper is organized as follows� In the next two sections� we outline some of
the major themes and problems in the work on reference classes and on default reasoning� Since
one of our major claims is that the random�worlds approach solves many of these problems�
this will help set our work in context� In Section �� we describe the random�worlds method in
detail� In Section �� we state and prove a number of general theorems about the properties of the
approach� and show how various desiderata follow from these theorems� In Section � we discuss
the problem of calculating degrees of belief� Using results from �GHK���� we demonstrate a
close connection between random worlds and maximum entropy in the case of unary knowledge
bases� Based on this connection� we show that in many cases of interest a maximum�entropy
computation can be used to calculate an agent�s degree of belief� Furthermore� we show that
the maximum�entropy approach to default reasoning considered in �GMP�	� can be embedded
in our framework� Finally� we discuss some possible criticisms of the random�worlds method in
Section � and the possible impact of the method in Section ��

� Reference classes

Strictly speaking� the only necessary relationship between objective knowledge about frequen�
cies and proportions on the one hand and degrees of belief on the other hand is the simple
mathematical fact that they both obey the axioms of probability� But in practice we usually
hope for a deeper connection� the latter should be based on the former in some �reasonable�
way� Of course� the random�worlds approach that we are advocating is precisely a theory of
how this connection can be made� But our approach is far from the 
rst to attempt to connect
statistical information and degrees of belief� Most of the earlier work is based on the idea of

nding a suitable reference class� In this section� we review some of this work and show why
we believe that this approach� while it has some intuitively reasonable properties� is inadequate
as a general methodology� �See also �BGHK��c� for further discussion of this issue�� We go
into some detail here� since the issues that arise provide some motivation for the results that
we prove later regarding our approach�

��� The basic approach

The earliest sophisticated attempt at clarifying the connection between objective statistical
knowledge and degrees of belief� and the basis for most subsequent proposals� is due to Re�
ichenbach �Rei���� Reichenbach describes the idea as follows�
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�If we are asked to 
nd the probability holding for an individual future event�
we must 
rst incorporate the case in a suitable reference class � An individual thing
or event may be incorporated in many reference classes� � � � We then proceed by
considering the narrowest �smallest� reference class for which suitable statistics can
be compiled��

Although not stated explicitly in this quote� Reichenbach�s approach was to equate the degree of
belief in the individual event with the statistics from the chosen reference class� As an example�
suppose that we want to determine a probability �i�e�� a degree of belief� that Eric� a particular
patient with jaundice� has the disease hepatitis� The particular individual Eric is a member of
the class of all patients with jaundice� Hence� following Reichenbach� we can use the class of all
such patients as a reference class� and assign a degree of belief equal to our statistics concerning
the frequency of hepatitis among this class� If we know that this frequency is �	
� then we
would assign a degree of belief of 	�� to the assertion that Eric has hepatitis�

Reichenbach�s approach consists of ��� the postulate that we use the statistics from a par�
ticular reference class to infer a degree of belief with the same numerical value� and ��� some
guidance as to how to choose this reference class from a number of competing reference classes�
We consider each point in turn�

In general� a reference class is simply a set of domain individuals� that contains the particu�
lar individual about whom we wish to reason and for which we have �suitable statistics�� In our
framework� we may take the set of individuals satisfying a formula ��x� to be a reference class�
The requirement that the particular individual c we wish to reason about belongs to the class is
then represented by the logical assertion ��c��� But what does the phrase �suitable statistics�
mean� Suppose for now we take a �suitable statistic� to be a closed interval that is nontrivial�
i�e�� that is not �	� ��� in which the proportion or frequency lies� More precisely� consider some
query ��c�� where � is some logical assertion and c is a constant� denoting some individual in
the domain� Then� under this interpretation� ��x� is a reference class for this query if we know
both ��c� and k��x�j��x�kx � ��� ��� for some nontrivial interval ��� ��� That is� we know that
c has property �� and that among the class of individuals that possess property �� the propor�
tion that also have property � is between � and �� If we decide that this is the appropriate
reference class then� using Reichenbach�s approach� we would conclude Pr���c�� � ��� ��� i�e��
the probability �degree of belief� that c has property � is between � and �� Note that the
appropriate reference class for the query ��c� depends both on the formula ��x� and on the
individual c�

Given a query ��c�� there will in general be many reference classes that are arguably ap�
propriate for it� For example� suppose we know both ���c� and ���c�� and we have two pieces
of statistical information� k��x�j���x�kx � ���� ��� and k��x�j���x�kx � ���� ���� In this case
both ���x� and ���x� are reference classes for ��c� and� depending on the values of the ��s and
��s� they could assign con�icting degrees of belief to ��c�� The second part of Reichenbach�s

�These �individuals� might be complex objects �such as sequences of coin tosses� depending on what we take
as primitive in our ontology	

�Although the examples in this section deal with reasoning about single individuals� in general both reference�
class reasoning and random worlds can be applied to queries such as �Did Eric infect Tom�� which involve
reasoning about a number of individuals simultaneously	 In such cases the reference classes will consist of sets
of tuples of individuals	
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approach is intended to deal with the problem of how to choose a single reference class from a
set of possible classes� Reichenbach recommended preferring the narrowest �i�e�� the smallest�
or most speci
c� class� In this example� if we know �x ����x�� ���x��� so that the class ���x�
is a subset of the class ���x�� then� using Reichenbach�s approach� we would take the statistics
from the more speci
c reference class ���x� and conclude that Pr���c�� � ���� ����

These two parts of Reichenbach�s approach�using statistics taken from a class as a degree
of belief about an individual and preferring statistics from more speci
c classes�are generally
reasonable and intuitively compelling when applied to simple examples� Of course� even on the
simplest examples Reichenbach�s strategy cannot be said to be �correct� in any absolute sense�
Nevertheless� it is impressive that there is such widespread agreement as to the reasonableness
of the answers� As we show later� the random�worlds approach agrees with both aspects of
Reichenbach�s approach when applied to simple �and uncontroversial� examples� Unlike that
approach� however� the random�worlds approach derives these intuitive answers from more
basic principles� As a result� it is able to deal well with more complex examples that defeat
Reichenbach�s approach�

Despite its successes� Reichenbach�s approach has several serious problems� For one thing�
de
ning what counts as a �suitable statistic� is not easy� For another� it is clear that the
principle of preferring more speci
c information rarely su�ces to deal with the cases that arise
with a rich knowledge base� Nevertheless� much of the work on connecting statistical information
and degrees of belief� including that of Kyburg �Kyb��� Kyb��� and of Pollock �Pol�	�� has built
on Reichenbach�s ideas of reference classes by elaborating the manner in which choices are made
between reference classes� As a result� these later approaches all su�er from a similar set of
di�culties� which we now discuss�

��� Identifying reference classes

Recall that we took a reference class to be simply a set for which we have �suitable statistics��
But the fact that any set of individuals can potentially serve as a reference class leads to
problems� Assume we know Jaun�Eric� and kHep�x�jJaun�x�kx � 	��� In this case Jaun�x�
is a legitimate reference class for the query Hep�Eric�� Therefore� we would like to conclude
that Pr�Hep�Eric�� � 	��� But Eric is also a member of the more speci�c class of jaundiced
patients without hepatitis together with fEricg �i�e�� the class de
ned by the formula �Jaun�x��
�Hep�x�� � x � Eric�� If there are quite a few jaundiced patients� then we have excellent
statistics for the proportion of patients in this class with hepatitis� it is approximately 	
�
Thus� the conclusion that Pr�Hep�Eric�� � 	�� is disallowed by the rule instructing us to use
the most speci
c reference class� In fact� it seems that we can almost always 
nd a more speci
c
class that will give a di�erent and intuitively incorrect answer� This example suggests that we
cannot take an arbitrary set of individuals to be a reference class� it must satisfy additional
criteria�

Kyburg and Pollock deal with this di�culty by placing restrictions on the set of allowable
reference classes that� although di�erent� have the e�ect of disallowing disjunctive reference
classes� including the problematic class described above� This approach su�ers from two de
�
ciencies� First� as Kyburg himself has observed �Kyb���� these restrictions do not eliminate the
problem completely� Furthermore� restricting the set of allowable reference classes may prevent
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us from making full use of the information we have� For example� the genetically inherited
disease Tay�Sachs �represented by the predicate TS� appears only in babies of two distinct
populations� Jews of east�European extraction �EEJ �� and French�Canadians from a certain
geographic area �FC�� Within the a�icted population� Tay�Sachs occurs in �
 of the babies�
The agent might represent this fact using the statement kTS�x�jEEJ�x� � FC �x�kx � 	�	��
However� if disjunctive reference classes are disallowed� then the agent would not be able to use
this information in reasoning�

It is clear that if one takes the reference�class approach to generating degrees of belief� some
restrictions on what constitutes a legitimate reference class are inevitable� Unfortunately� it
seems that the current approaches to this problem are inadequate� The random�worlds approach
does not depend on the notion of a reference class� and so is not forced to confront this issue�

��� Competing reference classes

Even if the problem of de
ning the set of �legitimate� reference classes can be resolved� the
reference�class approach must still address the problem of choosing the �right� class out of the
set of legitimate ones� The solution to this problem has typically been to posit a collection of
rules indicating when one reference class should be preferred over another� The basic criterion
is the one we already mentioned� choose the most speci
c class� But even in the cases to which
this speci
city rule applies� it is not always appropriate� Assume� for example� that we know
that between �	
 and �	
 of birds chirp and that between 	
 and ��
 of magpies chirp� If
Tweety is a magpie� the speci
city rule would tell us to use the more speci
c reference class� and
conclude that Pr�Chirps�Tweety�� � �	� 	����� Although the interval �	� 	���� is certainly not
trivial� it is not very meaningful� Had the 	��� been a �� the interval would have been trivial�
and we could have then ignored this class and used the more detailed statistics of �	��� 	���
derived from the class of birds�

The knowledge base above might be appropriate for someone who knows little about mag�
pies� and so feels less con
dence in his statistics for magpies than in his statistics for the class
of birds as a whole� But since �	��� 	���	 �	� 	����� we know nothing that indicates that magpies
are actually di�erent from birds in general with respect to chirping� There is an alternative
intuition that says that if the statistics for the less speci
c reference class �the class of birds�
are more precise� and they do not contradict the statistics for the more speci
c class �magpies��
then we should use them� That is� we should conclude that Pr�Chirps�Tweety�� � �	��� 	����
This intuition is captured and generalized in Kyburg�s strength rule�

Unfortunately� neither the speci
city rule nor its extension by Kyburg�s strength rule are
adequate in most cases� In typical examples� the agent generally has several incomparable
classes relevant to the problem� so that neither rule applies� Reference�class systems such as
Kyburg�s and Pollock�s simply give no useful answer in these cases� For example� suppose we
know that Fred has high cholesterol and is a heavy smoker� and that ��
 of people with high
cholesterol get heart disease� If this is the only suitable reference class� then �according to all
the systems� Pr�Heart�disease�Fred�� � 	���� On the other hand� suppose we then acquire
the additional information that �
 of heavy smokers develop heart disease �but still have no
nontrivial statistical information about the class of people with both attributes�� In this case�
neither class is the single right reference class� so approaches that rely on 
nding a single
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reference class generate a trivial degree of belief that Fred will contract heart disease in this
case� For example� Kyburg�s system will generate the interval �	� �� as the degree of belief�

Giving up completely in the face of con�icting evidence seems to us to be inappropriate�
The entire enterprise of generating degrees of belief is geared to providing the agent with some
guidance for its actions �in the form of degrees of belief� when deduction is insu�cient to
provide a de
nite answer� That is� the aim is to generate plausible inferences� The presence of
con�icting information does not mean that the agent no longer needs guidance� When we have
several competing reference classes� none of which dominates the others according to speci
city
or any other rule that has been proposed� then the degree of belief should most reasonably be
some combination of the corresponding statistical values� As we show later� the random�worlds
approach does indeed combine the values from con�icting reference classes in a reasonable way�
giving well�motivated answers even when the reference�class approach would fail�

��� Other types of information

We have already pointed out the problems that arise with the reference�class approach if more
than one reference class bears on a particular problem� A more subtle problem is encountered
in cases where there is relevant information that is not in the form of a reference class� We have
said that for ��x� to be a reference class for a query about ��c� we must know ��c� and have
some statistical information about k��x�j��x�kx� However� it is not su�cient to consider only
the query ��c�� Suppose we also know ��c�
 	�c� for some other formula 	� Then we would
want Pr���c�� � Pr�	�c��� But this implies that all of the reference classes for 	�c� are relevant
as well� because anything we can infer about Pr�	�c�� tells us something about Pr���c��� Both
Pollock �Pol�	� and Kyburg �Kyb��� deal with this by considering all of the reference classes for
any formula 	 such that 	�c�
 ��c� is known� However� they do not consider the case where
it is known that 	�c� � ��c�� which implies that Pr�	�c�� � Pr���c��� nor the case where it
is known that ��c� � 	�c�� which implies that Pr�	�c�� � Pr���c��� Thus� if we have a rich
theory about ��c� and its implications� it can become very hard to locate all of the possible
reference classes or even to de
ne what quali
es as a possible reference class�

��� Discussion

A comparison between random worlds and reference�class approaches can be made in terms of
the use of local versus global information� The reference�class approach is predicated on the
assumption that we can always focus on a single piece of information� the statistics over a single
reference class� that summarizes all the relevant information in the knowledge base� A strategy
based on identifying a single relevant ��local�� datum can o�er great e�ciency� but of course
we should not expect this to be a general substitute for the use of all the ��global�� information
we have available� In this sense� the di�culties encountered by the reference�class approach are
not surprising� When generating degrees of belief from a rich knowledge base� it will not always
be possible to 
nd a single reference class that captures all of the relevant information�

It is important to remember that although the notion of a reference class seems intuitive� it
arises as part of one proposed solution strategy for the problem of computing degrees of belief�
The notion of a reference classes is not part of the description of the problem� and there is no
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reason for it to necessarily be part of the solution� Indeed� as we have tried to argue� making
it part of the solution can lead to more problems than it solves�

Our approach makes no attempt to locate a single local piece of information �a reference
class�� Thus� all of the problems described above that arise from trying locate the �right�
reference class vanish� Rather� it uses a semantic construction that takes into account all of the
information in the knowledge base in a uniform manner� As we shall see� the random�worlds
approach generates answers that agree with the reference�class approach in those special cases
where there is a single appropriate reference class� However� it continues to give reasonable
answers in situations where no single local piece of information su�ces� Furthermore� these
answers are obtained directly from the simple semantics of random worlds� with no ad hoc rules
and assumptions�

� Default reasoning

One main claim of this paper is that the random�worlds method of inference� coupled with our
statistical interpretation of defaults� provides a well�motivated and successful system of default
reasoning� Evaluating such a claim is hard because there are many� often rather vague� criteria
for success that one can consider� In particular� not all criteria are appropriate for all default
reasoning systems� Di�erent applications �such as some of the ones outlined in �McC���� require
di�erent interpretations for a default rule� and therefore need to satisfy di�erent desiderata�
Nevertheless� there are certain desiderata that have gained acceptance as measures for the
success of a new nonmonotonic reasoning system� Some are general properties of nonmonotonic
inference �see Section ����� Most� on the other hand� involve getting the �right� answers to
a small set of standard examples �more often than not involving a bird called �Tweety���
As we claim at the end of this section� this has made an �objective� validation of proposed
systems di�cult� to say the least� In this section� we survey some of the desired properties
for default reasoning and the associated problems and issues� Of course� our survey cannot be
comprehensive� The areas we consider are the semantics of defaults� basic properties of default
inference� inheritance and irrelevance� expressive power� and the lottery paradox�

��� Semantics of defaults

It is possible to discuss some properties of default reasoning systems in an extremely abstract
fashion �see Section ����� but for other properties we need to make some assumptions about
the type of system being considered� In particular� we consider systems that incorporate some
notion of a default rule� which we now explain� In general� a default rule is an expression that
has the form A�x�
 B�x�� whose intuitive interpretation is that if A holds for some individual
x then typically �normally� usually� probably� etc�� B holds for that individual�� While the
syntax actually used di�ers signi
cantly from case to case� most default reasoning systems have
some construct of this type� For instance� in Reiter�s default logic �Rei�	� we would write

A�x� � B�x�

B�x�

�We use � for a default implication� reserving � for standard material implication	
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while in a circumscriptive framework �McC�	�� we might use

�x �A�x�� �Ab�x�� B�x��

while circumscribing Ab�x�� Theories based on 
rst�order conditional logic �Del��� often do use
the syntax A�x�
 B�x�� As we said in the introduction� in the random worlds framework this
default is captured using the statistical assertion kB�x�jA�x�kx � ��

While most systems of default inference have a notion of a default rule� not all of them
address the issue of what the rule means� In particular� while all systems describe how a default
rule should be used� some do not ascribe semantics �or ascribe only unintuitive semantics� to
such rules� Without a good� intuitive semantics for defaults it becomes very di�cult to judge
the reasonableness of a collection of default statements� For example� as we mentioned above�
one standard reading of � 
 � is ���s are typically ��s�� Under this reading� the pair of
defaults A 
 B and A 
 �B should be inconsistent� In approaches such as Reiter�s default
logic� A 
 B and A 
 �B can be simultaneously adopted� they are not �contradictory�
because there is no relevant notion of contradiction�

There are several ways to address this issue� The one we use is to 
nd a single logic� with
semantics� that covers both 
rst�order information and default information� Such an approach
enables us� among other things� to verify the consistency of a collection of defaults and to see
whether a default follows logically from a collection of defaults� Of other existing theories�
those based on conditional or modal logic come closest to achieving this �see �Bou��� for further
discussion of this point��

��� Properties of default inference

As we said� default reasoning systems have typically been measured by testing them on a number
of important examples� Recently� a few tools have been developed that improve upon this
approach� Gabbay �Gab��� �and later Makinson �Mak��� and Kraus� Lehmann� and Magidor
�KLM�	�� introduced the idea of investigating the input output relation of a default reasoning
system� with respect to certain general properties that such an inference relation might possess�
Makinson �Mak��� gives a detailed survey of this work�

The idea is simple� Fix a theory of default reasoning and let KB be some knowledge base
appropriate to this theory� Suppose � is a default conclusion reached from KB according to
the particular default approach being considered� In this case� we write KB j� �� The relation
j� clearly depends on the default theory being considered� It is necessary to assume in this
context that KB and � are both expressed in the same logical language� and that the language
has a notion of valid implication� Thus� for example� if we are considering default logic or

�semantics� we must assume that the defaults are 
xed �and incorporated into the notion of
j� � and that both KB and � are 
rst�order or propositional formulas� Similarly� in the case of
circumscription� the circumscriptive policy must also be 
xed and incorporated into j� � �See
also the discussion at the beginning of Section �����

With this machinery we can state a few desirable properties of default theories in a way
that is independent of the �very diverse� details of such theories� There are 
ve properties of
j� that have been viewed as being particularly desirable �KLM�	��
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� Right Weakening� If �� � is logically valid and KB j� �� then KB j� ��

� Re�exivity� KB j� KB �

� Left Logical Equivalence� If KB 
 KB � is logically valid� then KB j� � if and only if
KB � j� ��

� Cut� If KB j� � and KB � � j� � then KB j� ��

� Cautious Monotonicity� If KB j� � and KB j� � then KB � � j� ��

While it is beyond the scope of this paper to defend these criteria �see �KLM�	��� we do want to
stress Cut and Cautious Monotonicity� since they will be useful in our later results� They tell
us that we can safely add to KB any conclusion � that we can derive from KB � where �safely�
is interpreted to mean that the set of conclusions derivable �via j� � from KB � � is precisely
the same as that derivable from KB alone�

As shown in �KLM�	�� numerous other conditions can be derived from these properties� For
example� we can prove�

� And� If KB j� � and KB j� � then KB j� � � ��

Other plausible properties do not follow from these basic 
ve� For example� the following
property captures reasoning by cases�

� Or� If KB j� � and KB � j� �� then KB � KB � j� ��

Perhaps the most interesting property that does not follow from the basic 
ve properties
is what has been called Rational Monotonicity �KLM�	�� Note that the property of �full�
monotonicity� which we do not want� says that KB j� � implies KB � � j� �� no matter what �
is� It seems reasonable that default reasoning should satisfy the same property in those cases
where � is �irrelevant� to the connection between KB and �� While it is di�cult to characterize
�irrelevance�� one situation where we may believe that � should not a�ect the conclusions we
can derive from KB is if � is not implausible given KB � i�e�� if it is not the case that KB j� ��
�see Section ��� for an example�� The following property asserts that monotonicity holds when
adding such a formula � to our knowledge base�

� Rational Monotonicity� If KB j� � and it is not the case that KB j� ��� then KB�� j� ��

Several people� notably Lehmann and Magidor �LM���� have argued strongly for the desir�
ability of this principle� One advantage of Rational Monotonicity is that it covers some fairly
noncontroversial patterns of reasoning involving property inheritance� We explore this further
in the next section�

The set of properties we have discussed provides a simple� but useful� system for classi�
fying default theories� There are certainly applications in which some of the properties are
inappropriate� Reiter�s default logic is still popular even though it does not satisfy Cautious
Monotonicity� Or� or Rational Monotonicity �Mak���� �We brie�y discuss one of the consequent
disadvantages of default logic in the next section�� Nevertheless� many people would argue that
these properties constitute a reasonable� if incomplete� set of desiderata for mainstream default
theories�
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��� Speci�city and inheritance

As we have pointed out� systems of default reasoning have particular mechanisms for expressing
default rules� A collection of such rules �perhaps in conjunction with other information� forms
a default theory �or default knowledge base�� For example� a particular default theory KBdef

might contain the default �A�s are typically B�s�� we denote this by writing �A�x�
 B�x�� �
KBdef� A default theory KBdef is used by a default reasoning system in order to reason from
various premises to default conclusions� For example� a theory KBdef containing the above
default might infer B�c� from A�c�� Let j�def indicate the input output relationship generated
by a particular default reasoning system that uses KBdef� Thus� A�c� j�def B�c� indicates that
this default reasoning system is able to conclude B�c� from the premise A�c� using the default
theory KBdef� In this section we examine some additional properties we might like j�def to
satisfy�

Clearly� the presence of a default rule in a theory does not necessarily mean that the as�
sociated default reasoning system will �or should� apply that rule to any particular individual�
Nevertheless� unless something special is known about that individual� the following seems to
be an obvious requirement for any default reasoning system�

� Direct Inference for Defaults� If �A�x� 
 B�x�� � KBdef and KBdef contains no asser�
tions mentioning c� then A�c� j�def B�c��

This requirement has been previously discussed by Poole �Poo���� who called it the property
of Conditioning� We have chosen a di�erent name that relates the property more directly to
earlier notions arising in work on direct inference�

We view Direct Inference for Defaults � as stating a �very weak� condition for how a default
theory should behave on simple problems involving the inheritance of properties from one class
to another class or individual� Consider the following standard example� in which our default
knowledge base KB�y is

Bird�x�
 Fly�x�
Penguin�x�
 �Fly�x��
�x �Penguin�x�� Bird�x���

Should Tweety the penguin inherit the property of �ying from the class of birds� or the
property of not �ying from the class of penguins� For any system satisfying Direct Infer�
ence for Defaults we must have Penguin�Tweety� j��y �Fly�Tweety�� So long as the sys�
tem treats universals in a reasonable manner� this will be equivalent to Penguin�Tweety� �
Bird�Tweety� j��y �Fly�Tweety�� Thus we see that if a system satis
es Direct Inference for
Defaults� then it automatically satis
es a form of speci�city�the preference for more speci
c
defaults� Speci
city in default reasoning is� of course� directly related to the preference for more
speci
c subsets that we saw in the context of reference�class reasoning� Speci
city is one of the
least controversial desiderata in default reasoning�

In approaches such as default reasoning or circumscription� the most obvious encoding of
these defaults satis
es neither Direct Inference for Defaults nor speci
city� However� default
logic and circumscription are certainly powerful enough for us to be able to arrange speci
city
if we wish� For example� in default logic� this can be done by means of non�normal defaults
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�RC���� There is a cost to doing this� however� adding a default rule can require that all older
default rules be reexamined� and possibly changed� to enforce the desired precedences�

Direct Inference for Defaults is a weak principle� since in most interesting cases there is
no default that 
ts the case at hand perfectly� Suppose we learn that Tweety is a yellow
penguin� Should we still conclude that Tweety does not �y� That is� should we conclude
Penguin�Tweety� � Yellow�Tweety� j��y �Fly�Tweety�� Most people would say we should�
because we have been given no reason to suspect that yellowness is relevant to �ight� In other
words� in the absence of more speci
c information about yellow penguins we should use the
most speci
c superclass for which we do have knowledge� namely penguins� The inheritance
property� i�e�� the ability to inherit defaults from superclasses� is a second criterion for successful
default reasoning� and is not provided by Direct Inference for Defaults�

In some sense� we can view Rational Monotonicity as providing a partial solution to this
problem �LM���� If a nonmonotonic reasoning system satis
es Rational Monotonicity in ad�
dition to Direct Inference for Defaults then it does achieve inheritance in a large number of
examples� For instance� we have already observed that Direct Inference for Defaults gives
Penguin�Tweety� j��y �Fly�Tweety�� given KB�y� Since KB�y gives us no reason to be�
lieve that yellow penguins are unusual� any reasonable default reasoning system would have
Penguin�Tweety� j���y �Yellow�Tweety�� From these two statements� Rational Monotonicity
allows us to conclude Penguin�Tweety� �Yellow�Tweety� j��y �Fly�Tweety�� as desired�

However� Rational Monotonicity is still insu�cient for inheritance reasoning in general�
Suppose we add the default Bird�x� 
 Warm�blooded�x� to KB�y� We would surely ex�
pect Tweety to be warm�blooded� However� Rational Monotonicity cannot be applied here�
To see why� observe that Bird�Tweety� j��y Warm�blooded �Tweety�� while we want to con�
clude that Bird�Tweety� � Penguin�Tweety� j��y Warm�blooded�Tweety��� We could use Ra�
tional Monotonicity to go from the 
rst statement to the second� if we could show that
Bird�Tweety� j���y �Penguin�Tweety�� However� most default reasoning systems do not sup�
port this statement� In fact� since penguins are exceptional birds that do not �y� it is not
unreasonable to conclude the contrary� i�e�� that Bird�Tweety� j��y �Penguin�Tweety�� Thus�
Rational Monotonicity cannot be used to conclude that Tweety the penguin is warm�blooded�

It seems undesirable that if a subclass is exceptional in any one respect� then inheritance of
all other properties is blocked� However� it can be argued that this blocking of inheritance to
exceptional subclasses is reasonable� Since penguins are known to be exceptional birds perhaps
we should be cautious and not allow them to inherit any of the normal properties of birds� But
even if we accept this argument� there are many examples which demonstrate that the complete
blocking of inheritance to exceptional subclasses yields an inappropriately weak theory of default
reasoning� For example� suppose we add to KB�y the default Yellow�x� 
 Easy�to�see�x��
This di�ers from standard exceptional�subclass inheritance in that yellow penguins are not
known to be exceptional members of the class of yellow things� That is� while penguins are
known to be di�erent from birds �and so perhaps the normal properties of birds should not be
inherited�� there is no reason to suppose that yellow penguins are di�erent from other yellow
objects� Nevertheless� Rational Monotonicity does not su�ce even in this less controversial case�
Indeed� there are well�known systems that satisfy Rational Monotonicity but cannot conclude

�In any system that treats universals reasonably� this is clearly equivalent to the assertion we are really
interested in� Penguin�Tweety� j��y Warm�blooded�Tweety�	
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that Tweety� the yellow penguin� is easy to see �LM��� Pea�	�� This problem has been called
the drowning problem �Ash��� BCD�����

Theories of default reasoning have had considerable di�culty in capturing an ability to
inherit from superclasses that can deal properly with all of these di�erent cases� In particular�
the problem of inheritance to exceptional subclasses has been the most di�cult� While some
recent propositional theories have been more successful at dealing with exceptional subclass
inheritance �GMP�	� Gef��� GP���� they encounter other di�culties� which we discuss in the
next section�

��� Expressivity

In the e�ort to discover basic techniques and principles for default reasoning� people have often
looked at weak languages based on propositional logic� For instance� 
�semantics and variants
�GP�	� GMP�	�� modal approaches such as autoepistemic logic �Moo���� and conditional logics
�Bou���� are usually considered in a propositional framework� Others� such as Reiter�s default
logic and Delgrande�s conditional logic �Del���� use a 
rst�order language� but with a syntax
that tends to decouple the issues of 
rst�order reasoning and default reasoning� we discuss this
below� Of the better�known systems� circumscription seems to have the ability� at least in
principle� of making the richest use of 
rst�order logic�

It seems uncontroversial that� ultimately� a system of default reasoning should be built
around a powerful language� Sophisticated knowledge representation systems almost invariably
use languages with at least the expressive power of 
rst�order logic� It is hard or impractical
to encode the knowledge we have about almost any interesting domain without the expressive
power provided by non�unary predicates and 
rst�order quanti
ers� We would also like to
reason logically as well as by default within the same system� and to allow perhaps even richer
languages�

It has not been easy to integrate 
rst�order logic and defaults completely� In fact� one of
the major contributions of our approach is its ability to express both types of information in a
single language� One di�culty for other approaches concerns �open� defaults� that are intended
to apply to all individuals� For instance� suppose we wish to make a general statement that
birds typically �y� and be able to use this when reasoning about di�erent birds� Let us examine
how some existing systems do this�

In propositional approaches� the usual strategy is to claim that there are di�erent types
of knowledge �see� for example� �GP��� and the references therein�� General defaults� such
as Bird 
 Fly� are in one class� When we reason about an individual� such as Tweety� its
properties are described by knowledge in a di�erent class� the context � For Tweety� the context
might be Bird �Yellow � In a sense� the symbol Bird stands for a general property when used in
a default and talks about Tweety �say� when it appears in the context� First�order approaches
have more expressive power in this regard� For example� Reiter�s default logic uses defaults with
free variables� e�g�� Bird�x�
 Fly�x�� That Tweety is a bird can then be written Bird�Tweety��
which seems much more natural� The default itself is treated essentially as a schema� implying
all substitution instances �such as Bird�Tweety�
 Fly�Tweety���

One example shows the problems with both these ideas� Suppose we know that�

Elephants typically like zookeepers�
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Fred is a zookeeper� but elephants typically do not like Fred�
Clyde is an elephant�
Eric is a zookeeper�

Using this information we can apply speci
city to determine reasonable answers to such ques�
tions as �Does Clyde like Fred�� �No� or �Does Clyde like Eric� �Yes�� But the propositional
strategy of classifying knowledge seems to fail here� Is �Elephants typically do not like Fred� a
general default� or an item of contextual knowledge� Since it talks about elephants in general
and also about one particular zookeeper� it does not 
t either category well� In a rich 
rst�order
language� there is no clear�cut distinction between speci
c facts and general knowledge� So�
while creating such a distinction can be used to avoid an explicit 
rst�order syntax� one loses
generality�

Next� consider the 
rst�order substitutional approach� It is easy to see that this does not
work at all� One substitution instance of

Elephant�x� � Zookeeper�y�
 Likes�x� y�

is
Elephant�x� � Zookeeper�Fred�
 Likes�x�Fred��

which will contradict the second default� Of course� we could explicitly exclude Fred�

Elephant�x�� Zookeeper�y�� y �� Fred
 Likes�x� y��

However� explicit exclusion is similar to the process of explicitly disabling less speci
c defaults�
mentioned in the previous section� Both destroy the modularity of the knowledge base� i�e�� the
form of a default becomes dependent on what other defaults are in the knowledge base� Hence�
these techniques are highly impractical for large knowledge bases�

The zookeeper example is similar to an example given by Lehmann and Magidor �LM�	��
However� the solution they suggest to this problem does not provide an explicit interpretation
for open defaults� Rather� the �meaning� of an open default is implicitly determined by a
set of rules provided for manipulating such defaults� These rules can cope with the zookeeper
example� but the key step in the application of these rules is the use of Rational Monotonic�
ity� More precisely� Lehmann and Magidor�s argument applies to systems which� given the
premise Elephant�x� � Zookeeper�y�� can infer by default that Likes�x� y� �i�e�� Elephant�x� �
Zookeeper�y� j� Likes�x� y��� and yet cannot infer either x �� Clyde or y �� Eric� The latter cer�
tainly seem reasonable since we know nothing whatsoever about Clyde or Eric� Now� however�
we can apply Rational Monotonicity twice� which e�ectively allows us to assume �i�e�� add to
the premises� that x � Clyde � y � Eric� while still concluding Likes�x� y�� Finally� Re�exivity�
Right Weakening� and Left Logical Equivalence can be used to justify substituting for x and y�
we obtain Elephant�Clyde� � Zookeeper�Eric� j� Likes�Clyde�Eric�� as desired� The key point
is that this argument will typically fail for Fred � because we do have reason to believe that
Fred is unusual �and so� in many systems� we could conclude by default that y �� Fred�� Thus�
as we would hope� we cannot conclude that Likes�Clyde�Fred�� and in fact it is easy to argue
analogously that we conclude �Likes�Clyde�Fred� using the second default� But while Rational
Monotonicity helps in this example� we have� in Section ���� already seen its main failing� it is

��



easily blocked by �irrelevant� exceptionality� For example� if Eric is known to be exceptional
in some way �even one unrelated to zookeeping�� then Lehmann and Magidor�s approach will
not be able conclude that he is liked by Clyde� This is surely undesirable�

Thus� it seems to be very hard to interpret generic �open� defaults properly� This is perhaps
the best�known issue regarding the expressive power of various approaches to default logic�
There are� of course� others� we close by mentioning one�

Morreau �Mor��� has discussed the usefulness of being able to refer to �the class of individ�
uals satisfying a certain default�� For example� the assertion�

Typically� people who normally go to bed late normally rise late�

refers to �the class of people who normally go to bed late�� The structure of this assertion is
essentially�

�Day�y�
 To�bed�late�x� y��
 �Day�y��
 Rises�late�x� y����

This is a default whose precondition and conclusion are descriptions of people whose behaviors
are themselves de
ned using defaults� Default logic� for example� cannot even express such
defaults� Many theories of conditional logics �for example� those of �Del��� Bou���� can express
this example� but do not handle it correctly� While this problem does not appear to have been
investigated in a circumscriptive framework� it seems unlikely that any straightforward encoding
of this default in this framework would behave appropriately� �Although� again� circumscription
can be forced to give perhaps any answer with su�cient hand�coding�� We also note that the
example has many variants� For instance� there is clearly a di�erence between the above default
and the one �Typically� people who go to bed late rise late �i�e�� the next morning��� formally�
the latter statement could be written�

�Day�y� � To�bed�late�x� y��
 Rises�late�x�Next�day�y����

There are also other variations� We would like to express and reason correctly with them all�
The real issue here is that we need to de
ne various properties of individuals� and while many of
these properties can be expressed in 
rst�order logic� others need to refer to defaults explicitly�
This argues� yet again� that it is a mistake to have a di�erent language for defaults than the
one used for other knowledge�

��� The lottery paradox

The lottery paradox ��Kyb���� addresses the issue of how di�erent default conclusions interact�
It provides a challenging test of the intuitions and semantics of any default reasoning system�
There are a number of issues raised by this paradox� we consider three here�

First� imagine that a large number N of people buy tickets to a lottery in which there is
only one winner� For a particular person c� it seems sensible to conclude by default that c does
not win the lottery� But we can argue this way for every individual� which seems to contradict
the fact that someone de
nitely will win� Of course some theories� such as those based on
propositional languages� do not have enough expressive power to even state this version of this
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problem� Among theories that can state it� there would seem to be several options� Clearly� one
solution is to deny that default conclusions are closed under arbitrary conjunction� i�e�� to give
up on the And Rule� But aside from explicitly probabilistic theories� we are not aware of work
taking this approach �although the existence of multiple extensions in theories such as Reiter�s
is certainly related�� Without logical closure� there is a danger of being too dependent on merely
syntactic features of a problem� Another solution is to prevent a theory from reasoning about
all N individuals at once �EKP���� Finally� one can simply deny that �Winner�c� follows by
default� Circumscription� for instance� does this� The standard representation of the problem
would result in multiple extensions� such that for each individual c� there is one extension
where c is the winner� While this seems reasonable� circumscription only allows us to conclude
things that hold in all extensions� thus� we would not be able to conclude �Winner�c�� The
problem with these �solutions� is that the lottery problem seems to be an extremely reasonable
application of default reasoning� if you buy a lottery ticket you should continue your life under
the assumption that you will not win�

Second� a closely related issue is raised by Lifschitz�s list of benchmark problems �Lif����
Suppose we have a default� for instance Ticket�x� 
 �Winner�x�� and no other knowledge�
Should �x�Ticket�x�� �Winner�x�� be a default conclusion� Likewise� if we know Winner�c�
but consider it possible that the lottery has more than one winner� should we nevertheless
conclude that �x��Ticket�x� � x �� c� � �Winner�x��� In circumscription� although not in
many other theories� we get both universal conclusions �as Lifschitz argues for�� The desire for
these universal conclusions is certainly controversial� in fact it seems that we often expect default
rules to have some exceptions� However� as Lifschitz observes� there is a technical di�culty in
following this latter intuition� How can we conclude from the default Ticket�x�
 �Winner�x�
that� by default� each individual c is not a winner� and yet not make the universal conclusion
that� by default� no one wins� Because of its treatment of open defaults� Reiter�s default logic
is able to obtain precisely this conclusion� As we shall see� the random�worlds approach obtains
this conclusion as well�

Finally� Poole �Poo��� has considered a variant of the lottery paradox that avoids entirely
the issue of named individuals� In his version� there is a formula describing the types of birds
we are likely to encounter� such as�

�x�Bird�x�
 �Emu�x� � Penguin�x�� � � �� Canary�x����

We then add to the knowledge base defaults such as birds typically �y� but penguins typically
do not �y� and we similarly assert that every other species of bird is exceptional in some way�
Now suppose all we know is that Bird�Tweety�� Can we conclude that Tweety �ies� If we
conclude that he can� then a similar argument would also allow us to conclude that he is a
typical bird in all other respects� But this would contradict the fact he must be exceptional in
some respect� If we do not conclude that Tweety �ies� then the default �Birds typically �y� has
been e�ectively ignored� Poole uses such examples to give an exhaustive analysis of how various
systems might react to the Lottery Paradox� He shows that in any theory� some desideratum�
such as closure under conjunction or �conditioning� �Direct inference for defaults�� must be
sacri
ced� Perhaps the most interesting �way out� he discusses is the possibility of declaring
that certain combinations of defaults are inadmissible or inconsistent� Is it really reasonable
to say that the class of birds is the union of subclasses all of which are exceptional� In many

��



theories� such as Reiter�s default logic� there is nothing to prevent one from asserting this� But
in a theory which gives reasonable semantics to defaults� we may be able to determine and
justify the incompatibility of certain sets of defaults� This� indeed� is how our approach avoids
Poole�s version of the lottery paradox�

��� Discussion

In this section� we have presented a limited list of desiderata that seem appropriate for a default
reasoning system� and have discussed some key problems and issues that must be resolved
by such a system� While our list may be limited� it is interesting to point out that there
does not seem to be a single default reasoning system that ful
lls all these desiderata in a
satisfactory way� Although we can �and do� show that random worlds does� in fact� achieve all
the requirements on this list� we would like to validate random worlds in a more comprehensive
fashion� Unfortunately� to the best of our knowledge� there is �as yet� no general framework
for evaluating default reasoning systems� In particular� evaluation still tends to be on the level
of �Does this theory solve these particular examples correctly�� �see� for example� the list
of benchmark problems in �Lif����� While such examples are often important in identifying
interesting aspects of the problem and de
ning our intuitions in these cases� they are clearly
not a substitute for a comprehensive framework� Had there been such a framework� perhaps the
drowning problem from Section ��� would not have remained undiscovered for so long� While
we do not attempt to provide such a general framework in this paper� in Section � we prove a
number of general theorems concerning the random�worlds approach� These theorems provide a
precise formulation of properties such as Direct Inference for Defaults� and show that they hold
for random worlds� Other properties such as speci
city and exceptional subclass inheritance
follow immediately from these theorems� Thus� our proof that the random�worlds approach
deals well with the paradigm examples in default reasoning follows from a general theorem�
rather than by a case�by�case analysis�

� The formalism

��� The language

We are interested in a formal logical language that allows us to express both statistical infor�
mation and 
rst�order information� We therefore de
ne a statistical language L�� which is a
variant of a language designed by Bacchus �Bac�	�� For the remainder of the paper� let ! be a

nite 
rst�order vocabulary� consisting of predicate� function� and constant symbols� and let X
be a set of variables�

Our statistical language augments standard 
rst�order logic with a form of statistical quan�
ti
er� For a formula ��x�� the term jj��x�jjx is a proportion expression� It will be interpreted as
a rational number between 	 and �� that represents the proportion of domain elements satisfy�
ing ��x�� We actually allow an arbitrary set of variables in the subscript and in the formula ��
Thus� for example� jjChild�x� y�jjx describes� for a 
xed y� the proportion of domain elements
that are children of y� jjChild�x� y�jjy describes� for a 
xed x� the proportion of domain elements
whose child is x� and jjChild�x� y�jjx�y describes the proportion of pairs of domain elements that
are in the child relation�
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We also allow proportion expressions of the form k��x�j��x�kx� which we call conditional
proportion expressions� Such an expression is intended to denote the proportion of domain
elements satisfying � from among those elements satisfying �� Finally� any rational number is
also considered to be a proportion expression� and the set of proportion expressions is closed
under addition and multiplication�

One important di�erence between our syntax and that of �Bac�	� is the use of approximate
equality to compare proportion expressions� As we argued in the introduction� exact com�
parisons are sometimes inappropriate� Consider a statement such as ��	
 of patients with
jaundice have hepatitis�� If this statement appears in a knowledge base� it is almost certainly
there as a summary of a large pool of data� It is clear that we do not mean that exactly �	

of all patients with jaundice have hepatitis� Among other things� this would imply that the
number of jaundiced patients is a multiple of 
ve� which is surely not an intended implica�
tion� We therefore use the approach described in �GHK��� KH���� and compare proportion
expressions using �instead of � and �� one of an in
nite family of connectives �i and �i� for
i � �� �� � � � � ��i�approximately equal� or �i�approximately less than or equal���� For example�
we can express the statement ��	
 of jaundiced patients have hepatitis� by the proportion
formula kHep�x�jJaun�x�kx �� 	��� The intuition behind the semantics of approximate equal�
ity is that each comparison should be interpreted using some small tolerance factor to account
for measurement error� sample variations� and so on� The appropriate tolerance will di�er for
various pieces of information� so our logic allows di�erent subscripts on the �approximately
equals� connectives� A formula such as kFly�x�jBird�x�kx �� � � kFly�x�jBat�x�kx �� � says
that both kFly�x�jBird�x�kx and kFly�x�jBat�x�kx are approximately �� but the notion of �ap�
proximately� may be di�erent in each case�

We can now give a recursive de
nition of the language L��

De�nition ���� The set of terms in L� is the least set containing X and the constant symbols
in ! that is closed under function application �so that if f is a function symbol in ! of arity r�
and t�� � � � � tr are terms� then so is f�t�� � � � � tr���

The set of proportion expressions is the least set that

�a� contains the rational numbers�

�b� contains proportion terms of the form jj�jjX and k�j�kX� for formulas �� � � L� and a

nite set of variables X 	 X � and

�c� is closed under addition and multiplication�

The set of formulas in L� is the least set that

�a� contains atomic formulas of the form R�t�� � � � � tr�� where R is a predicate symbol in
! � f�g of arity r and t�� � � � � tr are terms�

�b� contains proportion formulas of the form � �i �
� and � �i �

�� where � and �� are proportion
expressions and i is a natural number� and

�In �BGHK��� the use of approximate equality was suppressed in order to highlight other issues	
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�c� is closed under conjunction� negation� and 
rst�order quanti
cation�

Notice that this de
nition allows arbitrary nesting of quanti
ers and proportion expressions�
In Section ��� we demonstrate the expressive power of the language� As observed in �Bac�	��
the appearance of a variable x in the subscript of a proportion expression binds the variable x
in the expression� indeed� we can view jj�jjX as a new type of quanti
cation�

We now need to de
ne the semantics of the logic� As we shall see below� most of the
de
nitions are fairly straightforward� The two features that cause problems are approximate
comparisons and conditional proportion expressions� We interpret the approximate connective
� �i �

� to mean that � is very close to ��� More precisely� it is within some very small� but
unknown� tolerance factor� We formalize this using a tolerance vector 
� � h��� ��� � � �i� �i � 	�
Intuitively � �i �

� if the values of � and �� are within �i of each other� �Note that� although
the use of tolerance vectors leads to well�de
ned formal semantics� one might object that in
practice we generally will not know appropriate tolerance values� We defer our response to this
objection to the next section��

A di�culty arises when interpreting conditional proportion expressions because we need to
deal with the problem of conditioning on an event of measure 	� That is� we need to de
ne
semantics for k�j�kX even when there are no assignments to the variables inX that would satisfy
�� When standard equality is used rather than approximate equality� this problem is easily
overcome� Following �Hal�	�� we can eliminate conditional proportion expressions altogether
by viewing a statement such as k�j�kX � � as an abbreviation for jj� � �jjX � �jj�jjX � This
approach agrees with the standard interpretation of conditionals if jj�jjX �� 	� If jj�jjX � 	� it
enforces the convention that formulas such as k�j�kX � � or k�j�kX � � are true for any �� We
used the same approach in �GHK���� where we allowed approximate equality� Unfortunately� as
the following example shows� this interpretation of conditional proportions can interact in an
undesirable way with the semantics of approximate comparisons� In particular� this approach
does not preserve the standard semantics of conditional equality if jj�jjX is approximately 	�

Example ���� Consider the knowledge base��

KB � �jjPenguin�x�jjx �� 	� � �kFly�x�jPenguin�x�kx �� 	��

We expect this to mean that the proportion of penguins is very small �arbitrarily close to 	
in large domains�� but also that the proportion of �iers among penguins is also very small�
However� if we attempt to interpret conditional proportions as discussed above� we obtain the
knowledge base

KB � � �jjPenguin�x�jjx �� 	� � �jjFly�x� � Penguin�x�jjx �� 	 � jjPenguin�x�jjx��

which is equivalent to

�jjPenguin�x�jjx �� 	�� �jjFly�x� � Penguin�x�jjx �� 	��

�We remark that� here and in our examples below� the actual choice of subscript for � is unimportant	
However� we use di�erent subscripts for di�erent approximate comparisons unless the tolerances for the di�erent
measurements are known to be the same	
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This last formula simply asserts that the proportion of penguins and the proportion of �ying
penguins are both small� but says nothing about the proportion of �iers among penguins� In
fact� the world where all penguins �y is consistent with KB �� Clearly� the process of multiplying
out across an approximate connective does not preserve the intended interpretation of the
formulas�

Because of this problem� we cannot treat conditional proportions as abbreviations and
instead have added them as primitive expressions in the language� Of course� we now have to
give them a semantics that avoids the problem illustrated by Example ���� We would like to
maintain the conventions used when we had equality in the language� Namely� in worlds where
jj��x�jjx �� 	� we want k��x�j��x�kx to denote the fraction of elements satisfying ��x� that also
satisfy ��x�� In worlds where jj��x�jjx � 	� we want all formulas of the form k��x�j��x�kx �i �
or k��x�j��x�kx �i � to be true� There are a number of ways of accomplishing this� The route
we take is perhaps not the simplest� but it introduces machinery that will be helpful later�

We give semantics to the language L� by providing a translation from formulas in L�

to formulas in a language L� whose semantics is more easily described� The language L� is
essentially the language of �Hal�	�� that uses true equality rather than approximate equality�
More precisely� the de
nition of L� is identical to the de
nition of L� given in De
nition ����
except that�

� we use � and � instead of �i and �i�

� we allow the set of proportion expressions to include arbitrary real numbers �not just
rational numbers��

� we do not allow conditional proportion expressions�

� we assume that L� has a special family of variables �i� interpreted over the reals�

As we shall see� the variable �i is used to interpret the approximate equality connectives �i and
�i� We view an expression in L� that uses conditional proportion expressions as an abbreviation
for the expression obtained by multiplying out�

The semantics for L� is quite straightforward� and follows the lines of �Hal�	�� Recall that
we give semantics to L� in terms of worlds � or 
nite 
rst�order models� For any natural number
N � let WN�!� consist of all worlds with domain D � f�� � � � � Ng over the vocabulary !�

Now� consider a world W � WN �!�� a valuation V � X 
 f�� � � � � Ng for the variables in
X � and a tolerance vector 
� � We simultaneously assign to each proportion expression � a real
number ���	W�V���
 and to each formula � a truth value with respect to �W�V�
��� Most of the
clauses of the de
nition are completely standard� so we omit them here� In particular� variables
are interpreted using V � each tolerance variable �i is interpreted as denoting the tolerance
�i� the predicates and constants are interpreted using W � the Boolean connectives and the

rst�order quanti
ers are de
ned in the standard fashion� and when interpreting proportion
expressions� the real numbers� addition� multiplication� and � are given their standard meaning�
It remains to interpret proportion terms� Recall that we eliminate conditional proportion terms
by multiplying out� so that we need to deal only with unconditional proportion terms� If � is
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the proportion expression jj�jjxi������xik �for i� � i� � � � � � ik�� then

���	W�V���
 �
�

jDjk

�����d�� � � � � dk� � Dk � �W�V �xi��d�� � � � � xik�dk�� 
�� j� �
�����

Thus� if W � WN�!�� the proportion expression jj�jjxi������xik denotes the fraction of the Nk

k�tuples of domain elements in D that satisfy �� For example� �jjChild�x� y�jjx�	W�V���
 is the
fraction of domain elements d that are children of V �y��

We now show how a formula � � L� can be associated with a formula �� � L�� We proceed
as follows�

� every proportion formula � �i �
� in � is �recursively� replaced by � � �� � �i�

� every proportion formula � �i �
� in � is �recursively� replaced by the conjunction ����� �

�i� � �� � � � � �i��

� 
nally� conditional proportion expressions are eliminated as in �Hal�	��s semantics� by
multiplying out�

This translation allows us to embed L� in L�� Thus� for the remainder of the paper� we regard
L� as a sublanguage of L�� We can now easily de
ne the semantics of formulas in L�� For
� � L�� we say that �W�V�
�� j� � i� �W�V�
�� j� ��� It is sometimes useful to incorporate
particular values for the tolerances into the formula ��� Thus� let ��
� � represent the formula
that results from �� if each variable �i is replaced by �i� its value according to 
� ��

Typically we are interested in closed sentences� that is� formulas with no free variables� In
that case� it is not hard to show that the valuation plays no role� Thus� if � is closed� we write
�W�
�� j� � rather than �W�V�
�� j� ��

��� Degrees of belief

As we explained in the introduction� we give semantics to degrees of belief by considering all
worlds of size N to be equally likely� conditioning on KB � and then checking the probability of
� over the resulting probability distribution� In the previous section� we de
ned what it means
for a sentence � to be satis
ed in a world of size N using a tolerance vector 
� � Given N and

� � we de
ne "worlds��N ��� to be the number of worlds in WN�!� such that �W�
�� j� �� Since
we are taking all worlds to be equally likely� the degree of belief in � given KB with respect to
WN and 
� is

Pr��N��jKB� �
"worlds��N�� �KB�

"worlds��N�KB�
�

If "worlds��N �KB� � 	� this degree of belief is not well�de
ned��

�Note that some of the tolerances �i may be irrational� it is for this reason that we allowed arbitrary real
numbers in proportion expressions in L�	

	Strictly speaking� we should write �worlds
���N ��� rather than �worlds��N ���� since the number also depends
on the choice of � and �� 	 Indeed� we do so in the one place where this dependence matters �Theorem �	���	
Fortunately� when computing degrees of belief� this dependence �cancels out�� as shown in �GHK��a�� the degree
of belief Pr��N ��jKB� is independent of our choice of vocabulary� as long as it contains � and KB 	

��



Typically� we know neither N nor 
� exactly� All we know is that N is �large� and
that 
� is �small�� Thus� we would like to take our degree of belief in � given KB to be
lim����
 limN�� Pr��N ��jKB�� Notice that the order of the two limits over 
� and N is important�
If the limit lim����
 appeared last� then we would gain nothing by using approximate equality�
since the result would be equivalent to treating approximate equality as exact equality�

This de
nition� however� is not su�cient� the limit may not exist� We observed above that
Pr��N��jKB� is not always well�de
ned� In particular� it may be the case that for certain values
of 
� � Pr��N��jKB� is not well�de
ned for arbitrarily large N � In order to deal with this problem
of well�de
nedness� we de
ne KB to be eventually consistent if for all su�ciently small 
� and
su�ciently large N � "worlds��N�KB� � 	� Among other things� eventual consistency implies
that the KB is satis
able in 
nite domains of arbitrarily large size� For example� a KB stating
that �there are exactly � domain elements� is not eventually consistent� For the remainder of
the paper� we assume that all knowledge bases are eventually consistent�

Even if KB is eventually consistent� the limit may not exist� For example� it may be the
case that for some i� Pr��N ��jKB� oscillates between � # �i and � � �i as N gets large� In this
case� for any particular 
� � the limit as N grows will not exist� However� it seems as if the
limit as 
� grows small �should�� in this case� be �� since the oscillations about � go to 	� We
avoid such problems by considering the lim sup and lim inf � rather than the limit� For any set
S � IR� the in
mum of S� inf S� is the greatest lower bound of S� The lim inf of a sequence is
the limit of the in
mums� that is�

lim inf
N��

aN � lim
N��

inffai � i � Ng�

The lim inf exists for any sequence bounded from below� even if the limit does not� The lim
sup is de
ned analogously� where supS denotes the least upper bound of S� If limN�� aN
does exist� then limN�� aN � lim infN�� aN � lim supN�� aN � Since� for any 
� � the sequence
Pr��N��jKB� is always bounded from above and below� the lim sup and lim inf always exist�
Thus� we do not have to worry about the problem of nonexistence for particular values of 
� �
We can now present the 
nal form of our de
nition�

De�nition ���� If

lim
����


lim inf
N��

Pr��N ��jKB� and lim
����


lim sup
N��

Pr��N ��jKB�

both exist and are equal� then the degree of belief in � given KB � written Pr���jKB�� is de
ned
as the common limit� otherwise Pr���jKB� does not exist�

We point out that� even using this de
nition� there are many cases where the degree of belief
does not exist� However� as some of our examples show� in many situations the nonexistence
of a degree of belief can be understood intuitively� and is sometimes related to the existence of
multiple extensions of a default theory� �See Sections ��� and ��� and �GHK�����

We remark that Shastri �Sha��� used a somewhat similar approach to de
ning degrees of
belief� His language does not allow the direct expression of statistical information� but does
allow us to talk about the number of domain individuals that satisfy a given predicate� He
then gives a de
nition of degree of belief similar to ours� Since he has no notion of approximate
equality in his language� and presumes a 
xed domain size �an assumption we wish to avoid��
he does not have to deal with limits as we do�
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��� Statistical interpretation for defaults

As we mentioned in the introduction� there are many similarities between direct inference from
statistical information and default reasoning� To capitalize on this observation� and to be able
to use random worlds as a default reasoning system� we need to interpret defaults as statistical
statements� However� 
nding the appropriate statistical interpretation is not straightforward�
For example� as is well known� if we interpret �Birds typically �y� as �Most �i�e�� more than
�	
 of� birds �y�� then we get a default system that fails to satisfy some of the most basic
desiderata� such as the And rule� discussed in Section ���� Using a higher 
xed threshold in a
straightforward way does not help� More successfully� Adams �Ada���� and later Ge�ner and
Pearl �GP�	�� suggested an interpretation of defaults based on �almost all�� In their framework�
this is done using extreme probabilities�conditional probabilities that are arbitrarily close to ��
i�e�� within �� 
 for some 
� and considering the limit as 

 	� The basic system derived from
this idea is called 
�semantics� Later� stronger systems �that are able to make more inferences�
based on the same probabilistic idea were introduced �see Pearl �Pea��� for a survey��

The intuition behind 
�semantics and its extensions is statistical� However� since the lan�
guage used in these approaches is propositional� this intuition cannot be expressed directly�
Indeed� these approaches typically make no distinction between the statistical nature of the
default and the degree of belief nature of the default conclusion� We are able to capture this
intuition more directly in our approach� since we can make this distinction explicitly� Recall
that we interpret a statement such as �Birds typically �y� statistically� using the approximate
statement kFly�x�jBird�x�kx �i � for some i� �Thus� the use of an approximate connective to
compare proportion expressions is not purely a technical convenience�� Clearly� we can view
our statistical interpretation of defaults as a generalization of the extreme probabilities inter�
pretation of defaults to the 
rst�order case� The connection between our work and 
�semantics
extends beyond the issue of representation� there is a deeper sense in which we can view our
approach as the generalization of one of the extensions of 
�semantics� namely the maximum�
entropy approach of Goldszmidt� Morris� and Pearl �GMP�	�� to the 
rst�order setting� This
issue is discussed in more detail in Section �� where it is shown that this maximum�entropy
approach can be embedded in our framework�

Of course� the fact that our syntax is so rich allows us to express a great deal of information
that simply cannot be expressed in any propositional approach� We observed earlier that a
propositional approach that distinguishes between default knowledge and contextual knowledge
has di�culty in dealing with the elephant�zookeeper example �see Section ����� This example
is easily dealt with in our framework�

Example ��� � The following knowledge base� KB likes� is a formalization of the elephant�
zookeeper example� Recall� this problem concerns the defaults that �a� Elephants typically like
zookeepers� but �b� Elephants typically do not like Fred� As discussed earlier� simply expressing
this knowledge sensibly can be a considerable challenge� We have no problems� however�

kLikes�x� y�jElephant�x�� Zookeeper�y�kx�y �� � �
kLikes�x�Fred�jElephant�x�kx �� 	 �
Zookeeper�Fred� � Elephant�Clyde� � Zookeeper�Eric��
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Furthermore� our interpretation of defaults allows us to deal well with interactions between

rst�order quanti
ers and defaults�

Example ��	� We may know that people who have at least one tall parent are typically tall�
This default can easily be expressed in our language�

kTall�x�j�y �Child�x� y�� Tall�y��kx �i ��

We can even de
ne defaults over classes themselves de
ned using default rules �as discussed by
Morreau �Mor�����

Example ��
� In Section ���� we discussed the problem of expressing the nested default �Typ�
ically� people who normally go to bed late normally rise late�� To express this default we can
simply use nested proportion statements� The individuals who normally rise late are those who
rise late most days� they are the x�s satisfying kRises�late�x� y�jDay�y�ky �� �� Similarly� the
individuals who normally go to bed late are the x�s satisfying kTo�bed�late�x� y��jDay�y��ky�

�� �� Thus we can capture the default by saying most x�s that go to bed late also rise late� as
in the knowledge base KB late����kRises�late�x� y�jDay�y�ky �� �

��� kTo�bed�late�x� y��jDay�y��ky� �� �
���
x
�� ��

On the other hand� the related default that �Typically� people who go to bed late rise late
�i�e�� the next morning�� can be expressed as����Rises�late�x�Next�day�y�� ��� Day�y� � To�bed�late�x� y�

���
x�y
�� ��

which is clearly di�erent from the 
rst default�

� Properties of random worlds

We now show that the random�worlds method validates several desirable reasoning patterns�
including essentially all of those discussed in Sections � and �� As we have seen� this success
contrasts with many other theories of reference�class and default reasoning� Furthermore� all
properties we validate are derived theorems� rather than being deliberately built into the rea�
soning process� We also note that all the results in this section hold for our language in its
full generality� the formulas can contain arbitrary function and predicate symbols �including
non�unary predicates�� and have nested quanti
ers and proportion statements� Finally� we note
that the theorems we state are not the most general ones possible� It is quite easy to construct
examples for which the conditions of the theorems do not hold� but random worlds still gives
the intuitively plausible answer� Hence� we could 
nd other theorems that deal with additional
cases� The main di�culty in doing this is in 
nding conditions that are easy to state and check�
and yet cover an interestingly large class of examples� The problems in doing so are a direct
consequence of the richness of our language� There are many interesting properties that hold
in most cases� but� unfortunately� are not universally true� we can use the expressive power of
our language to construct counterexamples to them� These counterexamples are usually rather
contrived� and so seem unlikely to arise in a real knowledge base� but it is very di�cult to 
nd
easily stated syntactic conditions that disallow them� This is why we have concentrated on the
simple� but nevertheless quite powerful� theorems we state below�
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��� Random worlds and default reasoning

In this subsection� we focus on formulas which are assigned degree of belief �� Given any
knowledge base KB �which can� in particular� include defaults using the statistical interpreta�
tion of Section ����� we say that � is a default conclusion from KB � and write KB j�rw �� if
Pr���jKB� � �� As we now show� the relation j�rw satis
es all the basic properties of default
inference discussed in Section ���� We start by proving two somewhat more general results�

Proposition 	��� If j� KB 
 KB �� then Pr���jKB� � Pr���jKB �� for all formulas ���

Proof� By assumption� precisely the same set of worlds satisfy KB and KB �� Therefore� for
all N and 
� � Pr��N��jKB� and Pr��N��jKB

�� are equal� Therefore� the limits are also equal�

Proposition 	��� If KB j�rw �� then Pr���jKB� � Pr���jKB � �� for any ��

Proof� Fix N and 
� � Then� by the standard properties of conditional probability� we get

Pr��N��jKB� � Pr��N��jKB � �� �Pr��N ��jKB� # Pr��N��jKB � ��� � Pr��N���jKB��

By assumption� Pr��N ��jKB� tends to � when we take limits� so the 
rst summand tends to
Pr���jKB � ��� Since Pr��N���jKB� has limit 	 and Pr��N ��jKB � ��� is bounded� the second
summand tends to 	� The result follows�

Theorem 	��� The relation j�rw satis�es the properties of And� Cautious Monotonicity� Cut�
Left Logical Equivalence� Or� Re�exivity� and Right Weakening�

Proof�

And	 As we mentioned in Section ���� this follows from the other properties proved below�

Cautious Monotonicity and Cut	 These follow immediately from Proposition ����

Left Logical Equivalence	 Follows immediately from Proposition ����

Or	 Assume Pr���jKB� � Pr���jKB �� � �� so that Pr����jKB� � Pr����jKB �� � 	� Fix
N and 
� � Then

Pr��N ���jKB �KB �� � Pr��N ��� � �KB �KB ��jKB � KB ��

� Pr��N ��� �KB jKB �KB �� # Pr��N ��� �KB �jKB �KB ��

� Pr��N ���jKB� # Pr��N���jKB
���

Taking limits� we conclude that Pr����jKB�KB �� � 	� It follows that �KB�KB �� j�rw ��

Re�exivity	 Because we restrict our attention toKB �s that are eventually consistent� Pr��KB jKB�
is well�de
ned� But then Pr��KB jKB� is clearly equal to ��

�By Pr���jKB� � Pr���jKB �� we mean that either both degrees of belief exist and have the same value� or
neither exists	 Proposition �	� should be interpreted analogously	
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Right Weakening	 Suppose Pr���jKB� � �� If j� � � ��� then the set of worlds satisfying ��

is a superset of the set of worlds satisfying �� Therefore� for any N and 
� � Pr��N��
�jKB� �

Pr��N ��jKB�� Taking limits� we obtain that

� � Pr����jKB� � Pr���jKB� � ��

and so necessarily Pr����jKB� � ��

Besides demonstrating that j�rw satis
es the minimal standards of reasonableness for a
default inference relation� these properties� particularly the stronger form of Cut and Cautious
Monotonicity proved in Proposition ���� will prove quite useful in computing degrees of belief�
especially when combined with some other properties we prove below �see also Section �����
In particular� many of our later results show how random�worlds behaves for knowledge bases
and queries that have certain restricted forms� Sometimes a KB that does not satisfy these
requirements can be changed into one that does� simply by extending KB with some of its
default conclusions� We then appeal to Proposition ��� to justify using the new knowledge base
instead of the old one� The other rules are also useful� as shown in the following analysis of
Poole�s �broken�arm� example �Poo����

Example 	��� Suppose we have predicates LeftUsable� LeftBroken� RightUsable� RightBroken�
indicating� respectively� that the left arm is usable� the left arm is broken� the right arm is
usable� and the right arm is broken� Let KB �

arm consist of the statements

� jjLeftUsable�x�jjx �� �� kLeftUsable�x�jLeftBroken�x�kx �� 	 �left arms are typically
usable� but not if they are broken��

� jjRightUsable�x�jjx �� �� kRightUsable�x�jRightBroken�x�kx �� 	 �right arms are typi�
cally usable� but not if they are broken��

Now� consider KBarm � �KB �arm � �LeftBroken�Eric� � RightBroken�Eric���� that is� we know
that Eric has a broken arm� Poole observes that if we use Reiter�s default logic� there is
precisely one extension of KBarm� and in that extension� both arms are usable� However� it
can be shown that KB �

arm � LeftBroken�Eric� j�rw �LeftUsable�Eric� �see Theorem ��� below�
and hence that KB �

arm � LeftBroken�Eric� j�rw �LeftUsable�Eric� � �RightUsable�Eric�� the
same conclusion is obtained from KB �arm � RightBroken�Eric�� By the Or rule� it follows that
KBarm j�rw �LeftUsable�Eric���RightUsable�Eric�� Using similar reasoning� we can also show
that KBarm j�rw LeftUsable�Eric��RightUsable�Eric�� By applying the And rule� we conclude
by default from KBarm that exactly one of Eric�s arms is usable� but we draw no conclusions
as to which one it is�

The 
nal property mentioned in Section ��� is Rational Monotonicity� Recall that Rational
Monotonicity asserts that if KB j�rw � and KB j��rw �� then �KB � �� j�rw �� Random worlds
satis
es Rational Monotonicity except in the situation where the limit fails to exist� That is� if
Pr���jKB � �� does exist it must be equal to �� i�e�� we must have �KB � �� j�rw � as desired�
Sometimes� however� this limit does not exist� Note that the assumption that KB j�rw � entails
that Pr���jKB� exists� But Rational Monotonicity �s other assumption� that KB j��rw �� holds
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if either Pr���jKB� has a value less than one or if this degree of belief does not exist� It is
the latter �incompatibility� of � with KB that is a potential source of problems� In this case
the combination of KB and � may fail to assign a limiting degree of belief to � even though
KB by itself did� The following theorem summarizes the status of Rational Monotonicity in
the random�worlds approach�

Theorem 	�	� Assume that KB j�rw � and KB j��rw ��� Then KB � � j�rw � provided that
Pr���jKB � �� exists� Moreover� a su�cient condition for Pr���jKB � �� to exist is that
Pr���jKB� exists�

Proof� The proofs of several results� including this one� appear in the appendix�

��� Speci�city and inheritance in random worlds

One way of using random worlds is to derive conclusions about particular individuals� based on
general statistical knowledge� This is� of course� the type of reasoning reference�class theories
were designed to deal with� Recall� these theories aim to discover a single piece of data�the
statistics for a single reference class�that summarizes all the relevant information� This idea is
also useful in default reasoning� where we sometimes want to 
nd a single appropriate default�
Random worlds rejects this idea as a general approach� but supports it as a valuable heuristic
in special cases�

In this section� we give two theorems covering some of the cases where random worlds
agrees with the basic philosophy of reference classes� Both results concern speci�city�the idea
of using the �smallest� relevant reference class for which we have statistics� However� both
results also allow some indi�erence to irrelevant information� In particular� the second theorem
also covers certain forms of inheritance �as described in Section ����� The results cover almost
all of the noncontroversial applications of speci
city and inheritance that we are aware of� and
do not su�er from any of the commonly found problems such as the disjunctive reference class
problem �see Section ����� Because our theorems are derived properties rather than postulates�
consistency is assured and there are no ad hoc syntactic restrictions on the choice of possible
reference classes� We remark that Shastri �Sha��� has also observed that irrelevance properties
hold in his framework�

Our 
rst� and simpler� result is basic direct inference� where we have a single reference class
that is precisely the �right one�� That is� assume that the assertion ��c� represents everything
the knowledge base tells us about the constant c� In this case� we can view the class de
ned by
��x� as the class of all individuals who are �just like c�� If we have adequate statistics for the
class ��x�� then we should clearly use this information� For example� assume that all we know
about Eric is that he exhibits jaundice� and let � represent the class of patients with jaundice�
If we know that �	
 of patients with jaundice exhibit hepatitis� then basic direct inference
would dictate a degree of belief of 	�� in Eric having hepatitis� We would� in fact� like this to
hold regardless of any other information we might have in the knowledge base� For example� we
may know the proportion of hepatitis among patients in general� or that patients with jaundice
and fever typically have hepatitis� But if all we know about Eric is that he has jaundice� we
would still like to use the statistics for the class of patients with jaundice� regardless of the
additional information�
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Our result essentially asserts the following� �If we are interested in obtaining a degree of
belief in ��c�� and the KB is of the form ��c�� k��x�j��x�kx � � � KB �� then conclude that
Pr����c�jKB� � ��� �Here� KB � is simply intended to denote the rest of KB � whatever it may
be�� Clearly� in order for the result to hold� we must make certain assumptions� The 
rst is
that ��c� represents all the information we have about c� This is formalized by assuming that
KB � does not mention c� However� we need to make one other assumption� that c also does not
appear in either ��x� or ��x�� To understand why c cannot appear in ��x�� suppose that ��x� is
Q�x��x � c� ��x� is true� and the KB is k��x�jtruekx �� 	��� If the result held in this case�
we would erroneously conclude that Pr����c�jKB� � 	��� But since ��c� holds vacuously� we
actually obtain Pr����c�jKB� � �� To see why the constant c cannot appear in ��x�� suppose
that ��x� is �P �x�� x �� c�� �P �x�� ��x� is P �x�� and the KB is ��c�� kP �x�j��x�kx �� 	���
Again� if the result held� we would be able to conclude that Pr��P �c�jKB� � 	��� But ��c� is
equivalent to �P �c�� so in fact Pr��P �c�jKB� � 	�

As we now show� these assumptions su�ce to guarantee the desired result� In fact� the
theorem generalizes the basic principle to properties and classes dealing with more than one
individual at a time �as is demonstrated in some of the examples following the theorem�� In
the following� let 
x � fx�� � � � � xkg and 
c � fc�� � � � � ckg be sets of distinct variables and distinct
constants� respectively� Furthermore� we use ��
x� to indicate that all of the free variables in
the formula � are in 
x� and we use ��
c � to denote the new formula formed by substituting each
xi by ci in �� Note that � may contain other constants not among the ci�s� these are una�ected
by the substitution�

Theorem 	�
� Let KB be a knowledge base of the form ��
c � � KB �� and assume that for all
su�ciently small tolerance vectors 
� �

KB �
� � j� k��
x�j��
x�k�x � ��� ���

If no constant in 
c appears in KB �� in ��
x�� or in ��
x�� then Pr����
c �jKB� � ��� ��� provided
the degrees of belief exist��


Proof� First� 
x any su�ciently small tolerance vector 
� � and consider a domain size N for
which KB �
� � is satis
able� The proof strategy is to partition the size N worlds that satisfy
KB �
� � into disjoint clusters and then prove that� within each cluster� the probability of ��
c � is
in the range ��� ��� From this� we can show that the �unpartitioned� probability is in this range
also�

The size N worlds satisfying KB �
� � are partitioned so that two worlds are in the same
cluster if and only if they agree on the denotation of all symbols in the vocabulary ! except for
the constants in 
c � Now consider one such cluster� and let A 	 f�� � � � � Ngk be the denotation
of ��
x� inside the cluster� That is� if W is a world in the cluster� then

A � f�d�� � � � � dk� � f�� � � � � Ng
k � �W�V �xi��d�� � � � � xik�dk�� 
�� j� ��
x�g�

Note that� since ��
x� does not mention any of the constants in 
c � and the denotation of
everything else is 
xed throughout the cluster� the set A is the same in all worlds W of the

��The degree of belief may not exist since lim����� liminfN�� Pr��N ��jKB� may not be equal to
lim����� limsupN�� Pr��N ��jKB�	 However� it follows from the proof of the theorem that both these limits
lie in the interval �����	 A similar remark holds for many of our later results	
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cluster� Similarly� let B 	 A be the denotation of ��
x����
x� in the cluster� Since the worlds in
the cluster all satisfy KB �
� �� and KB �
� � j� k��
x�j��
x�k�x � ��� ��� we know that jBj�jAj � ��� ���
Since none of the constants in 
c are mentioned in KB except for the statement ��
c �� each k�
tuple in A is a legal denotation for 
c � There is precisely one world in the cluster for each
such denotation� and all worlds in the cluster are of this form� Among those worlds� only
those corresponding to tuples in B satisfy ��
c �� Therefore� the fraction of worlds in the cluster
satisfying ��
c � is jBj�jAj � ��� ���

The probability Pr��N���
c �jKB� is a weighted average of the probabilities within the indi�
vidual clusters� so it also has to be in the range ��� ���

It follows that lim infN�� Pr��N ���
c �jKB� and lim supN�� Pr��N���
c �jKB� are also in the
range ��� ��� Since this holds for every su�ciently small 
� � we conclude that if both limits

lim
����


lim inf
N��

Pr��N ���
c �jKB� and lim
����


lim sup
N��

Pr��N ��jKB�

exist and are equal� then Pr����
c �jKB� has to be in the range ��� ��� as desired�

Theorem ��� refers to any statistical information about k��
x�j��
x�k�x that can be inferred
from the knowledge base� An important special case is when the knowledge base contains the
relevant information explicitly�

Corollary 	��� Let KB � be the conjunction

��
c � � �� �i k��
x�j��
x�k�x �j �� �

Let KB be a knowledge base of the form KB ��KB �� such that no constant in 
c appears in KB ���
in ��
x�� or in ��
x�� Then� if the degree of belief exists� we have

Pr����
c �jKB� � ��� ���

Proof� Let 
 � 	� and let 
� be su�ciently small so that �i� �j � 
� For this 
� � the formula
�� �i k��
x�j��
x�k�x �j �� implies k��
x�j��
x�k�x � �� � 
� � # 
�� Therefore� by Theorem ����
Pr����
c �jKB� � ��� 
� �# 
�� But since this holds for any 
 � 	� it is necessarily the case that
Pr����
c �jKB� � ��� ���

It is interesting to note one way in which our result diverges from the reference�class
paradigm� Suppose we consider a query ��c�� and that our knowledge base KB is as in the hy�
pothesis of Corollary ���� While we can indeed conclude that Pr����
c �jKB� � ��� ��� the exact
value of the degree of belief within this interval depends on the other information in the knowl�
edge base� Thus� while random worlds certainly uses the information � �i k��x�j��x�kx �j ��
it does not ignore the rest of the knowledge base� On the other hand� if the interval ��� �� is
su�ciently small �and� in particular� when � � ��� then we may not care exactly where in the
interval the degree of belief lies� In this case� we can ignore all the information in KB �� and use
the single piece of �local� information for computing the degree of belief�

We now present a number of examples that demonstrate the behavior of the direct inference
result�
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Example 	��� Consider a knowledge base describing the hepatitis example discussed earlier�
In the notation of Corollary ����

KB �hep � Jaun�Eric� � kHep�x�jJaun�x�kx �� 	���

and
KBhep � KB �

hep � jjHep�x�jjx �� 	�	� � kHep�x�jJaun�x�� Fever�x�kx �� ��

Then Pr��Hep�Eric�jKBhep� � 	�� as desired� information about other reference classes �whether
more general or more speci
c� is ignored� Other kinds of information are also ignored� for exam�
ple� information about other individuals� Thus� Pr��Hep�Eric�jKBhep � Hep�Tom�� � 	���

Although it is nothing but an immediate application of Theorem ���� it is worth remarking
that the principle of Direct Inference for Defaults �Section ���� is satis
ed by random�worlds�

Corollary 	�
� Suppose KB implies k��
x�j��
x�k�x �i �� and no constant in 
c appears in KB�
�� or �� Then Pr����
c �jKB � ��
c �� � ��

As discussed in Section ���� this shows that simple forms of inheritance reasoning are possible�

Example 	���� The knowledge base KB�y from Section ��� is� under our interpretation of
defaults�

kFly�x�jBird�x�kx �� � � kFly�x�jPenguin�x�kx �� 	 � �x �Penguin�x�� Bird�x���

Then Pr��Fly�Tweety�jKB�y � Penguin�Tweety�� � 	� That is� we conclude that Tweety the
penguin does not �y� even though he is also a bird and birds generally do �y�

Given this preference for the most speci
c reference class� one might wonder why random
worlds does not encounter the problem of disjunctive reference classes �see Section ����� The
following example� based on the example from Section ���� provides one answer�

Example 	���� Recall the knowledge base KB �hep from the hepatitis example above� and
consider the disjunctive reference class ��x� �def Jaun�x�� ��Hep�x�� x � Eric�� Clearly� as
the domain size grows large� kHep�x�j��x�kx becomes arbitrarily close to 	��� Therefore� for
any 
xed 
 � 	

Pr�
�
kHep�x�j��x�kx � �	� 
�

��� KB �hep� � ��

We can construct a new knowledge base KB�hep � KB �
hep � kHep�x�j��x�kx � �	� 
�� Fur�

thermore� KB�hep j� ��Eric�� Hence� KB�hep contains a more speci
c reference class for
Hep�Eric� than Jaun�x� with very di�erent statistics� Yet� by Proposition ���� we know that
Pr��Hep�Eric�jKB �hep� � Pr��Hep�Eric�jKB�hep�� and in Example ��� we showed this to be
equal to 	��� So random worlds avoids using the spurious disjunctive class ��x� even in a
knowledge base that explicitly includes statistics from this class� Theorem ��� does not apply
here because the class ��x� explicitly mentions the constant Eric� Another way of seeing that

��This actually relies on the fact that� with high probability� the proportion �as the domain size grows� of
jaundiced patients with hepatitis is nonzero	 We do not prove this fact here� see �PV��� GHK��a�	
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the class ��x� does not a�ect the random�worlds computation is to observe that its statistics
are not informative� i�e�� these statistics are true in almost all worlds� Hence ��x��s statistics
places no constraints on the sets of worlds that determine the degree of belief� As we shall see
in Example ����� when we do have informative statistics for a class� those statistics can be used�
even if the class is disjunctive�

As we have said� we are not limited to unary predicates� nor to examining only one individual
at a time�

Example 	���� In Example ���� we showed how to formalize the elephant�zookeeper example
discussed in Section ���� As we now show� the natural representation of KB likes indeed yields
the answers we expect� We consider two queries� First� assume that we are interested in

nding out whether Clyde likes Eric� In this case� we can use the class of pairs ��x� y� �
Elephant�x� � Zookeeper�y�� Applying Corollary ��� to the 
rst default in KB likes� we can
conclude that Pr��Likes�Clyde�Eric�jKB likes� � �� Second� we examine whether or not Clyde
likes Fred� Applying Corollary ��� to the second default in KB likes� we can conclude that
Pr��Likes�Clyde�Fred�jKB likes� � 	� Note that we cannot apply Corollary ��� to the 
rst
default in KB likes to conclude that Clyde likes Fred� The conditions of the corollary are violated�
because the constant Fred is used elsewhere in the knowledge base�

The same principles continue to hold for more complex sentences� for example� we can mix

rst�order logic and statistical knowledge arbitrarily and we can nest defaults�

Example 	���� In Example ���� we showed how to express the default� �People who have
at least one tall parent are typically tall�� If we have this default� and also know that
�y �Child�Alice� y��Tall�y�� �Alice has a tall parent�� Corollary ��� tells us that we can conclude
by default that Tall�Alice��

Example 	���� In Example ���� we showed how the default �Typically� people who normally
go to bed late normally rise late� can be expressed in our language using the knowledge base
KB late� Let KB

�
late be

KB late � kTo�bed�late�Alice� y��jDay�y��ky� �� ��

By Corollary ���� Alice typically rises late� That is�

Pr��kRises�late�Alice� y�jDay�y�ky �� � jKB
�
late� � ��

By Cautious Monotonicity and Cut � we can add this conclusion �which is itself a default� to
KB �

late� By Corollary ��� again� we then conclude that Alice can be expected to rise late on
any particular day� say Tomorrow � So� for instance�

Pr��Rises�late�Alice�Tomorrow�jKB �late � Day�Tomorrow�� � ��

In all the examples presented so far in this section� we have statistics for precisely the
right reference class to match our knowledge about the individual�s� in question� Theorem ���
and its corollaries require this� Unfortunately� in many cases our statistical information is
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not detailed enough for Theorem ��� to apply� Consider the knowledge base KBhep from the
hepatitis example� Here we have statistics for the occurrence of hepatitis among the class of
patients who are just like Eric� so we can use these to induce a degree of belief in Hep�Eric��
But now consider the knowledge base KBhep � Tall�Eric�� Since we do not have statistics for
the frequency of hepatitis among tall patients� the results we have seen so far do not apply� We
would like to be able to ignore Tall�Eric�� But what entitles us to ignore Tall�Eric� and not
Jaun�Eric�� To solve this problem in complete generality requires a better theory of irrelevance
than we currently have� Nevertheless� our next theorem covers many cases� including many of
the less controversial examples found in the default reasoning literature�

The theorem we present deals with a knowledge base KB that de
nes a �minimal� reference
class �
 with respect to the query ��c�� More precisely� assume that KB gives statistical
information regarding k��x�j�i�x�kx for a number of di�erent classes �i�x�� Further suppose
that� among these classes� there is one class �
�x� that is minimal�all other classes are strictly
larger or entirely disjoint from it� Our result states that if we also know �
�c�� we can use the
statistics for k��x�j�
�x�kx to induce a degree of belief in ��c�� What makes this such a strong
result is that we are allowed to know more about c than just �
�c�� any extra information will
be treated as being irrelevant� This pattern of reasoning is best explained using an example�

Example 	��	� Assume we have a knowledge base KB taxonomy containing information about
birds and animals� in particular� KB taxonomy contains a taxonomic hierarchy of this domain�
Moreover� KB taxonomy contains the following information about the swimming ability of various
types of animals�

kSwims�x�jPenguin�x�kx �� 	�� �
kSwims�x�jSparrow�x�kx �� 	�	� �
kSwims�x�jBird�x�kx �� 	�	� �
kSwims�x�jAnimal�x�kx �� 	�� �
kSwims�x�jFish�x�kx �� ��

If we also know that Opus is a penguin� then in order to determine whether Opus swims the
best reference class is surely the class of penguins� The remaining classes are either larger �in
the case of birds or animals�� or disjoint �in the case of sparrows and 
sh�� This is the case
even if we know that Opus is a black penguin with a large nose� That is� Opus inherits the
statistics for the minimal class �
�penguins�even though the class of individuals just like
Opus is smaller than �
�

That random�worlds validates this intuition is formalized in the next theorem� This theorem
requires that no symbol in ��x� appear in the knowledge base other than in statistics of the
form k��x�j��x�kx for various ��x�� This is necessary for our assumption of a unique minimal
reference class to be a practical one� Suppose that� in violation of this condition� the knowledge
base contains �x���x� � ��x��� Clearly ��x� is in fact a reference class for ��x� �where the
statistic is �		
�� But if we identify reference classes only by looking for terms of the form
k��x�j��x�kx� we will not notice this� Obviously the minimality assumption needs to consider
all reference classes� irrespective of syntactic form� But because 
rst�order logic provides many
subtle and nonobvious ways to constrain statistics relating to ��x�� we simplify the issue by
assuming that the only mention of information that might be related to ��x� is contained in
explicit statistical assertions�
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Theorem 	��
� Let c be a constant and let KB be a knowledge base satisfying the following
conditions	


a� KB j� �
�c��


b� for any expression of the form k��x�j��x�kx in KB� it is the case that either KB j�
�x��
�x�� ��x�� or that KB j� �x��
�x�� ���x���


c� the 
predicate� function� and constant� symbols in ��x� appear in KB only on the left�hand
side of the conditionals in the proportion expressions described in condition 
b��


d� the constant c does not appear in the formula ��x��

Assume that for all su�ciently small tolerance vectors 
� 	

KB �
� � j� k��x�j�
�x�kx � ��� ���

Then Pr����c�jKB� � ��� ��� provided the degree of belief exists�

Proof� The proof of this theorem is based on the same clustering argument used in the proof
of Theorem ���� but with a di�erent de
nition of a cluster� See the appendix for details�

Again� the following analogue to Corollary ��� is immediate�

Corollary 	���� Let KB � be the conjunction

�
�c�� �� �i k��x�j�
�x�kx �j ���

Let KB be a knowledge base of the form KB � � KB �� that satis�es conditions 
b�� 
c�� and 
d�
of Theorem ��
�� Then� if the degree of belief exists�

Pr����c�jKB� � ��� ���

This theorem and corollary have many useful applications�

Example 	���� Consider the knowledge bases KB �hep and KBhep concerning jaundice and
hepatitis from Example ���� In that example� we supposed that the only information about
Eric contained in the knowledge base was that Eric has jaundice� It is clearly more realistic to
assume that Eric�s hospital records contain more information than just this fact� Theorem ����
allows us to ignore this information in a large number of cases�

For example�

Pr��Hep�Eric�jKB �hep � Fever�Eric� � Tall�Eric�� � 	���

as desired� On the other hand�

Pr��Hep�Eric�jKBhep � Fever�Eric� � Tall�Eric�� � ��

�Recall that KBhep includes kHep�x�jJaun�x� � Fever�x�kx �� �� while KB
�
hep does not�� This

shows why it is important that we identify the most speci
c reference class for the query �� The
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most speci
c reference statistic for Hep�Eric� with respect to KB �
hep�Fever�Eric��Tall�Eric�

is kHep�x�jJaun�x�kx �� 	��� while with respect to KBhep � Fever�Eric� � Tall�Eric� it is
kHep�x�jJaun�x�� Fever�x�kx �� �� In the latter case� the less�speci
c reference classes Jaun
and true are ignored� and in both cases Theorem ���� allows us to ignore the extra information
Tall�Eric�� Note that the theorem does not allow us to conclude that

Pr��Hep�Eric�jKBhep � Tall�Eric�� � 	���

The class Jaun is no longer the unique most speci
c reference class� since we also have statistics
for the more speci
c class Jaun � Fever � Nevertheless� this conclusion is� in fact� reached by
random worlds�

As discussed in Section ���� various inheritance properties are considered desirable in default
reasoning as well� To begin with� we note that Theorem ���� covers the simpler cases �which
can also be seen as applications of rational monotonicity��

Example 	��
� In simple cases� Theorem ���� shows that random worlds is able to apply
defaults in the presence of �obviously irrelevant� additional information� For example� using
the knowledge base KB�y �see Example ���	��

Pr��Fly�Tweety�jKB ��y � Penguin�Tweety� � Yellow�Tweety�� � 	�

That is� Tweety the yellow penguin is still not able to �y�

Theorem ���� also validates more di�cult reasoning patterns that have caused problems for
many default reasoning theories� In particular� we validate exceptional�subclass inheritance�
in which a class that is exceptional in one respect can nevertheless inherit other unrelated
properties�

Example 	���� If we consider the property of warm�bloodedness as well as �ight� we get�

Pr�

�
Warm�blooded �Tweety�

����� KB�y � Penguin�Tweety� �
kWarm�blooded�x�jBird�x�kx �� �

�
� ��

Knowing that Tweety does not �y because he is a penguin does not prevent us from assuming
that he is like typical birds in other respects�

The drowning�problem variant of the exceptional�subclass inheritance problem is also covered
by the theorem�

Example 	���� Suppose we know� as in Section ���� that yellow things tend to be highly
visible� Then�

Pr�

�
Easy�to�see�Tweety�

����� KB�y � Penguin�Tweety�� Yellow�Tweety� �
kEasy�to�see�x�jYellow�x�kx �� �

�
� ��

Here� all that matters is that Tweety is a yellow object� The fact that he is a bird� and an
exceptional bird at that� is rightly ignored�
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Notice that� unlike Theorem ���� the conditions of Theorem ���� do not extend to inferring
degrees of belief in ��
c �� where 
c is a tuple of constants� Roughly speaking� the reason lies
in the ability of the language to create connections between di�erent constants in the tuple�
For example� let KB � be jjHep�x� � �Hep�y�jjx�y �� 	��� By Theorem ��� �taking �
�x�� x��
to be true�� Pr��Hep�Tom� � �Hep�Eric�jKB �� � 	��� But� of course� Pr��Hep�Tom� �
�Hep�Eric�jKB � � Tom � Eric� � 	� The additional information regarding Tom and Eric
cannot be ignored� A version of Theorem ���� where we replaced c by 
c would incorrectly
attempt to ignore this information� This example might suggest that this is a problem related
only to the use of equality� but more complex examples that do not mention equality can also
be constructed�

As a 
nal example in this section� we revisit the issue of disjunctive reference classes� As
we saw in Example ����� random worlds does not su�er from the �disjunctive reference class�
problem� In Section ���� we observed that some systems avoid this problem by simply outlawing
disjunctive reference classes� which is problematic� as such classes are sometimes useful� The
next example demonstrates that random worlds does� in fact� treat disjunctive reference classes
appropriately�

Example 	���� Recall that in Section ��� we gave an example involving disjunctive reference
classes for Tay�Sachs disease� The corresponding statistical information was represented� in our
framework� as the knowledge base KB �

kTS�x�jEEJ �x�� FC�x�kx �� 	�	��

Given a baby Eric of eastern�European extraction� Theorem ���� shows us that

Pr��TS�Eric�jKB � EEJ �Eric�� � 	�	��

That is� random worlds is able to use the information derived from the disjunctive reference
class� and apply it to an individual known to be in the class� indeed� through inheritance it
also deals with the case where we have additional information determining to which of the two
populations this speci
c individual belongs� Thus� disjunctive reference classes are treated in
the same manner as other potential reference classes�

The type of speci
city and inheritance reasoning covered by the results in this section are
special cases of general inheritance reasoning� While these theorems show that random worlds
does support many noncontroversial instances of such reasoning� proving a more general theorem
asserting this claim is surprisingly subtle �partly because of the existence of numerous divergent
semantics and intuitions for inheritance reasoning �THT����� We are currently working towards
stating and proving such a general claim� for the case in which we have an inheritance hierarchy
of defaults and universal implications� On the other hand� it is easy to see that random worlds
does not validate general inheritance reasoning in an arbitrary statistical context �i�e�� where
some statistical values are less than �� and so do not state defaults�� We discuss why this
happens below� in Example ����� and argue that we should not want simple inheritance in all
contexts anyway�
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��� Competing reference classes

In previous sections we have always been careful to consider examples in which there was an
obviously �best� reference class� In practice� we will not always be this fortunate� Reference�
class theories usually cannot give useful answers when there are competing candidates for the
best class� However� random worlds does not have this problem� because the degrees of belief it
de
nes can be combinations of the values for competing classes� In this section we examine� in
very general terms� three types of competing information� The 
rst concerns con�icts between
speci
city and accuracy� the second between information that is too speci
c and information
that is too general� and the last between incomparable reference classes� so that the speci
city
principle is not applicable�

We discussed the con�ict between speci
city and accuracy in Section ���� This problem
was noticed by Kyburg� who addresses this issue with his strength rule� In Section ���� we
argued that� to assign a degree of belief to Chirps�Tweety�� we should be able to use the tighter
interval �	��� 	��� even though it is associated with a less speci
c reference class� As we observed�
Kyburg�s strength rule attempts to capture this intuition� As the following result shows� the
random worlds method also captures this intuition �without requiring any special rules�� at
least when the reference classes form a chain���

Theorem 	���� Suppose KB has the form

m	
i��

��i ��i k��x�j�i�x�kx �ri �i� � ���c� � KB ��

and� for all i� KB j� �x ��i�x� � �i���x�� � ��jj���x�jjx �� 	�� Assume also that no symbol
appearing in ��x� appears in KB � or in any �i�c�� Further suppose that� for some j� ��j � �j� is
the tightest interval� That is� for all i �� j� �i � �j � �j � �i� Then� if it exists�

Pr����c�jKB� � ��j � �j��

Proof� See the appendix�

Example 	���� The example described in Section ��� is essentially captured by the following
knowledge base KB chirps�

	�� �� kChirps�x�jBird�x�kx �� 	�� �
	 �� kChirps�x�jMagpie�x�kx �� 	��� �
�x �Magpie�x�� Bird�x�� �
Magpie�Tweety��

��Kyburg�s rule also applies to cases where the reference classes do not form a chain	 The random�worlds
method disagrees with the strength rule in these cases	 For example� if we know that ��� of Republicans are
hawks� that ��� of bankers are hawks� and that Morgan is a Republican banker� Kyburg�s strength rule would
conclude that our degree of belief that Morgan is a hawk is ���	 On the other hand� the random�worlds method
would view this as two pieces of evidence that Morgan is a hawk� it can be shown that this would result in a
degree of belief higher than ���	
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It follows from Theorem ���� that Pr��Chirps�Tweety�jKBchirps� � �	��� 	������

Next� we consider a di�erent way in which competing reference classes can arise� when one
reference class is too speci
c� and the other too general�

Example 	��	� We illustrate the problem with a example based on one of Goodwin�s �Goo����
Consider KBmagpie �

kChirps�x�jBird�x�kx �� 	�� �
kChirps�x�jMagpie�x��Moody�x�kx �� 	�� �
�x�Magpie�x�� Bird�x�� �
Magpie�Tweety��

Reference class theories would typically ignore the information about moody magpies� since
Tweety is not known to be moody� the class of moody magpies is not even a legitimate reference
class in these theories� Using such approaches� the degree of belief would be 	��� Goodwin
argues that this is not completely reasonable�why should we ignore the information about
moody magpies� Tweety could be moody �the knowledge base leaves the question open�� In
fact� it is consistent with KBmagpie that magpies are generally moody� But ignoring the second
statistic in e�ect amounts to assuming that magpies generally are not moody� It is hard to
see that this is a reasonable assumption� The random�worlds approach supports Goodwin�s
intuition� and the degree of belief that Tweety �ies� given KBmagpie� can be shown to have a
value which is less than 	���

This example illustrates a general phenomenon� if we do not have a �most appropriate�
reference class �in the sense of Theorem ����� then random worlds combines information from
more speci
c classes as well as from more general classes� Hence� as we mentioned in the pre�
vious section� random worlds does not always validate inheritance reasoning� pure inheritance
reasoning would always look to superclasses and ignore subclasses� We agree with Goodwin
that this property of pure inheritance reasoning can lead to unintuitive conclusions� especially
when we are dealing with quantitative information�

The third and most important type of con�ict is when we have incomparable reference
classes� As we argued in Section ���� this case is likely to come up often in practice� While
the complete characterization of the behavior of random worlds in such cases is somewhat
complex� the following theorem illustrates what happens when the competing references classes
are essentially disjoint� We capture �essentially disjoint� here by assuming that the overlap
between these classes consists of precisely one member� the individual c addressed in our query�
We can generalize the following theorem to the case where we simply assume that the overlap
between competing reference classes � and �� is small relative to the sizes of the two classes�
that is� where k��x�� ���x�j��x�kx � 	 and k��x�� ���x�j���x�kx � 	� For simplicity� we omit
the details of this extension here�

It turns out that� under this assumption� random worlds provides an independent derivation
of a well�known technique for combining evidence� Dempster�s rule of combination �Sha����

��Strictly speaking� a direct application of Theorem �	�� would require that KBchirps contains
��jjMagpie�x�jjx �i ��	 But the maximum�entropy techniques of Section � can be used to show that this
actually follows by default	 Hence� by Proposition �	�� we can consider this to be in KB chirps	
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Dempster�s rule addresses the issue of combining independent pieces of evidence� Consider a
query P �c�� and assume we have competing reference classes that are all appropriate for this
query� In this case� the di�erent pieces of evidence are the proportions of the property P in
the di�erent competing reference classes� More precisely� if �i�c� holds� we can view the fact
that kP �x�j�i�x�kx � �i as giving evidence of weight �i in favor of P �c�� The fact that the
intersection between the di�erent classes is �small� means that almost disjoint samples were
used to compute these pieces of evidence� thus� they can be viewed as independent� Under
this interpretation� Dempster�s rule tells us how to combine the di�erent pieces of evidence
to obtain an appropriate degree of belief in P �c�� The function used in Dempster�s rule is
� � �	� ��m 
 �	� ��� de
ned as follows�

����� � � � � �m� �

Qm
i�� �iQm

i�� �i #
Qm
i����� �i�

�

As the following theorem shows� this is also the answer obtained by random worlds� Since � is
unde
ned if some �i are equal to � while others are equal to 	� we assume that this is not the
case in the theorem�

Theorem 	��
� Let P be a unary predicate� and consider a knowledge base KB of the following
form	��

m	
i��

�kP �x�j�i�x�kx �i �i � �i�c�� �
m	

i�j��

i��j

�$x��i�x� � �j�x�� �

where either �i � � for all i � �� � � � � m� or �i � 	 for all i � �� � � � � m� Then� if neither P nor
c appear anywhere in the formulas �i�x�� then

Pr��P �c�jKB� � ����� � � � � �m��

Proof� See the appendix�

We illustrate this theorem on what is� perhaps� the most famous example of con�icting
information�the Nixon Diamond �RC���� Suppose we are interested in assigning a degree of
belief to the assertion �Nixon is a paci
st�� Assume that we know that Nixon is both a Quaker
and a Republican� and we have statistical information for the proportion of paci
sts within
both classes� This is an example where we have two incomparable reference classes for the
same query� More formally� assume that KBNixon is

kPaci�st�x�jQuaker�x�kx �� � �
kPaci�st�x�jRepublican�x�kx �� � �
Quaker�Nixon� � Republican�Nixon� �
�$x �Quaker�x� � Republican�x�� �

and that � is Paci�st�Nixon���� The degree of belief Pr���jKBNixon� takes di�erent val�
ues� depending on the values � and � for the two reference classes� If f�� �g �� f	� �g� then

��Here� ��x stands for �there exists a unique x such that� � � �	
��As pointed out above� Theorem �	�� can be generalized so that instead of asserting that Nixon is the only

Quaker Republican� it is su
cient to assert that there are very few Quaker�Republicans	
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Pr���jKBNixon� always exists and its value is equal to ��

���	���
	���
 � If� for example� � � 	���

so that the information for Republicans is neutral� we get that Pr���jKBNixon� � �� the data
for Quakers is used to determine the degree of belief� If the evidence given by the two reference
classes is con�icting�� � 	�� � ��then Pr���jKBNixon� � ��� ��� some intermediate value is
chosen� If� on the other hand� the two reference classes provide evidence in the same direction�
then the degree of belief is greater than both � and �� For example� if � � � � 	��� then
the degree of belief would be around 	���� This has a reasonable explanation� if we have two
independent bodies of evidence� both supporting �� when we combine them we should get even
more support for ��

Now� assume that our information is not entirely quantitative� For example� we may know
that �Quakers are typically paci
sts�� In our framework� this corresponds to assigning � �
�� If our information for Republicans is not a default� so that � � 	� then it follows from
Theorem ���� that Pr���jKBNixon� � �� As expected� a default �i�e�� an �extreme� value�
dominates� But what happens in the case where we have con�icting defaults for the two
reference classes� It turns out that� in this case� the limiting probability does not exist� This
is because the limit is non�robust � its value depends on the way in which the tolerances 
� tend
to 	� More precisely� if �� � ��� so that the �almost all� in the statistical interpretation of the

rst conjunct is much closer to �all� than the �almost none� in the second conjunct is closer
to �none�� then the limit is �� We can view the magnitude of the tolerance as representing the
strength of the default� Thus� in this case� the 
rst conjunct represents a default with higher
priority than the second conjunct� Symmetrically� if �� � ��� then the limit is 	� On the other
hand� if �� � ��� then the limit is ����

The nonexistence of this limit is not simply a technical artifact of our approach� The fact
that we obtain di�erent limiting degrees of belief depending on how 
� goes to 	 is closely related
to the existence of multiple extensions in many other theories of default reasoning �for instance�
in default logic �Rei�	��� Both non�robustness and the existence of more than one extension
suggest a certain incompleteness of our knowledge� It is well�known that� in the presence of
con�icting defaults� we often need more information about the strength of the di�erent defaults
in order to resolve the con�ict� Our approach has the advantage of pinpointing the type of
information that would su�ce to reach a decision� Note that our formalism does give us an
explicit way to state in this example that the two extensions are equally likely� by asserting
that the defaults that generate them have equal strength� namely� we can use �� to capture
both default statements� rather than using �� and ��� In this case� we get the answer ���� as
expected� However� it is not always appropriate to conclude that defaults have equal strength�
It is not di�cult to extend our language to allow the user to prioritize defaults� by de
ning the
relative sizes of the components �i of the tolerance vector�

As we mentioned� Theorem ���� tells us only how to combine statistics from competing
reference classes in the very special case where the intersection of the di�erent reference classes
is small� Shastri �Sha��� pp� ���%���� describes a result in the same spirit� but for a di�erent
special case� he assumes that� in addition to the statistics for P within each reference class�
the statistics for P in the general population are also known� Shastri�s result is based on
maximum entropy� Maximum entropy is in fact a very general tool for computing degrees
of belief� provided we restrict to knowledge bases that involve only unary predicates and are
well�behaved in a sense made precise in �GHK���� �See the discussion in Section ���
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��� Independence

As we have seen so far� random worlds captures a large number of the natural reasoning heuris�
tics that have been proposed in the literature� Another heuristic is a default assumption that
all properties are probabilistically independent unless we know otherwise� Random�worlds cap�
tures this principle as well� in many cases� It is� in general� very hard to give simple syntactic
tests for when a knowledge base forces two properties to be dependent� The following theorem
concerns one very simple scenario where we can be sure that no relationship is forced�

Consider two disjoint vocabularies ! and !�� and two respective knowledge base and query
pairs� KB � � � L�!�� and KB �� �� � L�!��� We can prove that

Pr���� ��jKB � KB �� � Pr���jKB�� Pr����jKB ���

That is� if there is no connection between the symbols in the two vocabularies� the two queries
will be independent� the probability of their conjunction is the product of their probabilities�
We now prove a slightly more general case� where the two queries are both allowed to refer to
some constant c�

Theorem 	���� Let !� and !� be two subvocabularies of ! that are disjoint except for the
constant c� Consider KB�� �� � L�!�� and KB�� �� � L�!��� Then

Pr���� � ��jKB� � KB�� � Pr����jKB��� Pr����jKB���

Proof� See the appendix�

Although very simple� this theorem allows us to deal with such examples as the following�

Example 	���� Consider the knowledge base KBhep� and a knowledge base stating that �	

of hospital patients are over �	 years old and that Eric is a patient�

KB	�
 �def kOver�� �x�jPatient�x�kx �� 	��� Patient�Eric�

Then

Pr��Hep�Eric�� Over�� �Eric�jKBhep � KB	�
� �

Pr��Hep�Eric�jKBhep�� Pr��Over�� �Eric�jKB	�
� � 	��� 	�� � 	����

In the case of a unary vocabulary �i�e�� one containing only unary predicates and constants��
Theorem ���� can be proved using the connection between the random�worlds method and
maximum entropy� which we discuss in Section �� It is a well�known fact that using maximum
entropy often leads to probabilistic independence� The result above proves that� with random�
worlds� this phenomenon appears in the non�unary case as well�

We remark that the connection between maximum entropy and independence is often over�
stated� For example� neither maximum entropy nor random worlds lead to probabilistic inde�
pendence in examples like the following�
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Example 	��
� Consider the knowledge base KB � describing a domain of animals�

kBlack�x�jBird�x�kx �� 	�� � jjBird�x�jjx �� 	���

It is perfectly consistent for Bird and Black to be probabilistically independent� If this were the
case� we would expect the proportion of black animals to be the same as that of black birds� In
this case� our degree of belief in Black�Clyde�� for some arbitrary animal Clyde� would also be
	��� However� this is not the case� Since all the predicates here are unary we can use maximum
entropy techniques discussed in Section � to show that Pr��Black�Clyde�jKB� � 	���� That
is� we are almost indi�erent about Clyde being black� except for a slight bias due to the fact
that he might be a bird and hence unlikely to be black�

��� The lottery paradox and unique names

In Section ��� we discussed the lottery paradox and the challenge it poses to theories of default
reasoning� How does random�worlds perform�

To describe the original problem in our framework� let Ticket�x� hold if x purchased a
lottery ticket� Consider the knowledge base consisting of

KB � �$xWinner�x�� �x �Winner�x�� Ticket�x���

That is� there is a unique winner� and in order to win one must purchase a lottery ticket� If
we also know the size of the lottery� say N � we can add to our knowledge base the assertion
�NxTicket�x� stating that there are precisely N ticket holders� �This assertion can easily be
expressed in 
rst�order logic using equality�� We also assume for simplicity that each individual
buys at most one lottery ticket� Then our degree of belief that the individual denoted by a
particular constant c wins the lottery is

Pr��Winner�c�jKB � �NxTicket�x� � Ticket�c�� �
�

N
�

Our degree of belief that someone wins will obviously be �� We would argue that these are
reasonable answers� It is true that we do not get the default conclusion that c does not win
�i�e�� degree of belief 	�� But since our probabilistic framework can and does express the
conclusion that c is very unlikely to win� this is not a serious problem �unlike in systems which
either reach a default conclusion or not� with no possibilities in between��

If we do not know the exact number of ticket holders� but have only the qualitative infor�
mation that this number is �large�� then our degree of belief that c wins the lottery is simply
Pr��Winner�c�jKB � Ticket�c�� � 	� although� as before� Pr���xWinner�x�jKB� � �� In
this case we do conclude by default that any particular individual will not win� although we
still have degree of belief � that someone does win� This shows that the tension Lifschitz sees
between concluding a fact for any particular individual and yet not concluding the universal
does in fact have a solution in a probabilistic setting such as ours�

Finally� we consider where random worlds 
ts into Poole�s analysis of the lottery paradox�
Recall� his argument concentrated on examples in which a class �such as Bird�x�� is known to
be equal to the union of a number of subclasses �Penguin�x��Emu�x�� � � ��� each of which is
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exceptional in at least one respect� However� using our statistical interpretation of defaults�
�exceptional� implies �makes up a negligible fraction of the population�� So under our in�
terpretation� Poole�s example is inconsistent� we cannot partition the set of birds into a 
nite
number of subclasses� each of which makes up a negligible fraction of the whole set� We view the
inconsistency in this case as a feature� it alerts the user that this collection of defaults cannot
all be true of the world �given our interpretation of defaults�� just as would the inconsistency
of the default �Birds typically �y� with �Birds typically do not �y� or �No bird �ies��

Our treatment of Poole�s example clearly depends on our interpretation of defaults� For
instance� we could interpret the default �Birds typically �y� as kFly�x�jBird�x�kx � � for
some appropriately chosen � which is less than �� In this case� �exceptional� subclasses �such
as penguins which are non�ying birds� can include a nonvanishing fraction of the domain�
While allowing an interpretation of default not based on �almost all� does make Poole�s KB
consistent� it entails giving up many of the attractive properties of the � � representation �such
as having default conclusions assigned a degree of belief �� and the properties summarized in
Theorem ����� An alternative solution would be to use the approach presented in �KH����
Roughly speaking� this approach interprets �almost all� as �arbitrarily close to �� whenever
such an interpretation is consistent �and thus allows us to get the bene
ts associated with this
interpretation�� If this interpretation is inconsistent� it takes �almost all� to mean �within � of
��� for � large enough to maintain consistency�

We conclude this section by remarking on another property of the random�worlds method�
Applications of default reasoning are often simpli
ed by using the unique names assumption�
which says that any two constants should �but perhaps only by default� denote di�erent objects�
In random worlds� there is a strong automatic bias towards unique names� If c� and c� are not
mentioned anywhere in KB � then Pr��c� � c�jKB� � 	 �See �GHK��� Lemma D��� for a formal
proof of this fact�� Of course� when we know something about c� and c� it is possible to 
nd
examples for which this result fails� for instance Pr��c� � c�j�c� � c����c� � c����c� � c��� �

�
�
�

It is hard to give a general theorem saying precisely when the bias towards unique names
overrides other considerations� However� we note that both of the �benchmark� examples that
Lifschitz has given concerning unique names �Lif��� are correctly handled by random�worlds�
For instance� Lifschitz�s problem C� is�

�� Di�erent names normally denote di�erent people�

�� The names �Ray� and �Reiter� denote the same person�

�� The names �Drew� and �McDermott� denote the same person�

The desired conclusion here is�

� The names �Ray� and �Drew� denote di�erent people�

Random worlds gives us this conclusion� That is�

Pr��Ray �� Drew jRay � Reiter � Drew � McDermott� � ��

Furthermore� we do not have to explicitly state a unique names default�
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� Random worlds and maximum entropy

The principle of maximum entropy is a well�known idea� useful for certain types of probabilistic
reasoning� Brie�y� the entropy of a probability distribution � over a 
nite space & is de
ned
as H��� � �

P

�� ���� ln������� It has been argued �SW��� that the entropy measures the

amount of �information� in a probability distribution� in the sense of information theory� note
that the uniform distribution has the maximum possible entropy� The principle of maximum
entropy �Jay��� addresses situations in which we have some constraints on a probability distri�
bution� which may have many solutions� but where we must decide on one particular consistent
distribution� The principle asserts that among those distributions satisfying the constraints�
the one that should be adopted is the �hopefully unique� distribution of maximum entropy�
because it incorporates the least additional information beyond the constraints themselves�

No explicit use of maximum entropy is made by random�worlds� Indeed� although they
are both tools for reasoning about probabilities� the classes of problems considered by the two
methods are seemingly disjoint� Nevertheless� it turns out that there is a surprising and very
close connection between the random�worlds approach and maximum entropy provided that
the language consists only of unary predicates and constants� In this section we brie�y describe
this connection� This result is of considerable interest simply because it hints at e�ective
computational techniques for random�worlds in the unary case� However� as we discuss below�
the connection to random�worlds is interesting for other reasons as well� For instance� we use
the connection to show that the maximum�entropy approach to default reasoning� considered
in �GMP�	�� can be embedded in our framework�

To understand the connection to maximum entropy� suppose the language consists of the
unary predicate symbols P�� � � � � Pk together with some constant symbols� �Thus� we do not
allow either function symbols or higher�arity predicates�� We can consider the �k atoms that
can be formed from these predicate symbols� namely� the formulas of the form Q� � � � � � Qk�
where each Qi is either Pi or �Pi� Then the knowledge base KB can be viewed as simply
placing constraints on the proportion of domain elements satisfying each atom� For example�
the formula kP��x�jP��x�kx � ��� says that the proportion of the domain satisfying some atom
containing P� as a conjunct is twice the proportion satisfying atoms containing both P� and P�
as conjuncts� For unary languages �only� it can be shown that every formula can be rewritten
in a canonical form from which constraints on the possible proportions of atoms can be simply
derived� Details of this and all other speci
c results can be found in �GHK���� although the
general phenomenon we are about to discuss is addressed in many places� such as �PV��� Sha���
and in statistical physics �e�g�� �Lan�	���

The set of constraints generated by KB de
nes a subset of �	� ���
k

� which we call S�KB��
That is� each vector in S�KB�� say 
p � hp�� � � � � p�ki� is a solution of the constraints de
ned by
KB �where pi is the proportion of atom i�� For example� suppose our language contains only
the two predicate symbols fP�� P�g� so that there are four atoms A� � P� � P�� A� � P� ��P��
A� � �P� � P�� and A� � �P� � �P�� Let KB � �xP��x� � jjP��x� � P��x�jjx �� 	��� The 
rst
conjunct of KB clearly constrains both p� and p� �the proportion of domain elements satisfying
atoms A� and A�� to be 	� The second conjunct forces p� to be �approximately� at most ����
Thus� S�KB� � fhp�� � � � � p�i � �	� ��� � p� � 	��� p� � p� � 	g�

The connection between maximum entropy and the random�worlds method is based on the
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following observations� With every world W � we can associate the vector 
p
W
� where pWi is

jjAi�x�jjx in W � Each vector 
p can be viewed as a probability distribution over the space of
atoms A�� � � � � A�k� we can therefore associate an entropy with each such vector� We de
ne the
entropy of W to be the entropy of 
pW � Now� consider some point 
p � S�KB�� What is the
number of worlds W � WN such that 
pW � 
p� Clearly� for those 
p where some pi is not an
integer multiple of ��N � the answer is 	� However� for those
p which are �possible�� this number
grows asymptotically as eNH	�p
� Hence� there are vastly more worldsW for which 
pW is �near�
the maximum entropy point of S�KB� than there are worlds elsewhere� This allows us to prove
the following result� If� for all su�ciently small 
� � a formula � is true in all worlds around the
maximum entropy point of S�KB�� then Pr���jKB� � ��

In the above example� the maximum�entropy point in S�KB� is 
p
�
� �	��� 	��� 	� 	�� Our

knowledge base only tells us that the size of atomA� is �approximately� less than or equal to � ��
But now� consider some small 
xed 
 and the formula ��
� � jjP��x�jjx � �	��� 
� 	��# 
�� Since
this formula certainly holds at all worlds W where 
pW is su�ciently close to 
p�� we conclude
that Pr����
�jKB� � �� This allows us to use Proposition ��� to conclude that� for any formula
�� Pr���jKB� � Pr���jKB � ��
��� In particular� this holds for � � P��c�� But now� we
can use direct inference to conclude that Pr��P��c�jKB� � �	��� 
� 	�� # 
�� Since this holds
for all su�ciently small 
� we conclude that Pr��P��c�jKB� � 	��� as desired� In �GHK��� we
formalize this argument and generalize it to more complex examples� These techniques allow us
to use a maximum entropy computation as a basis for computing degrees of belief� The resulting
procedure applies to many cases not covered by our results in Section �� Furthermore� since we
can take advantage of existing algorithms for computing maximum entropy �see �Gol��� and
the references therein�� we obtain a technique of potential practical signi
cance�

The connection to maximumentropy is important for many reasons� aside from its computa�
tional implications� Maximum entropy has been a popular technique for probabilistic reasoning
in AI and elsewhere� Two highly relevant works are the application to inheritance hierarchies
by Shastri �Sha��� and to default reasoning by Goldszmidt� Morris� and Pearl �GMP�	�� It
is desirable that such a popular technique be well�understood and motivated� rather than be
seen as an ad hoc heuristic� Random worlds� resting on the basic principle of indi�erence� pro�
vides motivation which some may 
nd more convincing than the usual information�theoretic
justi
cations�

Not only does the random�worlds method provide motivation for maximum entropy� it can
be viewed as a generalization of it� As discussed above� there is a strong connection between
the random�worlds approach and maximum entropy in the unary case �see also �GHK����� In
fact� restricted versions of some of our results from Section � can be proved using maximum
entropy �see �Sha����� But our combinatorial proof techniques are far more general �and� in
fact� simpler� than the ones based directly on entropy� The limitations of maximum entropy are
perhaps inescapable� because �as we discuss in detail in �GHK���� it is reasonable to conjecture
that maximum entropy is inherently inapplicable once we move beyond unary predicates�

Finally� our results connecting random worlds to maximum entropy can also be put to use
to help clarify the connection between random worlds and previous approaches to applying
probabilistic semantics to default reasoning� The mainstay of most of this previous work has
been the formalism of 
�semantics �GP�	�� We brie�y review 
�semantics here�

Consider a language consisting of propositional formulas �over some 
nite set of propositional
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variables P�� � � � � Pk� and default rules of the form B 
 C �read �B�s are typically C�s��� where
B and C are propositional formulas� Let & be the set of �k propositional worlds� corresponding
to the possible truth assignments to the variables� Given a probability distribution � on &� we
de
ne ��B� to be the probability of the set of worlds where B is true� We say that a distribution
� 
�satis�es a default rule B 
 C if ��CjB� � �� 
�

A parameterized probability distribution �PPD� is a collection f��g�	
 of probability distri�
butions over &� parameterized by 
� A PPD f��g�	
 
�satis
es a set R of default rules if for
every 
� �� 
�satis
es every rule r � R� A set R of default rules 
�entails B 
 C if for every
PPD that 
�satis
es R� lim��
 ���CjB� � ��

As shown in �GP�	�� 
�entailment possesses a number of reasonable properties typically
associated with default reasoning� including a preference for more speci
c information� However�

�entailment is very weak� In particular� as shown by Adams �Ada���� the consequence relation
de
ned by 
�entailment satis
es only the 
ve basic properties of default inference given in
Section ���� Hence� among other limitations� it has no ability to ignore irrelevant information�
so it cannot perform any inheritance reasoning�

In order to obtain additional desirable properties� it is necessary to restrict the class of
admissible PPD�s� Goldszmidt� Morris� and Pearl �GMP�	� focus attention on a single PPD� the
maximum entropy PPD f����Rg�	
 �See �GMP�	� for precise de
nitions and technical details��
A rule B 
 C is de
ned to be an ME�plausible consequence of R if lim��
 �

�
��R�CjB� � ��

The notion of ME�plausible consequence is analyzed in detail in �GMP�	�� where it is shown to
inherit all the nice properties of 
�entailment while successfully ignoring irrelevant information�
Equally importantly� algorithms are provided for computing the ME�plausible consequences of
a set of rules in certain cases �see also �GMP�����

Our results relating random worlds to maximum entropy can be used to show that the
approach of �GMP�	� can be embedded in our framework in a straightforward manner� We
simply convert all default rules r of the form B 
 C into formulas of the form �r �def

k�C�x�j�B�x�kx �� �� where �B is the formula obtained by replacing each occurrence of the
propositional variable pi in B with Pi�x�� Note that the formulas that arise under this con�
version all use the same approximate equality relation ��� since the approach of �GMP�	� uses
the same 
 for all default rules� Note also that propositional variables become unary predi�
cates� Hence� default rules become statistical assertions about classes of individuals� Under
this translation� we obtain the following theorem �which is proved� and discussed in more detail�
in �GHK�����

Theorem 
��� Let c be a constant symbol� Using the translation described above� for any set
R of defeasible rules� B 
 C is an ME�plausible consequence of R i�

Pr���C�c�j
	
r�R

�r � �B�c�� � ��

Hence� all the computational techniques and results described in �GMP�	� carry over to this
special case of our approach� Furthermore� unary versions of all of our theorems carry over
to the ME�plausible consequence relation� Examples demonstrating inheritance were given in
�GMP�	�� but we can now use Theorem ���� to provide a formal characterization of some
of the inheritance properties of this consequence relation� It should also be noted that our
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translation converts the default rules into statistical assertions about classes of individuals and
it converts the context � i�e�� B� into information about a particular individual �whose name we
have arbitrarily chosen to be c�� This is in keeping with the intuitive interpretations of rules
and context used by propositional default systems �see Section �����

We stress that the assumption that we use the same approximate equality relation is crucial
in Theorem ���� Ge�ner �GP��� gives an example of an anomalous conclusion obtained in the
system of �GMP�	�� Suppose the rule set R consists of the two rules P � S 
 Q and R
 �Q�
In this case� the rule P � S � R 
 Q is not an ME�plausible consequence of R� This seems
reasonable� as we have evidence for Q �P�S� and againstQ �R�� and neither peice of evidence is
more speci
c than the other� However� if we add the new rule P 
 �Q toR� then P�S�R
 Q

does become an ME�plausible consequence of R� This behavior seems counterintutive� and is
a consequence of �GMP�	��s use of the same 
 for all of the rules� Intutively� what is occuring
here is that prior to the addition of the rule P 
 �Q� the sets P �x� � S�x� and R�x� were of
comparable size� The new rule forces P �x��S�x� to be an 
�small subset of P �x�� since almost
all P �s are �Q�s� whereas almost all P �S�s are Q�s� The size of the set R�x�� on the other hand�
is una�ected� Hence� the default for the 
�smaller class P � S now takes precedence over the
class R� Once we allow a family of approximate equality connectives� each one corresponding to
a di�erent 
� we are no longer forced to derive this conclusion� An appropriate choice of �i can
make the default k�Q�x�jR�x�kx �i � so strong that the number of Q�s in the set R�x�� and
hence the number of Q�s in the subset P �x��S�x��R�x�� is much smaller than the size of the
set P �x��S�x��R�x�� In this case� the rule R
 �Q takes precedence over the rule P �S 
 Q�
With no speci
c information about the relative strengths of the defaults we get non�robustness�
as in the Nixon Diamond� That is� we draw no conclusions about P � S �R
 Q�

� Problems� Real and Imaginary

The principle of indi�erence and maximum entropy have both been subject to criticism� Any
such criticism is� at least potentially� relevant to random worlds� Hence� it is important that we
examine the di�culties that people have found� In this section� we consider problems relating
to causal reasoning� language dependence� acceptance� learning� and computation�

	�� Causal and temporal information

The random�worlds method can use knowledge bases which include statistical� 
rst�order� and
default information� When is this language su�cient� We suspect that it is� in fact� adequate
for most traditional knowledge representation tasks� Nevertheless� the question of adequacy can
be subtle� This is certainly the case for the important domain of reasoning about actions� using
causal and temporal information� In principle� there would seem to be no di�culty choosing
a suitable 
rst�order vocabulary that includes the ability to talk about time explicitly� In
the semantics appropriate to many such languages� a world might model an entire temporal
sequence of events� However� 
nding a representation with su�cient expressivity is only part
of the problem� we need to know whether the degrees of belief we derive will correctly re�ect
our intuitions about causal reasoning� It turns out that random worlds gives unintuitive results
when used with the most straightforward representations of temporal knowledge�
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This observation is not really a new one� As we have observed� the random�worlds method is
closely related to maximum entropy �in the context of a unary knowledge base�� One signi
cant
criticism of maximumentropy techniques has been that they seem to have di�culty dealing with
causal information �Hun��� Pea���� Hence� it is not surprising that the random�worlds method
also gives peculiar answers if we represent causal and temporal information naively� On the
other hand� Hunter �Hun��� has shown that maximum entropy methods can deal with causal
information� provided it is represented appropriately� We have recently shown that by using an
appropriate representation �related to Hunter�s but quite di�erent�� the random�worlds method
can also deal well with causal information �BGHK��a�� Indeed� our representation allows us to
�a� deal with prediction and explanation problems� �b� represent causal information of the type
implicit in Bayesian causal networks �Pea���� and �c� provide a clean and concise solution to
the frame problem in the situation calculus �MH���� In particular� our proposal deals well with
some of the standard problems in the area� for example the Yale Shooting Problem �HM����

The details of the proposal are beyond the scope of this paper� However� the fact we want to
emphasize here is that there may be more than one reasonable way to represent our knowledge
of a given domain� When one formulation does not work as we expect� we can look for other
ways of representing the problem� It will often turn out that the new representation captures
some subtle aspects of the domain� that were ignored by the naive representation� �We believe
that this is the case with our alternative formulation of reasoning about actions�� We return to
this issue a number of times below�

	�� Representation dependence

As we saw above� random worlds su�ers from a problem of representation dependence� causal
information is treated correctly only if it is represented appropriately� This shows that choosing
the �right� representation of our knowledge is important in the context of the random�worlds
approach�

In some ways� this representation dependence is a serious problem because� in practice� how
can we know whether we have chosen a good representation or not� Before addressing this� we
note that the situation with random worlds is actually not as bad as it might be� As we pointed
out in Section ���� the random�worlds approach is not sensitive to merely syntactic changes in
the knowledge base� logically equivalent knowledge bases always result in the same degrees of
belief� So if a changed representation gives di�erent answers� it can only be because we have
changed the semantics� we might be using a di�erent ontology� or the new representation might
model the world with a di�erent level of detail and accuracy� The representation dependence
exhibited by random worlds concerns more than mere syntax� This gives us some hope that the
phenomenon can be understood and� at least in some cases� be seen to be entirely appropriate�

Unfortunately� it does seem as if random worlds really is too sensitive� minor and seemingly
irrelevant changes can a�ect things� Perhaps the most disturbing examples concern language
dependence� or sensitivity to de
nitional changes� For instance� suppose the only predicate in
our language is White and we take KB to be true� Then Pr��White�c�jKB� � ���� On
the other hand� if we re
ne �White by adding Red and Blue to our language and having KB �

assert that �White is their disjoint union� then Pr��White�c�jKB �� � ���� The fact that simply
expanding the language and giving a de
nition of an old notion ��White� in terms of the new
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notions �Red and Blue� can a�ect the degree of belief seems to be a serious problem� There are
several approaches to dealing with this issue�

The 
rst is to declare that representation dependence is justi
ed� i�e�� that the choice of an
appropriate vocabulary is indeed a signi
cant one� which does encode some of the information
at our disposal� In our example above� we can view the choice of vocabulary as re�ecting
the bias of the reasoner with respect to the partition of the world into colors� Researchers in
machine learning and the philosophy of induction have long realized that bias is an inevitable
component of e�ective inductive reasoning� So we should not be completely surprised if it turns
out that the related area� of 
nding degrees of belief� should also depend on the bias� Of course�
if this is the case we would hope to have a good intuitive understanding of how the degrees of
belief depend on the bias� In particular� we would like to give the knowledge base designer some
guidelines to selecting the �appropriate� representation� This is an important and seemingly
di�cult problem in the context of random worlds�

A very di�erent response to the problem of representation dependence is to search for a
method of computing degrees of belief that does not su�er from it� To do this� it is important
to have a formal de
nition of representation independence� Once we have such a de
nition� we
can investigate whether there are nontrivial approaches to generating degrees of belief that are
representation independent� It is easy to see that �under a few very weak assumptions� any
approach that gives point�valued degrees of belief that act like probabilities cannot be repre�
sentation independent� This result suggests that we might generalize our concept of �degrees of
belief�� In fact� there are other reasons to consider doing this as well� In particular� there has
been considerable debate about whether the extreme precision forced by point�valued probabil�
ities is reasonable� One frequent suggestion to avoid this involves looking at intervals in �	� ��
rather than points� We suspect that interval�valued degrees of belief� if de
ned appropriately�
might in fact be representation independent in many more circumstances than� say� random
worlds� We are currently investigating this possibility�

A third response to the problem is to prove representation independence with respect to
a large class of queries� To understand this approach� consider another example� Suppose
that we know that only about half of birds can �y� Tweety is a bird� and Opus is some other
individual �who may or may not be a bird�� One obvious way to represent this information is
to have a language with predicates Bird and Fly � and take the KB to consist of the statements
kFly�x�jBird�x�kx � 	�� and Bird�Tweety�� It is easy to see that Pr��Fly�Tweety�jKB� � 	��
and Pr��Bird�Opus�jKB� � 	��� But suppose that we had chosen to use a di�erent language�
that uses the basic predicates Bird and FlyingBird � We would then take KB � to consist of the
statements kFlyingBird�x�jBird�x�kx � 	��� Bird�Tweety�� and �x�FlyingBird�x�� Bird�x���
We now get Pr��FlyingBird�Tweety�jKB �� � 	�� and Pr��Bird�Opus�jKB �� � ���� Note that
our degree of belief that Tweety �ies is 	�� in both cases� In fact� we can prove that this degree
of belief will not be a�ected by reasonable representational changes� On the other hand� our
degree of belief that Opus is a bird di�ers in the two representations� Arguably� the fact that
our degree of belief that Opus is a bird is language dependent is a direct re�ection of the fact
that our knowledge base does not contain su�cient information to assign it a single �justi
ed�
value� This suggests that it would be useful to characterize those queries that are language
independent� while recognizing that not all queries will be�
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	�� Acceptance and learning

The most fundamental assumption in this paper is that we are given a knowledge base KB and
wish to calculate degrees of belief relative this knowledge� We have not considered how one
comes to know KB in the 
rst place� That is� when do we accept information as knowledge�
We do not have a good answer to this question� This is unfortunate� since it seems plausible
that the processes of gaining knowledge and computing degrees of belief should be interrelated�
In particular� Kyburg �Kyb��� has argued that perhaps we might accept assertions that are
believed su�ciently strongly� For example� suppose we observe a block b that appears to be
white� It could be that we are is not entirely sure that the block is indeed white� it might be
some other light color� Nevertheless� if our con
dence in White�b� exceeds some threshold� we
might accept it �and so include it in KB��

The problem of acceptance in such examples� concerned with what we learn directly from
the senses� is well�known in philosophy �Jef���� But the problem of acceptance we face is even
more di�cult than usual� because of our statistical language� Under what circumstances is a
statement such as kFly�x�jBird�x�kx � 	�� accepted as knowledge� Although we regard this as
an objective statement about the world� it is unrealistic to suppose that anyone could examine
all the birds in the world and count how many of them �y� In practice� it seems that this
statistical statement would appear in KB if someone inspects a �presumably large� sample of
birds and about �	
 of the birds in this sample �y� Then a leap is made� the sample is assumed
to be typical� and we then conclude that �	
 of all birds �y� This would be in the spirit of
Kyburg�s suggestion so long as we believe that� with high con
dence� the full population has
statistics similar to those of the sample�

Unfortunately� the random�worlds method by itself does not support this leap� at least not
if we represent the sampling in the most obvious way� That is� suppose we represent our sample
using a predicate S� We could then represent the fact that �	
 of a sample of birds �y as
kFly�x�jBird�x�� S�x�kx � 	��� If the KB consists of this fact and Bird�Tweety�� we might
hope that Pr��Fly�Tweety�jKB� � ��� but it is not� In fact� random worlds treats the birds in
S and those outside S as two unrelated populations� it maintains the default degree of belief
�� �� that a bird not in S will �y��� Intuitively� random worlds is not treating S as a random
sample�

Of course� the failure of the obvious approach does not imply that randomworlds is incapable
of learning statistics� As was the case for causal reasoning� the solution may be to 
nd an
appropriate representation� Perhaps we need a representation re�ecting the fact that di�erent
individuals do not acquire their properties completely independently of each other� If we see
that an animal is tall� it may tell us something about its genetic structure and so� by this
mechanism� hint at properties of other animals� But clearly this issue is subtle� If we see a
gira�e� this tells us much less about the height of animals in general than it does about other
gira�es� and a good representation should re�ect this�

While we still hope to 
nd ways of doing sampling within random worlds� we can also look
for other ways of coping with the problem of learning� One idea is to add statements about

��A related observation� that random worlds cannot do learning �although in a somewhat di�erent sense�� was
made by Carnap �Car���� who apparently lost his enthusiasm for �his version of� random worlds for precisely
this reason	
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degrees of belief to the knowledge base� Thus� if �	
 of animals in a sample are tall� and we
believe that it is appropriate to learn this statistic� then we might add a statement such as
Pr�kTall�x�jAnimal�x�kx �� 	��� � 	�� to the KB � Although this does not �automate� the
sampling procedure� it allows us to use our belief that a sample is likely to be representative�
without committing absolutely to this fact� In particular� this representation allows further
evidence to convince the agent that a sample is� in fact� biased� Adding degrees of belief would
also let us deal with the problem of acceptance� mentioned at the beginning of this subsection�
If we believe that block b is white� but are not certain� we could write Pr�White�b�� � 	��� We
then do not have to 
x an arbitrary threshold for acceptance�

Adding degree of belief statements to a knowledge base is a nontrivial step� Up to now� all
the assertions we allowed in a knowledge base were either true or false in a given world� This is
not the case for a degree of belief statement� Indeed� our semantics for degrees of belief involve
looking at sets of possible worlds� Thus� in order to handle such a statement appropriately�
we would need to ensure that our probability distribution over the possible worlds satis
es
the associated constraint� A number of di�erent approaches to doing this are discussed in
�BGHK��b�� and shown to be essentially equivalent�

Yet another approach for dealing with the learning problem is to use a variant of random
worlds presented in �BGHK��� called the random�propensities approach� Random worlds has a
strong bias towards believing that exactly half the domain has any given property� and this is
not always reasonable� Why should it be more likely that half of all birds �y than that a third
of them do� Roughly speaking� the random�propensities approach postulates the existence of a
parameter denoting the �propensity� of a bird to �y� Initially� all propensities are equally likely�
Observing a �ying bird gives us information about the propensity of birds to �y� and hence
about the �ying ability of other birds� As shown in �BGHK���� the random propensities method
does� indeed� learn from samples� Unfortunately� random propensities has its own problems�
In particular� it learns �too often�� i�e�� even from arbitrary subsets that are not representative
samples� Given the assertion �All gira�es are tall�� random propensities would conclude that
almost everything is tall� Addressing this problem appropriately is an important issue that
deserves further investigation�

	�� Computational issues

Our goal in this research has been to understand some of the fundamental issues involved in

rst�order probabilistic and default reasoning� Until such issues are understood� it is perhaps
reasonable to ignore or downplay concerns about computation� If an ideal normative theory
turns out to be impractical for computational reasons� we can still use it as guidance in a search
for approximations and heuristics�

As we show in �GHK��b�� computing degrees of belief according to random worlds is� indeed�
intractable in general� This is not surprising� our language extends 
rst�order logic� for which
validity is undecidable��� Although unfortunate� we do not view this as an insurmountable
problem� Note that� in spite of its undecidability� 
rst�order logic is nevertheless viewed as
a powerful and useful tool� We believe that the situation with random worlds is analogous�

��Although� in fact� �nding degrees of belief using random worlds is even more intractable than the problem
of deciding validity in �rst�order logic	
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Random worlds is not just a computational tool� it is inherently interesting because of what it
can tell us about probabilistic reasoning�

But even in terms of computation� the situation with random worlds is not as bleak as it
might seem� We have presented one class of much more tractable knowledge bases� those using
only unary predicates and constants� We showed in �GHK��� and in Section � that� in this
case� we can often use maximum entropy as a computational tool in deriving degrees of belief�
While computing maximum entropy is also hard in general� there are many heuristic techniques
that work e�ciently in practical cases� As we have already claimed� this class of problems
is an important one� In general� many properties of interest can be expressed using unary
predicates� since they express properties of individuals� For example� in physics applications we
are interested in such predicates as quantum state �see �DD����� Similarly� AI applications and
expert systems typically use only unary predicates ��Che���� such as symptoms and diseases�
In fact� a good case can be made that statisticians tend to reformulate all problems in terms
of unary predicates� since an event in a sample space can be identi
ed with a unary predicate
�Sha�� Indeed� most cases where statistics are used� we have a basic unit in mind �an individual�
a family� a household� etc��� and the properties �predicates� we consider are typically relative
to a single unit �i�e�� unary predicates�� Thus� results concerning computing degrees of belief
for unary knowledge bases are quite signi
cant in practice�

Even for non�unary knowledge bases� there is hope� The intractability proofs given in
�GHK��b� use knowledge bases that force the possible worlds to mimic a Turing machine com�
putation� Typical knowledge bases do not usually encode Turing machines$ There may therefore
be many cases in which computation is practical� In particular� speci
c domains typically im�
pose additional structure� which may simplify computation� This seems to be the case� for
instance� in certain problems that involve reasoning about action�

Furthermore� as we have seen� we can compute degrees of belief in many interesting cases�
In particular� we have presented a number of theorems that tell us what the degrees of belief
are for certain important classes of knowledge bases and queries� Most of these theorems hold
for our language in its full generality� including non�unary predicates� We believe that many
more such results could be found� Particularly interesting would be more �irrelevance� results
that tell us when large parts of the knowledge base can be ignored� Such results could then be
used to reduce apparently complex problems to simpler forms� to which other techniques apply�
We have already seen in some of the examples that combining di�erent results can often let us
compute degrees of belief in cases where no single result su�ces�

	 Summary

The random�worlds approach for probabilistic reasoning is derived from two very intuitive ideas�
possible worlds and the principle of indi�erence� In spite of its simple semantics� it has many
attractive features�

� It can deal with very rich knowledge bases that involve quantitative information in the
form of statistics� qualitative information in the form of defaults� and 
rst�order informa�
tion� The language is su�ciently powerful for even fairly esoteric demands such as the
representation of nested defaults�
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� It uses a simple and well�motivated statistical interpretation for defaults� The corre�
sponding semantics allow us to examine the reasonableness of a default with respect to
our entire knowledge base� including other default rules�

� It validates many desirable properties� like a preference for more speci
c information� the
ability to ignore irrelevant information� a default assumption of unique names� the ability
to combine di�erent pieces of evidence� and more� Most importantly� these properties
arise naturally from the very simple semantics of random worlds� In particular� ad hoc
assumptions� designed to realize these properties� play no part in the de
nition of the
method�

� It avoids many of the problems that have plagued systems of reference�class reasoning
�such as the disjunctive reference class problem� and many of the problems that have
plagued systems of non�monotonic reasoning �such as exceptional�subclass inheritance
and the lottery paradox�� Many systems have been forced to work hard to avoid problems
which� in fact� never arose for us at all�

� The random�worlds approach subsumes several important reasoning systems� and gen�
eralizes them to the case of 
rst�order logic� In particular� it encompasses deductive
reasoning� probabilistic reasoning� certain theories of nonmonotonic inference� the prin�
ciple of maximum entropy� some rules of evidence combination� and more� But it is far
more powerful than any of these individual systems�

As we saw in Section �� there are certainly some problems with the random�worlds method�
We believe that these problems are far from insuperable� But� even conceding these problems
for the moment� the substantial success of random�worlds supports a few general conclusions�

One conclusion concerns the role of statistics and degrees of belief� The di�erence between
these� and the problem of relating the two� is at the heart of our work� People have long
realized that degrees of belief provide a powerful model for understanding rational behavior
�for instance� through decision theory�� The random�worlds approach shows that it is possible
to assign degrees of belief� using a principled technique� in almost any circumstance� The ideal
situation� in which we have complete statistical knowledge concerning a domain� is� of course�
dealt with appropriately by random worlds� But more realistically� even partial statistical
information �which need not be precise� can still be utilized by random worlds to give useful
answers� Likewise� completely non�numeric data� which may include defaults and or a rich

rst�order theory of some application domain� can be used� Probabilistic reasoning need not
make unrealistic demands of the user�s knowledge base� Indeed� in a sense it makes less demands
that any other reasoning paradigm we know of�

This leads to our next� more general conclusion� which is that many seemingly disparate
forms of representation and reasoning can �and� we believe� should� be uni
ed� The 
rst
two points listed above suggest that we can take a large step towards this goal by simply

nding a powerful language �with clear semantics� that subsumes specialized representations�
The advantages we have found �such as a clear and general way of using nested defaults� or
combining defaults and statistics� apply even if one rejects the random�worlds reasoning method
itself� But the language is only part of the answer� Can diverse types of reasoning really be seen
as aspects of a single more general system� Clearly this is not always possible� for instance�

��



there are surely some interpretations of �defaults� which have no interesting connection to
statistics whatsoever� However� we think that our work demonstrates that the alleged gap
between probabilistic reasoning and default reasoning is much narrower than is often thought�
In fact� the success of random worlds encourages us to hope that a synthesis between di�erent
knowledge representation paradigms is possible in most of the interesting domains�

A Proofs of results

Theorem 	�	� Assume that KB j�rw � and KB j��rw ��� Then KB � � j�rw � provided that
Pr���jKB � �� exists� Moreover� a su�cient condition for Pr���jKB � �� to exist is that
Pr���jKB� exists�

Proof� Since KB j��rw ��� Pr����jKB� �� �� so that Pr���jKB� �� 	� Therefore� there exists
some 
 � 	 for which we can construct a sequence of pairs N i� 
� i as follows� N i is an increasing
sequence of domain sizes� 
� i is a decreasing sequence of tolerance vectors� and Pr��

i

Ni��jKB� � 
�
For these pairs N i� 
� i we can conclude using standard probabilistic reasoning that

Pr��
i

Ni���jKB � �� �
Pr��

i

Ni��� � �jKB�

Pr��
i

Ni��jKB�
�

Pr��
i

Ni���jKB�

Pr��
i

Ni��jKB�
�

Since Pr����jKB� � 	� it follows that limi�� Pr��
i

Ni���jKB� � 	� Moreover� we know that

for all i� Pr��
i

Ni��jKB� � 
 � 	� We can therefore take the limit as i 
 �� and conclude that

limi�� Pr��
i

Ni���jKB � �� � 	� Thus� if Pr���jKB � �� exists� it must be ��

For the second half of the theorem� suppose that Pr���jKB� exists� Since KB j��rw ��� we
must have that Pr���jKB� � p � 	� Therefore� for all 
� su�ciently small and all N su�ciently
large �where �su�ciently large� may depend on 
��� we can assume that Pr��N ��jKB� � 
 � 	�
But now� for any such pair N�
� we can again prove that

Pr��N ���jKB � �� �
Pr��N���jKB�

Pr��N ��jKB�
�

Taking the limit� we obtain that Pr����jKB ��� must also have a limit that must be 	� Hence
Pr���jKB � �� � �� as desired�

Theorem 	��
� Let c be a constant and let KB be a knowledge base satisfying the following
conditions	


a� KB j� �
�c��


b� for any expression of the form k��x�j��x�kx in KB� it is the case that either KB j�
�x��
�x�� ��x�� or that KB j� �x��
�x�� ���x���


c� the 
predicate� function� and constant� symbols in ��x� appear in KB only on the left�hand
side of the conditionals in the proportion expressions described in condition 
b��


d� the constant c does not appear in the formula ��x��

��



Assume that for all su�ciently small tolerance vectors 
� 	

KB �
� � j� k��x�j�
�x�kx � ��� ���

Then Pr����c�jKB� � ��� ��� provided the degree of belief exists�

Proof� This theorem is proved with the same general strategy we used for Theorem ���� That
is� for each domain size N and tolerance vector 
� � we partition the worlds of size N satisfying
KB �
� � into clusters and prove that� within each cluster� the probability of ��c� is in the interval
��� ��� As before� this su�ces to prove the result� However the clusters are de
ned quite
di�erently in this theorem�

We de
ne the clusters as maximal sets of worlds satisfying the following three conditions�

�� All worlds in a cluster must agree on the denotation of every vocabulary symbol except
possibly those appearing in ��x�� Note that� in particular� they agree on the denotation
of the constant c� They must also agree as to which elements satisfy �
�x�� let this set be
A
�

�� The denotation of symbols in � must also be constant� except possibly when a member
of A
 is involved� More precisely� let A
 be the set of domain elements f�� � � � � Ng � A
�
Then for any predicate symbol R or function symbol f of arity r appearing in ��x�� and
for all worlds W � and W in the cluster� if d�� � � � � dr� dr�� � A
 then R�d�� � � � � dr� holds
in W � i� it holds in W � and f�d�� � � � � dr� � dr�� in W i� f�d�� � � � � dr� � dr�� in W �� In
particular� this means that for any constant symbol c� appearing in ��x�� if it denotes
d� � A
 in W � then it must denote d� in W ��

�� All worlds in the cluster are isomorphic with respect to the vocabulary symbols in �� More
precisely� if W and W � are two worlds in the cluster� then there exists some permutation
� of the domain such that for any predicate symbol R appearing in ��x� and any domain
elements d�� � � � � dr � f�� � � � � Ng� R�d�� � � � � dr� holds in W i� R���d��� � � � � ��dr�� holds
in W �� and similarly for function symbols� In particular� for any constant symbol c�

appearing in ��x�� if it denotes d� in W � then it denotes ��d�� in W ��

It should be clear that clusters so de
ned are mutually exclusive and exhaustive�

We now want to prove that each cluster is� in a precise sense� symmetric with respect to
the elements in A
� That is� let � be any permutation of the domain which is the identity on
any element outside of A
 �i�e�� for any d �� A
� ��d� � d�� Let W be any world in our cluster�
and let W � be the world where all the symbols not appearing in � get the same interpretation
as they do in W � while the interpretation of the symbols appearing in � is obtained from their
interpretation in W by applying � as described above� We want to prove that W � is also in the
cluster� Condition ��� is an immediate consequence of the de
nition of W �� the restriction on
the choice of � implies condition ���� condition ��� holds by de
nition� It remains only to prove
that W � j� KB �
� �� Because of condition �c� in the statement of the theorem� and the fact that
vocabulary symbols not in � have the same denotation in W and in W �� this can fail to happen
only if some expression k��x�j��x�kx has di�erent values in W and in W �� We show that this
is impossible�

It is easy to see that for all domain elements d� we have �W�V�
�� j� ��x� i� �W �� V� 
�� j�
��x�� since the symbols not in � get the same interpretation in both W and W �� On the other

��



hand� if �� is a formula that mentions only the symbols appearing in �� then a straightforward
induction on the structure of �� can be used to show that �W�V�
�� j� ���x� i� �W �� � � V�
�� j�
���x�� where � � V is the valuation that maps x to ��V �x��� Thus� if B is the set of elements
satisfying ��x� inW � then ��B� is the set of elements satisfying ��x� inW �� Let A be the set of
domain elements satisfying ��x� for worlds in this cluster� We want to show that jB�Aj�jAj �
j��B� � Aj�jAj or� equivalently� that jB � Aj � j��B� � Aj� By our observations above� the
set of domain elements satisfying ��x� � ��x� in W � is ��B� � A� By condition �b� there are
only two cases� Either KB j� �x��
�x� � ���x��� in which case A
 and A are disjoint� or
KB j� �x��
�x�� ��x��� so that A
 	 A� In the 
rst case� since � is the identity o� A
� it is
easy to see that ��B��A � B �A� and we are done� In the second case� because A
 	 A� � is
a permutation of A into itself� so we must still have j��B��Aj � jB�Aj� We conclude thatW �

does satisfy KB �
� �� and is therefore also in the cluster� Since we restricted the cluster to consist
only of worlds that are isomorphic to W in the above sense� and we have now proved that all
worlds formed in this way are in the cluster� the cluster contains precisely all such worlds�

Having de
ned the clusters� we want to show that the degree of belief of ��c� is in the range
��� �� when we look at any single cluster� By assumption� KB �
� � j� k��x�j�
�x�kx � ��� ���
Therefore� for each world in the cluster� the subset of the elements of A
 that satisfy ��x� is in
the interval ��� ��� Moreover� by condition �a�� KB also entails the assertion �
�c�� Therefore�
the denotation of c is some domain element d in A
� Condition �d� says that c does not appear
in �� and so the denotation of c is the same for all worlds in the cluster� Now consider a world
W in the cluster� and let B be the subset of A
 whose members satisfy ��x� in W � We have
shown that every permutation of the elements in A
 �leaving the remaining elements constant�
has a corresponding world in the cluster� In particular� all possible subsets B� of size jBj are
possible denotations for ��x� in worlds in the cluster� Furthermore� because of symmetry� they
are all equally likely� It follows that the 
xed element d satis
es ��x� in precisely jBj�jA
j of
the worlds in the cluster� Since jBj�jA
j � ��� ��� the probability of ��c� in any one cluster is
in this range also�

As in Theorem ���� the truth of this fact for each cluster implies its truth in general and at
the limit� In particular� since KB �
� � j� k��x�j�
�x�kx � ��� �� for every su�ciently small 
� � we
conclude that Pr����c�jKB� � ��� ��� if the limit exists�

Theorem 	���� Suppose KB has the form

m	
i��

��i ��i k��x�j�i�x�kx �ri �i� � ���c� � KB ��

and� for all i� KB j� �x ��i�x� � �i���x�� � ��jj���x�jjx �� 	�� Assume also that no symbol
appearing ��x� appears in KB � or in any �i�c�� Further suppose that� for some j� ��j� �j� is the
tightest interval� That is� for all i �� j� �i � �j � �j � �i� Then� if the degree of belief exists�

Pr����c�jKB� � ��j � �j��

Proof� The proof of the theorem is based on the following result� Consider any KB of the
form

��jj���x�jjx �� 	� � �x����x�� ��x�� � � �� k��x�j��x�kx �r � � KB �

��



where none of KB �� ��x�� ���x� mention any symbol appearing in ��x�� Then� for any 
 � 	�

Pr���� 
 � k��x�j���x�kx � � # 
 j KB� � ��

Note that this is quite similar in spirit to Theorem ����� where we proved that �under certain
conditions� an individual c satisfying ��c� �inherits� the statistics over ��x�� that is� the degree
of belief is derived from these statistics� Not surprisingly� the proof of the new result is similar
to that of Theorem ����� and we refer the reader to that proof for many of the details�

We begin by clustering worlds exactly as in the earlier proof� with ��x� playing the role
of the earlier �
�x�� Now consider any particular cluster and let A be the corresponding
denotation of ��x�� In the cluster� the proportion of A that satis
es ��x� is some � such that
�� �� � � � � # �r� �Recall that �� and �r are the tolerances associated with the approximate
comparisons �� and �r in KB�� In this cluster� the denotation of ��x� in A ranges over subsets
of A of size �jAj� From the proof of Theorem ����� we know that there is� in fact� an equal
number of worlds in the cluster corresponding to every such subset�

Now let A� be the denotation of ���x� in the cluster �recall that it follows from the con�
struction of the clusters that all worlds in a cluster have the same denotation for ���x��� For
a proportion �� � �	� ��� we are interested in computing the fraction of worlds in the cluster
such that the proportion of ��x� in A� is ��� From our discussion above� it follows that this is a
purely combinatorial question� given a set A of size n and a subset A� of size n�� how many ways
are there of choosing �n elements �representing the elements for which ��x� holds� so that ��n�

elements come from A�� We estimate this using the observation that the distribution of ��n� is
derived from a process of sampling without replacement��� Hence� it behaves according to the
well�known hypergeometric distribution �see� for example� �LM����� We can thus conclude that
�� is distributed with mean � and variance

���� ���n� n��

�n� ��n�
�
���� ��

n�
�

�

�n�
�

Since KB j� ��jj���x�jjx �� 	�� we know that n� � jA�j � ��N � Thus� this variance tends to 	
as N grows large� Now� consider the event� �a world in the cluster has a proportion of ��x�
within A� which is not in the interval ��� 
� �# 
��� By Chebychev�s inequality� this is bounded
from above by some small probability pN which depends only on ��N � That is� the fraction of
worlds in each cluster that have the �wrong� proportion is at most pN � Since this is the case for
every cluster� it is also true in general� More precisely� the fraction of overall worlds for which
k��x�j���x�kx �� ��� ��� 
� �# �r # 
� is at most pN � But this probability goes to 	 as N tends
to in
nity� Therefore�

Pr������ �� � 
 � k��x�j���x�kx � � # �r # 
 j KB� � ��

As 
� 
 
	 we can simply omit �� and �r� proving the required result�

It is now a simple matter to prove the theorem itself� Consider the following modi
cation
KB �� of the KB given in the statement of the theorem�

m	
i�j

��i ��i k��x�j�i�x�kx �ri �i� � ���c� � KB ��

�	There are� in fact� a number of ways to solve this problem	 One alternative is to use an entropy�based
technique	 We can do this because� at this point in the proof� it no longer matters whether KB uses nonunary
predicates or not� we can therefore safely apply techniques that usually only work in the unary case	
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where we eliminate the statistics for the reference classes that are contained in �j �the more
speci
c reference classes�� From Theorem ���� we can conclude that Pr����c�jKB ��� � ��j� �j�
�the conditions of that theorem are clearly satis
ed�� But we also know� from the result above�
that for each �i� for i � j�

Pr���j � 
 � k��x�j���x�kx � �j # 
 j KB ��� � ��

For su�ciently small 
 � 	� the assertion that

�j � 
 � k��x�j���x�kx � �j # 


logically implies that
�i ��i k��x�j�

��x�kx �ri �i�

so that this latter assertion also has probability � given KB ��� We therefore also have probability
� �given KB ��� in the 
nite conjunction

j	
i��

��i ��i k��x�j�
��x�kx �ri �i��

We can now apply Theorem ��� to conclude that we can add this 
nite conjunction to KB ��

without a�ecting any of the degrees of belief� But the knowledge base resulting from adding
this conjunction to KB �� is precisely the original KB � We conclude that

Pr����c�jKB� � Pr����c�jKB��� � ��j� �j��

as required�

Theorem 	��
� Let P be a unary predicate� and consider a knowledge base KB of the following
form	

m	
i��

�kP �x�j�i�x�kx �i �i � �i�c�� �
m	

i�j��

i��j

�$x��i�x� � �j�x�� �

where either �i � � for all i � �� � � � � m� or �i � 	 for all i � �� � � � � m� Then� if neither P nor
c appear anywhere in the formulas �i�x�� then

Pr��P �c�jKB� � ����� � � � � �m� �

Qm

i�� �iQm

i�� �i #
Qm

i����� �i�
�

Proof� Assume without loss of generality that �i � 	 for i � �� � � � � m� As in previous theorems�
we prove the result by dividing the worlds into clusters� More precisely� consider any 
� such that
�i��i � 	� Let �i � min��i#�i� ��� For any such 
� and any domain sizeN � we divide the worlds
of size N satisfying KB �
� � into clusters� and prove that� within each cluster� the probability of
��c� is in the interval ����� � ��� � � � � �m � �m�� ����� � � � � �m��� Since � is a continuous function
at these points� this su�ces to prove the theorem�

We partition the worlds satisfying KB �
� � into maximal clusters that satisfy the following
three conditions�
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�� All worlds in a cluster must agree on the denotation of every vocabulary symbol except
for P � In particular� the denotations of ���x�� � � � � �m�x� is 
xed� For i � �� � � � � m� let Ai

denote the denotation of �i�x� in the cluster� and let ni denote jAij�

�� All worlds in a cluster must have the same denotation of P for elements inA � f�� � � � � Ng�
�mi��Ai�

�� For all i � �� � � � � m� all worlds in the cluster must have the same number of elements ri
satisfying P within each set Ai� Note that� since all worlds in the cluster satisfy KB �
� ��
it follows that ri�ni � ��i � �i� �i� for i � �� � � � � m�

Now� consider a cluster as de
ned above� The assumptions of the theorem imply that�
besides the proportion constraints de
ned by the numbers ri� there are no other constraints
on the denotation of P within the sets A�� � � � � Am� Therefore� all possible denotations of P
satisfying these constraints are possible� Let d be the denotation of c in this cluster� Our
assumptions guarantee that d is the only member of Ai � Aj� Hence� the number of elements
of Ai for which P has not yet been chosen is ni� �� In worlds that satisfy P �c�� precisely ri� �
of these elements must satisfy P � Since the Ai are disjoint except for d� the choice of P within
each Ai can be made independently of the other choices� Therefore� the number of worlds in
the cluster where P �c� holds is

mY
i��

�
ni � �

ri � �

�
�

Similarly� the number of worlds in the cluster for which P �c� does not hold is

mY
i��

�
ni � �

ri

�
�

Therefore� the fraction of worlds in the cluster satisfying P �c� is�Qm
i��



ni��
ri��

�
Qm

i��



ni��
ri��

�
#
Qm

i��



ni��
ri

� �

Qm
i�� riQm

i�� ri #
Qm
i���ni � ri�

�

Qm
i�� ri�niQm

i�� ri�ni #
Qm
i���ni � ri��ni

� ��r��n�� � � � � rm�nm� �

Since � is easily seen to be monotonically increasing in each of its arguments and ri�ni �
��i � �i� �i�� we must have that ��r��n�� � � � � rm�nm� is in the interval ����� � ��� � � � � �m �
�m�� ����� � � � � �m��� Using the same argument as in the previous theorems and the continuity
of �� we deduce the desired result�

Theorem 	���� Let !� and !� be two subvocabularies of ! disjoint except for the constant
c� Consider KB�� �� � L�!�� and KB�� �� � L�!��� Then

Pr���� � ��jKB� �KB�� � Pr����jKB�� � Pr����jKB���

Proof� Fix N � 
� � and d with � � d � N � Given a vocabulary ' containing c� let worldsd��� ��N ���
consist of all worlds in WN�'� such that �W�
�� j� � and the denotation of c in W is d� and

�	



let "worldsd��� ��N ��� � jworldsd��� ��N ���j��� It should be clear that for each choice of d� the sets
worldsd��� ��N ��� have equal size� Thus� "worlds�� ��N ��� � N"worldsd��� ��N ���� If �� is a formula in
!� and �� is a formula in !�� then there is clearly a bijection between worldsd��� ���	��N ������� and
worldsd��� ���N �����worlds

d��� ���
N ����� It follows that "worldsd��� ���	��N ������� � "worldsd��� ���N �����

"worldsd������N ����� Since "worlds�� ��N ��� � N"worldsd�����N ���� we immediately get

Pr�����	��N ��� � ��jKB� � KB��

�
"worlds�����	��N ��� �KB� � �� � KB��

"worlds�����	��N �KB� � KB��

�
"worldsd��� ���	��N ��� �KB� � �� � KB��

"worldsd������	��N �KB� �KB��

�
"worldsd��� ���N ��� �KB���"worldsd��� ���N ��� �KB��

"worldsd������N �KB���"worldsd��� ���N �KB��

�
"worlds�����N ��� � KB���"worlds�� ���N ��� �KB��

"worlds�����N �KB���"worlds�� ���N �KB��

� Pr�� ���N ���jKB��� Pr�� ���N ���jKB���

Taking limits� we get that Pr��	��� ��� � ��jKB� � KB�� � Pr��� ���jKB�� � Pr
��
� ���jKB��� As

observed in �GHK��b�� for all formulas � and KB � if ! � !�� then Pr����jKB� � Pr�
�

���jKB��
�Intuitively� this is because the e�ect of changing the vocabulary cancels out in the numerator
and denominator�� We thus get Pr���� � ��jKB� � KB�� � Pr����jKB�� � Pr����jKB��� as
desired�
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