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Abstract

The situation calculus is a popular technique for reasoning
about action and change. However, its restriction to a first-
order syntax and pure deductive reasoning makes it unsuitable
in many contexts. In particular, we often face uncertainty, due
either to lack of knowledge or to some probabilistic aspects of
the world. While attempts have been made to address aspects
of this problem, most notably using nonmonotonic reasoning
formalisms, the general problem of uncertainty in reasoning
about action has not been fully dealt with in a logical frame-
work. In this paper we present a theory of action that extends
the situation calculus to deal with uncertainty. Our frame-
work is based on applying the random-worlds approach of
[BGHK94] to a situation calculus ontology, enriched to allow
the expression of probabilistic action effects. Our approach
is able to solve many of the problems imposed by incomplete
and probabilistic knowledge within a unified framework. In
particular, we obtain a default Markov property for chains of
actions, a derivation of conditional independence from irrele-
vance, and a simple solution to the frame problem.

Introduction
The situation calculus is a well-known logical technique for
reasoning about action and change [MH69]. Calculi of this
sort provide a useful mechanism for dealing with simple
temporal phenomena, and serve as a foundation for work
in planning. Nevertheless, the many restrictions inherent
in the situation calculus have inspired continuing work on
extending its scope.

An important source of these restrictions is that the situa-
tion calculus is simply a first-order theory. Hence, it is only
able to represent “known facts” and can make only valid
deductions from those facts. It is unable to represent prob-
abilistic knowledge; it is also ill-suited for reasoning with
incomplete information. These restrictions make it imprac-
tical in a world where little is definite, yet where intelligent,
reasoned decisions must nevertheless be made. There has
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been much work extending the basic situation calculus us-
ing various nonmonotonic theories. Although interesting,
these theories address only a certain limited type of uncer-
tainty; in particular, they do not allow us to represent actions
whose effects are probabilistic. This latter issue seems to be
addressed almost entirely in a non-logical fashion. In partic-
ular, we are not aware of any work extending the situation
calculus to deal with probabilistic information. This is per-
haps understandable: until recently, it was quite common to
regard approaches to reasoning based on logic as being irrec-
oncilably distinct from those using probability. Recent work
has shown that such pessimism is unjustified. In this paper
we use a new theory of probabilistic reasoning called the
random-worlds method [BGHK94] which naturally extends
first-order logic. We show that this method can be success-
fully applied to temporal reasoning, yielding a natural and
powerful extension of the situation calculus.

The outline of this paper is as follows. First, we briefly
describe the situation calculus, discussing in more detail
some of its problems, and some of the related work address-
ing these problems. We then describe our own approach.
We begin by summarizing the random-worlds method. Al-
though the application of this method to temporal reasoning
is not complicated, an appropriate representation of tempo-
ral events turns out to be crucial. The solution, based on
counterfactuals, seems to be central to many disciplines in
which time and uncertainty are linked.

After these preliminaries, we turn to some of the results
obtained from our approach. As we said, our goal is to go
beyond deductive conclusions. Hence, our reasoning proce-
dure assigns degrees of belief (probabilities) to the various
possible scenarios. We show that the probabilities derived
using our approach satisfy certain important desiderata. In
particular, we reason correctly with both probabilistic and
nondeterministic actions (the distinction between the two
being clearly and naturally expressed in our language). Fur-
thermore, we obtain a default Markov property for reasoning
about sequences of actions. That is, unless we know other-
wise, the outcome of an action at a state is independent of
previous states. We note that the Markov property is not an
externally imposed assumption, but rather is a naturally de-
rived consequence of the semantics of our approach. More-
over, it can be overridden by information in the knowledge



base. The Markov property facilitates a natural mechanism
of temporal projection, and is a natural generalization of an
intuitive mechanism of projection in deterministic domains
in which we consider action effects sequentially. In general,
when actions have deterministic effects (whether in fact, or
only by default, which is another easily made distinction)
then our approach achieves most standard desiderata.

Finally, we turn to examining one of the most famous
issues that arise when reasoning about action: the Frame
Problem and the associated Yale Shooting Problem (YSP)
[MH69, HM87]. We show that our approach can solve the
former problem, without suffering from the latter, almost
automatically. Writing down a very natural expression of a
frame axiom almost immediately gives the desired behavior.
We state a theorem, based on the criterion of Kartha [Kar93],
showing the general correctness of our approach’s solution
to the frame problem. We also compare our solution to one
given by Baker [Bak91].

Preliminaries
The situation calculus
We assume some familiarity with the situation calculus and
associated issues. In brief, by situationcalculus we refer to a
method of reasoning about temporal phenomena using first-
order logic and a sorted ontology consisting of actions and
situations. A situation is a “snapshot” of the world; its prop-
erties are given by predicates called fluents. For example,
consider a simple version of the well-known Yale Shooting
problem. To represent an initial situation S� where Fred is
alive and there is an unloaded gun we can use the formula
Alive�S����Loaded�S��. The effects actions have on situ-
ation can be encoded using a Result function. For instance,
we can write �s �Loaded�s� � �Alive�Result�Shoot� s���,
to assert that if a loaded gun is fired it will kill Fred.�

We can then ask what would happen if, starting in S�,
we load the gun, wait for a moment, and then shoot:
Alive�Result�Shoot�Result�Wait�Result�Load� S����� �

The most obvious approach for deciding whether this is
true is to use first-order deduction. However, for this to
work, we must provide many other facts in addition to the
two above. In fact, to answer questions using deduction we
would in general have to provide a complete theory of the
domain, including a full specification of the initial situation
and explicit formulas describing which fluents do and do
not change whenever any action is taken. For instance, we
would need to say that after a Wait action, a loaded gun
continues to be loaded, if Fred was alive before he will be
alive afterwards, and so on. The issue of stating the non-
effects of actions is known as the frame problem [MH69]:
how do we avoid having to represent the numerous axioms
required to describe non-effects? We would like to omit or
abbreviate these axioms somehow.

The frame problem is only one aspect of the problem of
completeness; generally our knowledge will be deficient in
other ways as well. For example,

�In general, we use upper case for constants and lower case for
variables.

� we may not know the truth value of every fluent in the
initial situation.

� we may know the situation after some sequence of ac-
tions has been performed, but not know precisely which
actions were taken. (This leads to one type of explanation
problem.)

� we may not know precisely what effects an action has.
This may be due to a simple lack of information, or to
the fact that the action’s effects are probabilistic (e.g.,
we might believe that there is a small chance that Fred
could survive being shot). Note that even if we know the
probabilities of the various action outcomes, the situation
calculus’s first-order language is too weak to express them.

In all such cases, it is unlikely that deductive reasoning will
reach any interesting conclusions. For instance, if we leave
open the logical possibility that the gun becomes unloaded
while we wait, then there is nothingwe can say with certainty
about whether Fred lives.

Our strategy for investigating these issues is to exam-
ine a generalized notion of inference that not only re-
ports certain conclusions (in those rare cases where our
knowledge supports them), but also assigns degrees of
belief (i.e., probabilities) to other conclusions. For in-
stance, suppose KB is some knowledge base stating what
we know about actions’ effects, the initial situation, and
so on, and we are interested in a query such as � �
Alive�Result�Shoot�Result�Wait�Result�Load� S�����. The
next section shows how we define Pr��jKB�, the degree of
belief in � (which is a number between 0 and 1) given our
knowledge KB. It is entirely possible for KB to be such
that Pr��jKB� � ���, which would mean we should have
high but not complete confidence that Fred would be dead
after this sequence of actions. To a large extent, it is the
freedom to assign intermediate probabilities (other than 0 or
1) that relieves us of traditional situation calculus’ demand
for complete knowledge. A related important feature is our
ability to make use of statistical knowledge (for instance, an
assertion that shooting only succeeds 90% of the time). Of
course, the real success of our approach depends crucially
on the details and behavior of the particular method we have
for computing probabilities. Examining this method, and
justifying its successes, is the goal of the rest of this paper.

Before continuing, we remark that the importance of the
issues we have raised is well known. There have been numer-
ous attempts to augment deductive reasoning with the abil-
ity to “jump to conclusions”, i.e., nonmonotonic reasoning
(e.g., [HM87, Kau86, Lif87]), often in an attempt to solve
the frame problem. The idea of reasoning to “plausible”
conclusions, rather than only the deductively certain ones,
clearly shares some motivation with our decision to evalu-
ate numeric probabilities. The connection is in fact quite
deep; see [BGHK94]. However, the application of pure non-
monotonic logics to reasoning about actions has proven to
be surprisingly difficult and, in any event, these approaches
are not capable of dealing with probabilistic actions or with
the quantitative assessment of probabilities.

There has also been work addressing the issue of probabil-



ities in the context of actions. The propositional approaches
to the problem (e.g., [Han90, DK89]) do not incorporate the
full expressive power of the situation calculus. Furthermore,
even those that are able to deal with abductive queries typ-
ically cannot handle explanation problems (since they do
not place a prior probability distribution over the space of
actions). [Ten91] achieves a first-order ontology by apply-
ing the reference-class approach of [Kyb74] to this problem.
His approach, however, has a somewhat “procedural” rather
than a purely logical (semantic) character. Hence, although it
specifies how to do forward projection—assessing probabil-
ities for outcomes given knowledge of an initial situation—it
does not support arbitrary queries from arbitrary knowledge
bases. This flexibility is important, particularly for explana-
tion and diagnosis. Finally, none of these works subsume all
the issues addressed by advocates of nonmonotonic reason-
ing. Our approach provides a framework for dealing with
these issues in a uniform fashion.

Random-worlds
We now turn to a summary of the random-worlds method;
see [BGHK94] and the references therein for full details.
We emphasize that this is a general technique for comput-
ing probabilities, given arbitrary knowledge expressed in a
very rich language; it was not developed specifically for the
problem of reasoning about action and change. As a general
reasoning method, random-worlds has been shown to possess
many attractive features [BGHK94], including a preference
for more specific information and the ability to ignore ir-
relevant information. In a precise sense, it generalizes both
the powerful theory of default reasoning of [GMP90] and
(as shown in [GHK92]) the principle of maximum entropy
[Jay78]; it can also be used to do reference class reasoning
from statistics in the spirit of [Kyb74].

The two basic ideas underlying the random-worlds method
are the provisionof a general language for expressing statisti-
cal information, and a mechanism for probabilistic reasoning
from such information.

The language we use extends full first-order logic with sta-
tistical information, as in [Bac90]), by allowing proportion
expressions of the form jj��x�j��x�jjx. This is interpreted
as denoting the proportion of domain elements satisfying
�, among those satisfying �.� (Actually, an arbitrary set
of variables is allowed in the subscript.) A simple propor-
tion formula has the form jj��x�j��x�jjx � ��� where “�”
stands for “approximately equal.” Approximate equality is
required since, if we make a statement like “90% of birds can
fly”, we almost certainly do not intend this to mean that ex-
actly 90% of birds fly. Among other things, this would imply
that the number of birds is a multiple of ten! Approximate
equality is also important because it allows us to capture
defaults. For example, we can express “Birds typically fly”
as jjFly�x�jBird�x�jjx � �. We omit a description of the
formal semantics, noting that the main subtlety concerns the
interpretation of approximate comparisons, and that the spe-
cial case of � � is related to the well-known �-semantics
[Pea89].

�If ��x� is identically TRUE, we generally omit it.

The second aspect of the method is, of course, the specific
way in which degrees of belief are computed. Before review-
ing these, we remark that for the purposes of most of this
paper, the random-worlds method can be regarded as a black
box which, given any knowledge base KB and a query �,
assesses a degree of belief (i.e., a probability) Prw

�
��jKB�.

Very briefly, and ignoring the subtlety of approximate
equality, the method is as follows. For any domain size
N , we consider all the worlds (first-order structures) of size
N consistent with KB. Let #worldsN �KB� be the number of
size N worlds that satisfy KB. Appealing to the principle
of indifference, we regard all such worlds as being equally
plausible. It then follows that, given a domain size N , we
should define PrwN ��jKB� � �worlds

N
���KB�

�worldsN �KB� . Typically, all
that is known about N is that it is “large”. Thus, the degree
of belief in � given KB is taken to be limN�� PrwN ��jKB�.

Applying random-worlds in a temporal context is mostly a
problem of choosing an appropriate representation scheme.
Here we are guided mostly by the standard ontology of sit-
uation calculus, and reason about situations and actions.
Indeed, since our language includes that of first-order logic,
it would be possible to use the language of standard situation
calculus without change. However, we want to do more than
this. In particular, we want to allow probabilistic actions and
statistical knowledge. To do this, we need to allow for ac-
tions that can have several effects (even relative to the same
preconditions). For this purpose, it is useful to conceptually
divide a situation into two components: the state and the
environment. The state is the visible part of the situation;
it corresponds to the truth values of the fluents. The envi-
ronment is intended to stand for all aspects of the situation
not determined by the fluents (such as the time, or other
properties of the situation that we might not wish to express
explicitly within our language).

So what is a world in this context? Our worlds have a
three-sorted domain, consisting of states, environments, and
actions. Situations are simply state-environment pairs. Each
world provides an interpretation of the symbols in our lan-
guage over this domain, in the standard manner. For the
purposes of this paper, fluents are taken to be unary predi-
cates over the set of states.� Actions map situations to new
situations via a Result function; hence, each world also pro-
vides, via the denotation of Result, a complete specification
of the effect of an action on every situation.

Each state in the world’s domain can be viewed as a truth
assignment to the fluents. If we have k fluents in the lan-
guage, say P�� � � � � Pk, we require that there be at most one
state for each of the �k possible truth values of the fluents.�

�We observe that we can easily extend our ontology to allow
complex fluents (e.g., On(A,B) in the blocks world), and/or reified
fluents.

�This restriction was also used by Baker [Bak91] in his solution
to the frame problem. It does not postulate the existence of a state
for all possible assignments of truth values, and hence allows a
correct treatment of ramifications. Baker then uses circumscription
to ensure that there is exactly one state for each assignment of truth
values consistent with the KB. In our framework, the combinatorial
properties of random-worlds guarantee that this latter fact will hold



We do this by adding the following formula to the KB:

�v� v���P��v� � P��v
���	 	 	�Pk�v� � Pk�v

���� v � v���

Because the set of states is bounded, when we take the
domain size to infinity (as is required by random worlds), it
is the set of actions and the set of possible environments that
grow unboundedly.

As stated above, action effects are represented using a
Result function that maps an action and a situation to a situ-
ation. In order to formally define, within first-order logic, a
function whose range consists of pairs of domain elements,
we actually define two functions—Result� and Result�—
that map actions and situations to states and environments
respectively. We occasionally abuse notation and use Result
directly in our formulas. Note that the mapping from an
action and a situation to a situation is still a deterministic
one. However, Result is not necessarily deterministic when
we only look at states. Two situations can agree completely
in terms of what we say about them (their state), and never-
theless an action may have different outcomes.

As promised, this new ontology allows us to express non-
deterministic and probabilistic actions, as well as the deter-
ministic actions of the standard situationcalculus. For exam-
ple, consider a simple variant of the Yale Shooting Problem
(YSP), where we have only two fluents, Loaded and Alive,
and three actions, Wait, Load, and Shoot. Each world will
therefore have (at most) four states, corresponding to the four
possible truth assignments to Loaded and Alive. We assume,
for simplicity, that we have constants denoting these states:
VAL� VA	L� V 	AL� V 	A	L. Each world will also have domain ele-
ments corresponding to the three named actions, and possibly
to other (unnamed) actions. The remaining domain elements
correspond to different possible environments. The fluents
are unary predicates over the states, and Result� is a function
that takes a triple—an action, a state, and an environment—
and returns a new state.
 In the KB we can specify different
constraints on Result�. For example,

�v �Loaded�v� � jj�Alive�Result��Shoot� v� e��jje � ��	��
(1)

asserts that the Shoot action has probabilistic effects; it says
that 90% of shootings (in a state where the gun is loaded)
result in a state in which Fred is dead. On the other hand,

�v� e �Loaded�v� � �Alive�Result��Shoot� v� e���� (2)

asserts that Shoot has the deterministic effect of killing Fred
when executed in any state where the gun is loaded.

We might not know what happens is the gun is not loaded:
Fred might still die of the shock. In such cases, we can
simply leave this unspecified. Later in the paper, we discuss
the different ways in which our language allows us to specify
the effects of actions, and the conclusions these entail.

in almost all worlds.
�Similarly, the Result� function returns a new environment, but

there is usually no need for the user to provide information about
this function.

Counterfactuals
While our basic ontology seems natural, there are other pos-
sible representations. However, it turns out that the use of
a Result function is crucial. Although the use of Result is
quite standard in situation calculus, it is important to real-
ize that its denotation in each world tells us the outcome of
each action in all situations, including those situations that
never actually occur. That is, in each world Result provides
counterfactual information.

This can best be understood using an example. Consider
the YSP example, where for simplicity we ignore environ-
ments and consider only a single action—Shoot—which is
always taken at the initial state. We know that Fred is alive
at the initial state, but nothing about the state of the gun—it
could be loaded or not. Assume that, rather than having a
Result function, we choose to have each world simple denote
a single run (history) for this experiment. In this new ontol-
ogy, we could use a constant V� denoting the initial state and
another constant V� denoting the second state; each of these
will necessarily be equal to one of the four states described
above. In order to assert that shooting a loaded gun kills
Fred, we would state that Loaded�V�� � �Alive�V��. Fur-
thermore, assume that after being shot the gun is no longer
loaded. It is easy to see that there are essentially three possi-
ble worlds (up to renaming of states): if Loaded�V�� (so that
V� � VAL), then necessarily V� � V 	A	L, and if�Loaded�V��
then either V� � V 	A	L or V� � VA	L. The random-worlds
method, used with this new ontology, would give a degree
of belief of �

� to the gun being loaded at V�, simply because
Shoot has more possible outcomes if the gun is unloaded.
Yet intuitively, since we know nothing about the initial sta-
tus of the gun, the correct degree of belief for Loaded�V��
is �

� . This is the answer we get by using the ontology of
situation calculus with the Result function. In this case, the
different worlds correspond to the different denotations of
Result and V�. Assuming that no action can revive Fred
once he dies, there are only two possible denotations for
Result: Result�Shoot� VA	L� is either V 	A	L or VA	L, while
Result�Shoot� V � � V 	A	L if V 
� VA	L. Furthermore, V� is
either VAL or VA	L. Hence, there are four possible worlds.
In exactly two of these, we have that Loaded�V��. The key
idea here is that, because our language includes Result, each
worldmust specify not only the outcome of shootinga loaded
gun, but also the outcome of shooting had the gun been un-
loaded. Once this counterfactual information is taken into
account, we get the answers we expect.

We stress that the KB does not need to include any special
information because of our use of counterfactuals. As is
standard in the situation calculus, we put into the KB exactly
what we know about the Result function (for example, that
shooting a loaded gun necessarily kills Fred). The KB ad-
mits a set of satisfying worlds, and in each of these worlds
Result will have some counterfactual behavior. The random
worlds method takes care of the rest by counting among these
alternate behaviors.

The example above and the results below show that ran-
dom worlds works well with an ontology that has implicit
counterfactual information (like the situation calculus and its



Result function). On the other hand, with other ontologies
(such as the language used above that simply records what
actually happens and nothing more) the combinatorics lead
to unintuitiveanswers. Hence, it might seem that counterfac-
tual ontologies are simply a technical requirement of random
worlds. However, the issue of counterfactuals seems to arise
over and over again in attempts to understand temporal and
causal information. They have been used in both philoso-
phy and statistics to give semantics to causal rules [Rub74].
In game theory [Sta94] the importance of counterfactuals
(or strategies) has long been recognized. Baker’s approach
[Bak91] to the frame problem is, in fact, also based on the
use of counterfactuals.

We have already mentioned that random-worlds subsumes
the principle of maximum entropy. It has been argued
[Pea88] that maximum entropy (and hence random-worlds)
cannot deal appropriate with causal information. In fact, our
example above is closely related, in a technical sense, to the
problematic examples described by Pearl. But once again,
an appropriate representation of causal rules using counter-
factuals solves the problem [Hun89]. In fact, counterfactuals
have been used recently to provide a formulation of Bayesian
networks based on deterministic functions [Pea93]. All these
applications of counterfactuals turn out to be closely linked
to our own, even though none consider the random-worlds
method. The ontology of this paper is, in some sense, the
convergence of these technically diverse, but philosophically
linked, frameworks. As our results suggest, the generality
of the random-worlds approach may allow us to draw these
lines of research together, and so expose the common core.

Results
As a minimal requirement, we would like our approach to be
compatible with standard deductive reasoning, whenever the
latter is appropriate. As shown in [BGHK94], this desidera-
tum is automatically satisfied by random worlds:

Proposition 1: If � is a logical consequence of a knowledge
base KB, then Prw

�
��jKB� � �.

Hence, our approach supports all the conclusions that can be
derived using ordinary situation calculus. However, as we
now show, it can deal with much more.

An important concept in reasoning about change is the
idea of a state transition. In our context, a state transition
takes us from one situation to the next via the Result func-
tion. Since we can only observe the state component of
a situation, we are particularly interested in the probabil-
ity that an action takes us from a situation �V� 	� to another
�V �� 	� (where the specific identityof the environment is irrel-
evant). We are in fact interested in the transition probability
Prw
�
�Result�A� V�E� � V �jKB�. As we show later on in

this section, these transition probabilities can often be used
to compute the cumulative effects of sequences of actions.

We can use the properties of random worlds to derive tran-
sition probabilities from our action descriptions. Consider
a particular state V and action A. There are many ways
in which we can express knowledge relevant to associated
transition probabilities. One general scheme uses assertions

of the form
�e ���Result��A� V� e���� (3)

where � is a Boolean combination of fluents. Assertion (3)
says that� is true of all states that can result from takingA at
state V . In general, when KB entails such a statement, then
Proposition 1 can be used to show that our degree of belief in
��Result��A� V�E�� � �. For example, if KB consists of (2)
only, thenPrw

�
�Alive�Result��Shoot� VAL� E��jKB� � �, as

expected (here, � is Alive).
Assertion (2) describes a deterministic effect. However,

even for nonprobabilistic statements such as (3), our ap-
proach can go far beyond deductive reasoning. For instance,
we might not always know the full outcome of every action
in every state. A Load action might result in, say, between
one and six bullets being placed in the gun. If we have
no other information, our approach would assign a degree
of belief of �

�
to each of the possibilities. In general, we

can formalize and prove the following result (where, as in
our remaining results, E is a constant over environments not
appearing anywhere in KB):

Proposition 2: Suppose KB contains (3), but no addi-
tional information about the effects of A in V . Then,
Prw
�
�Result��A� V�E� � V �jKB� � �

m
, where m is the

number of states satisfying�, and V � is one of these states.

We note that we can prove a similar result in the case
where our ignorance is due to incomplete information about
the initial state (as illustrated in the previous section).

As we discussed, our language can also express infor-
mation about probabilistic actions (where we have statis-
tical knowledge about the action’s outcomes). Our the-
ory also derives many of the conclusions we would expect.
For example, if KB contains (1), then we would conclude
Prw
�
��Alive�Result��Shoot� V� E��jKB � Loaded�V �� �

��	. In general, the direct inference property exhibited by
random worlds allows us to prove the following:

Proposition 3: If KB entails jj��Result�A� V� e��jje � �,
then Prw

�
���Result�A� V�E��jKB� � �.

Nondeterminism due to ignorance on the one hand, and prob-
abilistic actions on the other, are similar in that they both lead
to intermediate degrees of belief between 0 and 1. Never-
theless, there is an important conceptual difference between
the two cases, and we consider it a significant feature of our
approach that it can capture and reason about both.

Given our statistical interpretation of defaults, the abil-
ity to make statistical statements about the outcomes
of actions also allows us to express a default assump-
tion of determinism. For instance, �v �Loaded�v� �
jj�Alive�Result��Shoot� v� e��jje � �� states that shooting
a loaded gun almost surely kills Fred. Even though a default
resembles a deterministic rule in many ways, the distinction
can be important. We would prefer to explain an unusual
occurrence by finding a violated default, rather than by pos-
tulating the invalidity of a law of nature (which would result
in inconsistent beliefs). For example, if, after the shooting,
we observe Fred walking away, then our approach would
conclude that Fred survived the shooting, rather than that he



is a zombie. This distinction between certain outcomes and
default outcomes is also easily made in our framework.

In general, we may have many pieces of information de-
scribing the behavior of a given action at a given state. For
example, consider the YSP with an additional fluent Noisy,
where our KB contains (1) and

�v �Loaded�v� � jjNoisy�Result��Shoot� v� e��jje � ��
��

Given all this information, we would like to compute
the probability that shooting the gun in a state V where
Alive�V � � Loaded�V � results in the state VALN (where N
stands for Noisy). Unless we know otherwise, it seems intu-
itive to assume that Fred’s health in the resulting state should
be independent of the noise produced; that is, the answer
should be ��� � ��
 � ���
. This is, in fact, the answer
produced by our approach. This is an instance of a gen-
eral result, asserting that transition probabilities can often be
computed using maximum entropy. While, we do not have
the space to fully describe the general result, we note that it
entails a default assumption of independence. That is, unless
we have reason to believe that Alive and Noisy are correlated,
our approach will assume that they are not. We stress that
this is only a default. We might know that Alive and Noisy
are negatively correlated (perhaps because lack of noise is
sometimes caused by a misfiring gun). In this case we can
easily add to the KB, for example, that �v �Loaded�v� �
jjNoisy�Result��Shoot� V� e�� � Alive�Result��Shoot� V� e��jje
� ������ The resulting KB is not inconsistent; the default as-
sumption of independence is dropped automatically.

We now turn to the problem of reasoning about the effects
of a sequence of actions. The Markov assumption, which is
built into most systems that reason about probabilistic actions
[Han90, DK89], asserts that the effects of an action depend
only on the state in which it is taken. As the following result
demonstrates, our approach derives this principle from the
basic semantics. We note that the Markov assumption is only
a default assumption in our framework; it fails if the KB con-
tains assertions implying otherwise. Formally, it requires
that our information about Result be expressed solely in
terms of transition proportions, i.e., proportion expressions
of the form jj��Result��A� V� e��jje, where � is a Boolean
combination of fluents. Hence, if our KB contains infor-
mation about jjResult�A��Result�A�� V� e��jje, the Markov
property might no longer hold.

Proposition 4: Suppose that the only occurrence of Result
in KB is in the context of transition proportions, and that E
and E� do not appear in KB. Then

Prw
�
�Result�A�� V� E� � �V �� E���

Result��A�� V
�� E�� � V �� j KB� �

Prw
�
�Result��A�� V� E� � V �jKB� �

Prw
�
�Result��A�� V

�� E�� � V ��jKB��

Of course, it follows from the proposition that to compute
Prw
�
�Result�A��Result�A�� V� E�� � V ��, we just sum over

all intermediate states. This result generalizes to arbitrary
sequences of actions in the obvious way.

The Frame Problem
Perhaps the best single illustration of the power of our ap-
proach in the context of the situation-calculus is its ability
to deal simply and naturally with the frame problem. Many
people have an intuition about the frame problem which is,
roughly speaking, that “fluents tend not to change value very
often”. This suggests that if we could formalize this general
principle (that change is unusual), it could serve as a substi-
tute for the many explicit frame axioms that would otherwise
be needed. However, as shown in [HM87], the most obvious
formulations of this idea in standard nonmonotonic logics
often fail. Suppose we use a formalism that, in some way,
tries to minimize the number of changes in the world. In the
YSP, after waiting and then shooting we expect there to be
some change: we expect Fred to die. But there is another
model which seems to have the “same amount” of change:
the gun miraculously becomes unloaded as we wait, and thus
Fred does not die. This seems to be the wrong model, but it
turns out to be difficult capture this intuition formally. Sub-
sequent to Hanks and McDermott’s paper, there was much
research in this area before adequate solutions were found.

How does our approach fare? It turns out that we can
use our statistical language to directly translate the intuition
we have about frame axioms, and the result gives us ex-
actly the answers we expect in such cases as the YSP. We
formalize the statement of minimal change for a fluent P
by asserting that it changes in very few circumstances; that
is, any action applied in any situation is unlikely to change
P : jjP �Result��a� v� e�� 
� P �v�jj�a�v�e� � ��Of course, the
statistical chance of such frame violations cannot be exactly
zero, because some actions do cause change in the world.
However, the “approximately equals” connective allows for
this. Roughly speaking, the above axiom, an instance of
which can be added for each fluent P for which we think
the frame assumption applies, will cause us to have degree
of belief 0 in a fluent changing value unless we have explicit
knowledge to the contrary.�

There is one minor subtlety. Recall that in the random-
worlds approach, we consider the limit as the domain tends
to infinite size. As we observed, since the number of states
is bounded, this means that the number of environments and
actions must grow without bound. This does not necessarily
mean that the number of actions grows without bound. How-
ever, in the presence of the frame axioms (as given above),
we need this stronger assumption. This need is quite easy
to explain. If the only action is Shoot, then half the triples
�a� v� e� (those where Loaded is true in v) would lead to a
change in the fluent Alive. In this framework, it would be
inconsistent to simultaneously suppose that there is only one
way of changing the world (i.e., Shoot) and also that every
fluent (and in particular, Alive) hardly ever changes. Making
the quite reasonable assumption that there are many other
ways of effecting change in the world (i.e., many other ac-
tions in the domain), even though we may say nothing about

�Note that having degree of belief 0 does not mean that we
believe something to be impossible, but only extremely unlikely.
Hence, this representation does allow for unexpected change, a
useful feature in explanation problems.



them, removes the contradiction.
Given this, if we add frame axioms as given above we get

precisely the results we want. If we try to predict forward
from one state to the next, we conclude (with degree of belief
1) that nothing changes except those fluents that the action is
known to affect. If we consider a sequence of actions, we can
predict the outcome by applying this rule for the first action
with respect to the initial state, then applying the second
action to the state just obtained, and so on. This is essentially
a consequence of Proposition 4, combined with the properties
of our frame axiom. In the YSP, for example, the Load action
will cause the gun to be loaded, but will change nothing else.
Wait will then leave the state completely unchanged. Finally,
because the gun will still be loaded, performing Shoot will
kill Fred as expected.

The idea of a formal theory being faithful to this intuitive
semantics (essentially, that in which we consider actions one
at a time, assuming minimal change at each step) has recently
been formalized by Kartha [Kar93]. Roughly speaking, he
showed that a simple procedural language A [GL92] can be
embedded into three approaches for dealing with the frame
problem [Bak91, Ped89, Rei91], so that the answers pre-
scribed by A’s semantics (which are the intuitively “right”
answers) are also obtained by these formalisms. The follow-
ing result shows that we also pass Kartha’s test. Specifically:

Proposition 5: There is a sound and complete embedding of
A into our language in which the frame axioms appear in
the above form.

Thus, the random-worlds approach succeeds in solving the
frame problem as well as the above approaches, at least
in this respect. However, as we mentioned above, our ap-
proach is significantly more expressive, in that it can deal
with quantitative information in a way that none of these
other approaches can. Furthermore, our approach does not
have difficulty with state constraints (i.e., ramifications), a
problem encountered by a number of other solutions to the
frame problem (e.g., those of Reiter and Pednault).

Why does the random-worlds method work so easily?
There are two reasons. First, the ability to say that propor-
tions are very small lets us express, in a natural way within
our language, the belief that frame violations are rare. Al-
ternative approaches to the problem tend to use powerful
minimization techniques, such as circumscription, to encode
this. But much more important is our use of an ontology
that includes counterfactuals. This turns out to be crucial
in avoiding the YSP. Even if the gun does in fact become
unloaded somehow, we do not escape the fact that shoot-
ing with a loaded gun would have killed Fred. Baker and
Ginsberg’s [BG89] solution to the frame problem (based on
circumscription) relies on a similar notion of counterfactual
situations. But while the solutions are related, they are not
identical: for instance, we do not suffer from the problem
concerning extraneous fluents that Baker [Bak89] mentions.�

�We also note that Baker and Ginsberg’s solution was con-
structed especially to deal with the problem of minimizing frame
violations. Our solution to the frame problem and the YSP arises
naturally and almost directly from our general approach.

Some solutions to the YSP work by augmenting a prin-
ciple of minimal change with a requirement that we should
prefer models in which change occurs as late as possible
(e.g., [Kau86, Sho88]). This solves the original YSP be-
cause the model in which Fred dies violates the frame axiom
(that Fred should remain alive) later than the model in which
the gun miraculously becomes unloaded. However, it has
been observed that such theories fail on certain explanation
problems, such as Kautz’s [Kau86] stolen car example. Our
approach deals well with explanation problems. In Kautz’s
example, we park our car in the morning only to find when
we return in the evening that it has been stolen. Theories that
delay change lead to the conclusion that the car was stolen
just prior to our return. A more reasonable answer is to be
indifferent about exactly when the car was stolen. Our ap-
proach assigns equal probability to the car being stolen over
each time period of our absence. That is, if KB axiomatizes
the domain in the natural way, and the only action that makes
a car disappear from the parking lot is the StealCar action,
then we would conclude that:

Prw
�
�Ai � StealCarjKB� �Parked�Result��A��Result�	 	 	
Result�A��Result�ParkCar� V�� E�� 	 	 	���� � �

�
�

Conclusion
As shown in [BGHK94], the random-worlds approach pro-
vides a general framework for probabilistic and default first-
order reasoning. The key to adapting random worlds to the
domain of causal and temporal reasoning lies in the use of
counterfactual ontologies to represent causal information.
Our results show that the combination of random worlds and
counterfactuals can be used to address many of the impor-
tant issues in this domain. The ease with which the general
random-worlds technique can be applied to yet another im-
portant domain, and its success in dealing with the core
problems encountered by other approaches, shows its ver-
satility and broad applicability as a general framework for
inductive reasoning.

There is, however, one important issue which this ap-
proach fails to handle appropriately: the qualification prob-
lem. The reasons for this failure are subtle, and cannot be
explained within the space limitations. However, as we dis-
cuss in the full paper, the problem is closely related to the fact
that random worlds does not learn statistics >from samples.
This aspect of random-worlds was discussed in [BGHK92],
where we also presented an alternative method to computing
degrees of belief, the random-propensities approach, that
does support learning. In future work, we hope to apply
this alternative approach to the ontology described in this
framework. We have reason to hope that this approach will
maintain the desirable properties described in this frame-
work, and will also deal with the qualification problem.
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