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Abstract

Modal logics based on Kripke style semantics are the prominent formalism in Al for
modeling beliefs. Kripke semantics involve a collection of possible worlds and a relation
among the worlds, called an accessibility relation. Dependent on the properties of the
accessibility relation different modal operators can be captured. Belief operators have
been modeled by an accessibility relation which produces the modal logic KD45. This
paper demonstrates how the belief operator can also be modeled with a probability
distribution over the possible worlds. It is proved that the probabilistic semantics
produces the same logic. The probabilistic approach has the advantage of intuitive
simplicity. Furthermore, it is demonstrated how the probability semantics can be used
to construct a probability logic that is capable of representing and reasoning with a
much wider variety of belief notions than the traditional modal approach.

1 Introduction

Modal logics, with possible world semantics, have proved useful for modeling notions of
knowledge and belief. The basic ideas behind this approach stems from early work by
Hintikka [7], who developed a possible worlds semantics for these two notions (see [6] for
a useful introduction). Hintikka’s logic of belief serves best as a model for the beliefs of
a logically omniscience agent, i.e., an agent with unlimited computational resources who
believes all logical consequences of his beliefs. The problem of “logical omniscience” has
received much attention in Al e.g., [10, 3, 8].

Although logical omniscience is still an unresolved problem, most formal work on mod-
eling beliefs in AT continues to be done in a modal logic framework. That is, the problem
of logical omniscience is not taken as a reason to reject Hintikka’s approach; rather, it is
taken as a reason to augment it by adding notions to model computational limitations.
The modal logic approach provides a formal and analyzable mechanism for representing and
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reasoning with assertions of belief. That 1s, modal logics give one a declarative representa-
tion for assertions of belief like “the agent believes that the prospects for world peace are
improving.” Declarative representations of knowledge are independent of the uses of the
knowledge, and thus are not dependent on any particular implementation technology. Fur-
thermore, the modal logic approach provides a formal semantic interpretation for the belief
assertions. The formal semantics provides an invaluable guide in analyzing legitimate modes
of reasoning using the represented beliefs.

Modal logics can be given a Kripke style possible world semantics where there is a set
of possible worlds and an accessibility relation between the worlds. In this paper we will
explore a probabilistic approach to belief logics where we replace the accessibility relation
with a probability distribution. We will show that this has the advantage of being simpler
than the standard Kripke semantics, while at the same time being logically equivalent. We
then demonstrate how a generalized belief logic can be constructed, based on probabilities.
Such a logic has been constructed by Halpern [5] and, as we will demonstrate, it can be used
to represent and reason with graded notions of belief, i.e., degrees of belief.

2 Modal Belief Logics

Belief logics are constructed by adding a modal belief operator, say B, to a non-modal
logic. Here we will start with a first-order non-modal logic. The first-order language is
the language in which the agent expresses his beliefs. For example, if we wish to model an
agent who has beliefs about various birds and types of birds, then the first-order language
may include predicate symbols like ostrich and penguin, along with constant symbols
like Tweety and Opus. With this language the agent can make various assertions about
his environment like penguin(Opus) A ~ostrich(Tweety). We will call formulas like these,
expressed entirely in the non-modal language, objective assertions. The underlying non-
modal language determines the types of objective assertions that can be expressed. When
we add the belief operator B to the language, we generate new formulas by applying the
operator to existent formulas. The belief operator gives us a mechanism for making assertions
about the agent’s beliefs. For example, we can now assert that the agent believes the previous
assertion with the formula B(penguin(Opus) A —ostrich(Tweety)).

Formally, the syntax of the belief logic includes all of the formula formation rules of first-

order logic along with the rule “If « is a formula, then Ba is a formula.”

That is, we can
prepend the modal operator B to any formula. Note that we can continue to apply first-order
formula formation rules to these belief formulas. So, for example, our specification allows
for formulas like ¥x.B(P(x)), where we have applied quantification to a belief formula. That
1s, our language allows arbitrary nesting of quantification and the belief operator.

Let us call the underlying first-order language £, and the belief language formed by
adding the B operator £5.

The aim of adding the belief modality is to allow us to capture in our formalism the



intuitive behavior of beliefs. This is accomplished by prescribing properties for the B oper-
ator. Given that we are modeling the beliefs of a perfectly rational agent, we would expect
the agent to have a consistent set of beliefs and for him to believe all logical consequences
of his beliefs. We would also expect that the agent is capable of both positive and negative
introspection. That is, if the agent believes « he should believe that he believes it, similarly
if he does not believe . Finally, and most importantly, we would not expect that what
the agent believes about his environment is necessarily true of the environment: the agent
may have false beliefs. It should be noted that this last condition does not conflict with
our assumption that the agent is perfectly rational or logically omniscient: even though it
may be reasonable to assume as a competence model that the agent has perfect reasoning
capabilities it i1s not reasonable to assume that the agent has perfect information about the
world.

These characteristics of belief are perhaps best captured by the modal logic KD45 (a.k.a.
weak S5+ comsistency) [10, 3]. KD45 stands for the four axioms that capture the above
properties of the belief operator.

K) (Ba A B(a— B)) — Bp.
D) —Bfalse.

/) Ba — BBa.

5) =Ba — B-Ba.

K specifies that beliefs are closed under logical consequence, D insures that a falsehood is
not believed (and thus beliefs are not inconsistent), and 4 and 5 say that beliefs are closed
under positive and negative introspection.

To interpret the formulas of £Z we can use the following denotational structure.

Definition 1 (KD45 Modal Structures) A KDj5

structure M is a tuple of the following form.
M=(0,S,R,9),

where O, S, and ¥ are a domain of discourse, a set of states, and a state dependent interpre-
tation function respectively, and R is a binary accessibility relation on S. That is, various
pairs of states (s;, ;) are members of R. We will call the set of states s’ such that R(s,s’)
the states accessible from s.

The interpretation function ¥ determines the denotation of the predicate and function
symbols. This denotation varies from state to state; therefore, a non-modal formula, like
P(c) may be satisfied in some states but not in others.!

Note that although the denotation of the symbols varies from state to state, in our model the domain
of discourse does not. This has no special significance: it is simply a technical convenience. In particular, it
means that the Barcan formula, Vz.[Ba] — B[Vz.«], is valid for our KD45 modal structures.



Using this semantic structure the formulas of L2 are interpreted with respect to a triple
(M, s,v) which consists of a modal structure M, a particular state s € S (where S is the
set of states in M) called the current state, and a variable assignment function that maps
the variables to elements of . The interpretation of the formulas is determined by the the
standard first-order interpretation rules augmented by a rule for interpreting belief formulas:
(M,s,v) = Ba iff

(M,s',v) = a for all s’ such that R(s,s’).

That is, the current world satisfies a belief formula if the operand of the belief operator is
satisfied by all worlds accessible from the current world.

As usual we will call a formula o of LB satisfiable with respect to KD/5 modal structures
if there exists a triple (M, s,v) such that (M, s,v) = a. We say that « is valid if for every
triple (M, s,v) we have (M, s,v) | a. So, for example, Ba V =Ba is valid, and BaV B-«
1s satisfiable but not valid.

Kripke’s insight was that by placing various restrictions of the accessibility relation one
could capture different types of modal operators. In this case in order to insure that B obeys
the axioms K., D, 4 and 5 we require three conditions on the accessibility relation:

1. R must be serial, i.e., for all s € S there is some s such that (s,s’) € R. This
conditions guarantees axiom D.

2. R must be Fuclidean, i.e., (s,t) € R and (s,u) € R implies that (¢,u) € R. This
condition guarantees axiom 5.

3. R must be transitive, i.e., (s,t) € R and (t,u) € R implies that (s,u) € R. This
condition guarantees axiom 4.

That B satisfies K follows from the fact that Ba A B(a — ) will be true if « and o« — 3
are true in all accessible worlds. This means that 3 will be true in all accessible worlds also.

The advantage of these three conditions on R is that they do not force R to be reflexive.
Therefore the axiom Ba — « is not valid. That is, the belief in « does not entail the truth
of a: beliefs can be fallible.

3 Probabilistic Semantics

In this section we present an alternative semantics for the modal logic KD45. The semantics
is based on a probability structure, where we have a probability distribution over the set
of states instead of an accessibility relation. We will also show that the resulting logic is
identical. That is, the set of formulas of £? that are valid for KD/5 modal structures is
exactly the set of formulas that are valid for the probability structures.

Definition 2 (Probability Structures) A probability structure P is the following tuple:
P={(0,8,u,9)

4



Here O, S and ¢ are exactly as they were in our modal structures, and p is a discrete
probability measure on S. That is, p 1s a function that maps the elements of S to the real
interval [0,1] such that Y ,cgu(s) = 1. This function defines a probability distribution over
the subsets of S by the following device: for every A C S we define u(A4) = Y ca p(s).?

We can use the probability structures to interpret the formulas of £Z in a manner similar
to the KD45 modal structures. In particular, we use a triple (P, s,v) to interpret the formulas
and except for the belief operator the rules of interpretation are identical. The new rule for
the belief operator is

(P,s,v) E Ba iff pl{s': (P,s',v) Ea} =1

That is, the agent believes « if and only if the measure of the set of worlds which satisfy «
15 1.

We have analogous definitions of validity and satisfiability with respect to probability
structures.

To show that this new probabilistic semantics for £P is logically equivalent to the previous
KD45 modal structure we have the following theorem (for the proof see Bacchus [2]).

Theorem 3 A formula a of the language LB is valid for KD45 modal structures if and only
if it is valid for probability structures.

In particular, this theorem implies that the axioms K, D, 4, and 5 are all valid with respect
to probability structures. Hence, the probability structures provide a model for logically
closed fallible beliefs.

There have been a number of results in philosophy showing that different logics, modal
and non-modal, can be given probabilistic semantics (e.g., [9, 11]), but most of these results
have been for the propositional, non-quantified case. Similarly, Halpern [4] has given results
on probabilistic interpretations of propositional KD/5. To the author’s knowledge this is the
first result of this form for quantified KD45.

Intuitively multiple possible worlds model the agent’s incomplete knowledge. For ex-
ample, if the agent does not know the color of Clyde the elephant, he may think that
gray(Clyde) is both possibly true and possibly false. The different possible worlds model
the different states that would result if this assertion was alternatively true or false. The
agent’s belief’s may be more refined than simple admission of possibility: he may feel that
certain worlds are more likely than other. For example, the agent may consider gray(Clyde)
to be more likely than —gray(Clyde). That is, he may consider the worlds that satisfy
gray(Clyde) to be more probable. The probability distribution in the probability structure
allows us to model these degrees of commitment.

ZNote that under this probability measure there are no non-measurable sets, i.e., every subset of § will
have a probability no matter what the cardinality of S is. It is the case, however, that at most a denumerable
number of states in S will have non-zero probability.



The language £Z, however, is only capable of representing full belief. In the probabilis-
tic interpretation a belief formula like Ba denotes that the probability of the set of worlds
that satisfy « is 1. This interpretation of B is fixed, and there is no way for us to refer to
intermediate degrees of belief. That is, the language is not sufficiently expressive to repre-
sent intermediate degrees of belief. It is instructive, however, to examine the probabilistic
interpretation of full belief.

The KD45 modal structures, and KD45 modal logic, models full belief. That is, although
the agent’s beliefs may be false the agent does not consider this to be a serious possibility.
The agent’s beliefs are not falsified by any accessible world. It is for this reason that the
agent is willing to believe all deductive consequences of his beliefs. This situation is similar
in the probabilistic interpretation. In the agent’s view if he believes «, then he considers the
probability that « is false to be zero. It is logically possible that a could be false, but the
worlds that falsify it all have probability zero.

4 Probability Logics

It can be argued that our probability semantics provides a simpler more transparent se-
mantics for beliefs. Instead of a complex accessibility relation we have a simpler probability
distribution. Furthermore, there is a plausible intuitive basis for the probability distribution:
the agent may consider certain worlds to be more likely than others. There does not seem to
be any such direct intuitive basis for the accessibility relation. Rather the suitability of the
accessibility relation is determined primarily by how well it captures our intuitions about
the behavior of the belief operator.

Beyond this advantage, however, if we are dealing just with the language £Z there does
not seems to be much need for a probabilistic semantics: £P is not sufficiently expressive
to use the full power of the semantics. Given a formula « the probabilistic semantics allows
one to evaluate the measure of the set of worlds which satisfy «. This can be intuitively
be regarded as being the agent’s degree of belief in «. There is no reason for this degree
of belief to be 1; it can be any value in the unit interval. By using the full power of the
probabilistic semantics we can capture a notion of graded belief and represent and reason
with many complex assertions about belief beyond full belief.

The key to accomplishing this is to extend the expressive power of the language £Z so
that it can make direct reference to the probabilities. In this manner we can make various
qualitative and quantitative assertions about the probabilities, and we can reason with the
probabilities. Since these probabilities are to be interpreted as degrees of belief this would
enable us to represent and reason with the agent’s degrees of beliefs. A method for making
direct reference to probabilities in a logical language has been developed by Bacchus [1]. This
method was adopted and refined by Halpern who has developed an expressive probability
logic based on the probability structures that we have used above. We will use a syntactic
variant of Halpern’s logic (to be precise Halpern’s Type II probability logic) [5]. This is



the variant that is used in Bacchus [2] which contains an extensive exposition of the logic,
including many examples.

We will call this more expressive language £P™P. It is a two-sorted language. One of the
sorts consists of the objects in the agent’s environment, i.e., the solitary sort that was used
in £B. The second, new sort is a numeric sort. The terms of the numeric sort will denote
real numbers, and the numeric functions and predicates will be functions and relations over
the reals. The complete language consists of a set of object functions and predicates, and
a set of numeric functions and predicates. Among the numeric functions and predicates are
the symbols 1, 0, —1, +, x, =, <. The numeric functions and predicates take only numeric
terms are arguments, similarly for the object functions and predicates. That is, there are no
mixed functions or predicates. The formulas of LP*P are formed by the standard first-order
rules of formation, with the addition of a rule for generating probability terms:

If a is a formula then prob(a) is a numeric term.

Semantically, the language is interpreted with respect to a triple (P, s,v) consisting of
a probability structure, a current world, and a variable assignment function. The rules of
interpretation are standard except for the rule that interprets the probability terms:

prob(a)P*) = u{s’ : (P.',0) = o}

That is, the denotation of the probability term prob(a) at any world s is the probability of
the set of worlds that satisfy «.

It is easy to see that the denotation of prob(«) is independent of the current worlds s,
and that since probabilities are real numbers it denotes a real number; i.e., it is a legitimate
numeric term.

The essential difference between £Z and L£P* is the replacement of the belief operator
B with a probability operator prob. Both operators take formulas as their arguments, but
the belief operator yields a new formula while the probability operator yields a new term.
This is how the increased expressiveness of LP™P is accomplished. Ba is a formula of LB
with a truth value given by a fixed rule of interpretation; on the other hand prob(«) is not
a formula of £P™P it is a term which denotes a real number: the probability of the set of
worlds that satisfy a. In order to produce a formula of £LP™ we have to use prob(a) in a
formula; in particular we have to use it as an argument to a predicate. For example, we
can use it as an argument to the numeric equality predicate along with another numeric
term, say 1. This would produce the formula prob(a) = 1. As theorem 3 demonstrates, this
formula is logically equivalent to Ba. We could chose another numeric term instead of 1;
for example, the formula prob(a) = prob(/) says that the agent has equal degree of belief in
both a and (3, without making any commitment to the exact values of this degree of belief.

We now present some examples of what can be represented in L£P™P,



5 Examples of Expressiveness

Example 1 (Non-extreme commitment) We could represent the agent’s belief that John
probably has some type of cancer.

prob(Jx.has_cancer_type(John,x)) > 0.5%.

Here we assume that the domain of objects includes a set of individuals which are types of
cancer, and in each of the satisfying worlds one of these individuals lies in the has_cancer_type
relation with the individual denoted by the constant John. It should be noted that this for-
mula makes no commitment about the particular type of cancer that John has: there could
be a different satisfying x in each world. Hence, we are not forced to over-commit in our
representation of the agent’s beliefs. Finally, we can note that this formula is satisfied by
many different structures, each of which may have a different probability distribution over
the states. That is, the actual probability measure of the set of satisfying states of this
formula could be any number, as long as it is greater than 0.5. We do not have to know the
agent’s probability distribution over the set of worlds (it is highly unlikely that the agent
himself knows this). Rather, as with most logical formalisms, we can represent what we do
know of the agent’s beliefs and can reason about the constraints that these beliefs place on
other beliefs.

Example 2 (Relative information about beliefs) Perhaps the agent believes that it is
more likely that John has lung cancer than any other type of cancer.

Vx.cancer_type(x) A [x # lung]
— prob(has_cancer_type(John, lung))
> prob(has_cancer_type(John, x)).

Note that in this example the quantification of x occurs outside of the probability context.
So by the time we interpret the probability operator the variable x has already been given a
particular assignment. Furthermore, the outermost universal quantification runs through all
possible assignments to x. All those x which satisfy the antecedent of the implication must
satisfy the probabilistic constraint in the consequent.

We may have more complex arithmetic relations between beliefs. For example, the agent
may believe that it is more than twice as likely that John has skin cancer than lung cancer.

prob(has_cancer_type(John, skin))
> 2 X prob(has_cancer_type(John, lung)).

The agent may have more quantitative beliefs, e.g.. the probability that John has cancer
lies in the interval 0.6 to 0.95.

prob(Jx.has_cancer_type(John,x)) € [0.6,0.95].

3Extra numeric constants like 0.5 can be added to £P*P by definition. For example, we can define 0.5
by the formula ‘0.5 x (1 + 1) = 1.” That is, where ever 0.5 occurs we can use equality to remove the new
constant returning to the basic £LP™" language



6 Reasoning

It is possible to give a proof theory for £P™P. The proof theory consists of the first-order
axioms, axioms for reasoning about real numbers,* and probability axioms. The proof theory
1s powerful enough to do an extensive amount of probabilistic and first-order reasoning, and
is complete for certain special cases (see Halpern [5]). Bacchus [2] contains some detailed
examples of how one can use the proof theory to perform various types of reasoning.

The proof theory is powerful enough to fully capture the logic of full belief. That is,
it can deduce all formulas that are valid for KD45 modal logic. As we have seen, the
full belief formulas of KD45 are logically equivalent to formulas with probability one, i.e.,
Ba = prob(a) = 1. Hence there is a natural translation from the formulas of £Z into £PrP:
just replace every subformula of the form B(a) by a subformula of the form prob(a) = 1. It
can be demonstrated that the £P*P translation of every valid £ formula is deducible from
LP*P’s proof theory.

Besides logical reasoning with full belief, the proof theory can perform an extensive
amount of probabilistic reasoning. For example, it can perform the probabilistic reasoning
involved in Bayes’ networks (Pearl [12]). Both of these claims are demonstrated in [2].

7 Conclusions

We have demonstrated that a probabilistic interpretation provides a generalization of modal
approaches to belief. In particular, we have proved that probability logics can provide a
proper generalization of quantified KD45. We have also demonstrated how such logics can
be used to represent and reason with graded notions of belief.

Another application of probabilities is to provide a logic capable of representing statistical
assertions. This use of probabilities is to be distinguished from our use of probabilities here
to model degrees of belief. Statistical assertions are assertions about the state of the agent’s
environment just like logical assertions such as gray(Clyde); they are not assertions about
the agent’s beliefs. To express statistical assertions a more expressive language has been
developed (Bacchus [1]). We can call this language £5%**. By using the more expressive £
as the underlying non-modal language instead of £, we can develop a probabilistic belief
logic capable of expressing an agent’s logical and statistical beliefs. This belief logic has
applications in non-monotonic reasoning [2].

In summary, one of the objectives of this paper is to demonstrate that probabilities and
logic can co-exist comfortably in a single formalism, and that such a combination can often
yield a more powerful tool than just logic or just probabilities. We have demonstrated this
for the case of belief logics. The above mentioned application of statistical probabilities to
non-monotonic reasoning is another example of this synergism.

“These are the axioms of real closed fields (Tarski [13]). They capture the algebraic behavior of the reals.
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