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Abstract

This paper presents a logical formalism for representing and reasoning with statistical knowl�

edge� One of the key features of the formalism is its ability to deal with qualitative statistical

information� It is argued that statistical knowledge� especially that of a qualitative nature� is an

important component of our world knowledge and that such knowledge is used in many di�erent

reasoning tasks� The work is further motivated by the observation that previous formalisms for

representing probabilistic information are inadequate for representing statistical knowledge�

The representation mechanism takes the form of a logic that is capable of representing a

wide variety of statistical knowledge� and that possesses an intuitive formal semantics based on

the simple notions of sets of objects and probabilities de�ned over those sets� Furthermore� a

proof theory is developed and is shown to be sound and complete�

The formalism o�ers a perspicuous and powerful representational tool for statistical knowl�

edge� and a proof theory which provides a formal speci�cation for a wide class of deductive

inferences� The speci�cation provided by the proof theory subsumes most probabilistic infer�

ence procedures previously developed in AI� The formalism also subsumes ordinary �rst�order

logic� o�ering a smooth integration of logical and statistical knowledge�

Keywords Probability Logic� Knowledge Representation� Statistical Knowledge�

� Introduction

��� Why Statistical Knowledge�

One of the primary bene�ts of using �rst�order logic to represent knowledge lies in its well de�ned
and intuitive semantics� The semantics of �rst�order logic is based on the very simple notions of
distinguishing individual objects and grouping them into sets� The sets are collections of objects
which share some common properties� for example� the set of red objects or the set of cylindrical
objects� The notion of sets of individual objects can be easily extended to sets of vectors of objects�
Such sets can be used to represent groups of objects which stand in some relation with each other�
for example� the set of pairs of objects hx� yi� where �x� is the father of �y�� can be used to represent
the relation of male parentage�

The intuitive nature of �rst�order semantics can be explained by our natural ability to recog�
nize various properties objects possess and various relationships which exist between objects� For
example� we can generally recognize if an object is red� or if it is cylindrical� or if one object is
on top of another object� The ability to classify objects according to their properties seems to
be fundamental to our perception of the world around us� and indeed much of our knowledge of
the world is knowledge of the properties of various objects and the relationships between various
objects�

Another feature of the world around us that we perceive naturally are statistical relationships
of relative frequency� The vast amount of statistical knowledge we possess about the world is
an indication of our natural ability to accumulate such information� Usually� however� we are
not able to precisely quantify these relative frequencies� at least not without the expenditure of
extra resources�� This knowledge is often qualitative in nature� it is in the form of empirical

�For example� we may conduct surveys� or in limited domains we may actually count the numbers of objects with
various properties�

	



generalizations� These generalizations may come from our personal experience� e�g�� realizing that
among computer scientists males outnumber females� or it may come from information from other
sources� e�g�� the large amounts of statistical information presented in the popular media�

One of the motivations of this work was this observation that we possess so much statistical
knowledge� It is reasonable to infer that this knowledge must be useful to us in dealing with the
world� and therefore it is reasonable to assume that an AI system would also �nd such knowledge
useful� In fact� it is not di
cult to �nd areas in AI where such knowledge is already used or can be
used� For example� some of the work on uncertainty in AI �see Kanal and Lemmer ����� ���� for
a sample� is concerned with statistical knowledge in applications that range from expert systems
to vision systems� Statistical knowledge is also useful in non�monotonic reasoning �Bacchus� ���

where defaults can be expressed as empirical generalizations� and in learning� e�g�� �Etzioni� �����
The aim of this work is to provide a representation formalism that is general enough to support
extended uses of statistical knowledge in areas of AI that already use statistics and to support new
applications based on statistical knowledge�

��� Interpretations of Probability

The axiomatic formulation of probability functions supports a number of di�erent intuitive inter�
pretations� A rough division can be made between these interpretations into those that use prob�
abilities to model notions of proportion or relative frequency and those that use probabilities to
model the epistemic concept of degrees of belief� Before we discuss the di�erences between these two
interpretations� let us review the axiomatic speci�cation of probabilities �see� e�g�� �Lindley� ���a�
Chung� ���� Feller� ���� for more details��

����� Axiomatic De�nition of Probabilities

The modern axiomatic theory of probability is due to Kolmogorov ����� who based probability the�
ory on measure theory� Even though the intuitive interpretation of probability varies� his axiomatic
speci�cation is almost universally accepted�

Under this speci�cation probability functions are real�valued functions de�ned over a �eld of
subsets �or algebra of subsets�� Formally� we have some sample space� S� and a �eld of subsets of
S� �� � is a �eld of subsets of S if and only if it satis�es the following conditions�

�� S is a member of ��

�� � is closed under complementation� i�e�� A � � implies that S � A � �� where S � A are all
those elements of S that are not in A� We will write �A for S �A�

�� � is closed under �nite unions� i�e�� A � � and B � � implies that A � B � ��

Normally we also require� as does Kolmogorov� that � be a sigma��eld� in which case it is closed
not only under �nite unions� but more generally under countable unions� That is� instead of �� �
will satisfy the more general condition�

��� If A�� A�� � � � are a countable collection of sets in �� i�e�� �i�Ai � �� then
S�

i��Ai � ��
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The subsets in � are called measurable sets � Not every subset of S need be in �� i�e�� not every
set need be measurable� Note also that the power set of S� i�e�� the set of all subsets of S� 	S � will
always be a sigma��eld of subsets�

Given a sample space S and a suitable �eld of subsets �� probability functions pr �or probability
measures� are de�ned to those functions which map � to the reals� and which satisfy the following
axioms �known as the Kolmogorov axioms for probability��

P�� pr�A� � � for all A � ��

P�� pr�S� � ��

P�� If A � B � 	 then pr�A �B� � pr�A� � pr�B��

The last property is know as �nite additivity � If � is a sigma��eld� then we require a more general
condition of countable additivity �

P��� pr�
S�

i��Ai� �
P�

i�� pr�Ai�� if the Ai�s are pairwise disjoint�

����� Statistics vs� Degrees of Belief

Axiomatic speci�cations generally support a number of di�erent intuitive interpretations� For ex�
ample� the axioms which specify the algebraic structure of groups supports many di�erent types of
groups� The set of permutations of a �nite vector of elements forms a group as does the set of rota�
tions of a rigid body in n�space� Similarly� the Kolmogorov axioms support di�erent interpretations
of probabilities�

In particular� there are two quite distinct interpretations of probability functions� probabili�
ties acting as statistical measures of proportion or relative frequency� and probabilities acting as
measures� or degrees� of belief�

If we have a collection of individuals that are grouped into di�erent classes dependent on their
properties� then we can make various assertions about the proportion of individuals in the di�erent
classes� For example� of the �� provinces in Canada� 	 are west of Saskatchewan� Hence� we can say
that 	�� of the provinces in Canada are west of Saskatchewan� Proportions satisfy the axioms of
probability� hence� from the previous assertion we can infer that ��� of the provinces in Canada are
not west of Saskatchewan� Similarly� ��� of the provinces are east of Ontario� and since Ontario is
east of Saskatchewan� this set is disjoint from the set of provinces west of Saskatchewan� hence� we
can infer from the probability axioms that ��� of the provinces are either east of Ontario or west
of Saskatchewan� More generally� we can consider the probabilities to be specifying assertions of
relative frequency� In this more general case we have a possibly in�nite sequence of events and each
event has di�erent properties� We can then talk about the relative frequency of various properties
in the sequence of events� For example� we could have a sequence of tosses of a coin� and we can
make assertions about the relative frequency of tosses that landed heads among this sequence�

The view of probabilities as statistical assertions about proportion or relative frequency is known
as the empirical interpretation of probabilities� and it is one of the oldest interpretations� Many

�More general probability functions which are not required to be real�valued have been investigated� e�g�� �Koop�
man� ���	
 Aleliunas� ����� and as the reader will see we will use generalized �eld�valued probability functions in
this work�
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writers on probability theory have chosen to take this interpretation of probability� e�g�� �Venn� �����
Neyman� ���� Reichenbach� ��� Salmon� ���� von Mises� ���� Popper� ����

The other interpretation of probability is to view probability as being a degree of belief� Under
this interpretation probability becomes an epistemic concept� related to an agent�s beliefs� instead
of an empirical property related to relative frequencies� In this case the sample space S becomes a
set of propositions� usually expressed in a logical language� the complementation of a proposition
becomes its negation� and the union of two propositions becomes the proposition formed from their
disjunction� Hence� probabilities are assigned to propositions� Each proposition is an assertion
about the world� thus� intuitively the probabilities of these propositions are viewed as being an
agent�s degree of belief in the truth of the assertion made by the proposition� For example� the
sample space might consist of the two propositions �Tweety is a bird� and �Tweety can �y�� Hence�
we could have pr�Tweety is a bird� � ��� and pr�Tweety can �y� � ��� which is to be interpreted
as representing that the agent has a degree of belief of ��� that Tweety is a bird and a degree of
belief of ��� that he can �y�

There are many variations of the view of probabilities as degrees of belief� Mainly these varia�
tions are distinguished by the manner in degrees of belief are assigned prior to the agent having any
information about the state of the world� i�e�� the initial probability function� and the manner in
which the agent modi�es his degrees of belief in the face of new information or evidence about the
state of the world� For example� under the view of logical probabilities �Carnap ���	�� Hintikka
������ there is a logically determined initial probability function� and the agent can change his
degrees of belief by conditioning this prior probability with his new information� Alternately� on
the Bayesian or subjective view �De Finetti ������ Savage ������ Lindley ����a� ���b�� Je�rey
������ Cheeseman ������ there is no such thing as a logically determined prior probability� instead
the agent has a personal prior probability distribution that can be anything the agent wishes�

My aim here is not to argue about what interpretation of probabilities is better� Rather� I
would claim that both interpretations are equally important in AI� and both have distinct uses�
What is important� however� is to be clear about the di�erence between the two interpretations�
and to maintain the clarity of the distinction in our schemes for representing probabilities�

The di�erence between the two types of probabilities can be better appreciated by examining
the following pair of assertions �More than ��� of all birds �y� and �The probability that Tweety
can �y is greater than ������ The �rst assertion is a statistical assertion about the proportion of
�iers among the set of birds� The truth of this assertion is determined by the objective state of
the world� in the world this statistical assertion is either true or false� The second assertion is an
assertion about the subjective state of some agent� The truth of this assertion is determined by
the state of the agent�s beliefs� either the agent assigns a degree of belief greater than ���� to the
assertion �Tweety �ies� or he does not�

Note that statistical assertions are more like ordinary logical assertions than like assertions
about degrees of belief� For example� the assertion �More than ��� of all birds �y� is much like
the assertion �Tweety �ies�� both are assertions about the state of the world� Such assertions can
be the subject of an agent�s beliefs� e�g�� an agent may believe or not believe either assertion� or
he may assign a degree of belief to either assertion� So an agent may think that it is highly likely
that Tweety �ies and he may think that it is highly likely that more than ��� of all birds �y� In
fact� one can view the study of statistical inference� particularly the Bayesian view of statistical
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inference� as being the study of mechanisms for assigning degrees of belief to statistical assertions�
For example� the agent starts with degrees of belief in assertions of the form �The percentage of
birds that �y is x�� for x � ��� ����� accumulates information from various samples of birds� and
generates new degrees of belief in these assertions� For example� he may come to strongly believe
that the percentage of �ying birds is between ��� and ��� Lindley ����a� Chapter �� gives a
useful discussion of this point�

��� The Contribution of This Work

Degree of belief probabilities have received a great deal of attention in AI and elsewhere� and various
representation formalisms have been developed for this type of probability� These formalisms are
useful for representing the uncertainty attached to various assertions� For example� some of the
information in a knowledge base may be from questionable sources� so we may want to attach a
degree of belief to it� Such degrees of belief can be useful when making decisions about what actions
to execute� However� this is not the only type of probability that is important for AI� probabilities
used to represent statistical assertions are also of importance� A lot of the knowledge that we
wish to represent in AI programs is in the form of statistical claims about the world� These range
from imprecisely quanti�ed generalizations� like �Most birds �y�� or� �People with a runny nose
usually have a cold�� to more precisely quanti�ed statistical statements� like those found in medical
diagnosis systems �e�g�� the mycin system �Shortli�e and Buchanan� �������

Unfortunately� this type of probability has not received much attention� and furthermore the
representation formalisms that have been developed for degree of belief probabilities are not well
suited for representing statistical assertions�

The contribution of this work is to provide a representation formalism for statistical assertions�
This formalism takes the form of a logic that is capable of representing and reasoning with a wide
variety of statistical assertions� This is accomplished through an empirical probabilistic component
in the semantics� The logic is an extension of ordinary �rst�order logic� and its development is
complete� that is� not only are the syntax and semantics speci�ed� but also a sound and complete
deductive proof theory is provided�� The proof theory is capable of reasoning with the statistical
knowledge� as well as with sentences of �rst�order logic�

Statistical assertions obey the axioms of probability� Therefore� we can reason with them by
reasoning with the probability axioms� For example� from the assertion �Most birds �y� along with
�All penguins are birds� and �No penguins �y�� it is possible to deduce that �Most birds are not
Penguins�� When more precisely quanti�ed statistics are available� sophisticated Bayesian analysis
can be performed� In fact� the proof theory captures the inferences that can be produced from most
of the deductive probabilistic reasoning systems �i�e�� systems based on the axioms of probability�
previously developed�

It should be noted� however� that while the proof theory captures the deductive inferences
possible from a collection of statistical information� it does not capture non�deductive inferences�

�In expert systems the knowledge is gathered from an expert and has often been called subjective probabilities
�degrees of belief� �Duda et al�� ����� but in many cases� especially in the medical domain� we are actually gathering
the expert�s estimate of underlying statistical data�

�The proof theory is complete with respect to the �eld�valued probabilities that we use in our models� We will
discuss the motivation and justi�cations for using �eld�valued instead of real�valued probabilities later�
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Many of the most interesting uses of statistical information comes from various non�deductive
inferences� For example� the study of statistics is primarily concerned with statistical inference� This
is the non�deductive inference of statistical assertions from sample data� Our deductive proof theory
does not provide for this kind of statistical inference� Rather� it provides a logic for representing
and reasoning with the results of statistical inference� i�e�� the statistical assertions� Similarly�
another use of statistical information is to assign degrees of belief to assertions about particular
individuals� For example� if one knows the statistical information �More than ��� of all birds �y�
and all one knows about Tweety is that he is a bird� then a reasonable non�deductive inference is
to believe with degree greater than ���� that Tweety can �y� Again the proof theory we provide
here is not capable of making these kinds of inference� However� I would argue that the formalism
presented here is a necessary �rst step in developing systems for capturing these kinds of inferences�
such formalisms will require mechanisms for representing statistical assertions and for reasoning
deductively with them� In fact� a system for infering degrees of belief in assertions about particular
individuals has already been developed �Bacchus� ���� and it depends heavily on the formalism
presented here to represent and reason with the statistical assertions that are used in this kind of
inference�

There is one more point that should be raised� Just as previous formalisms for degree of belief
probabilities are not naturally suited for representing statistical assertions� it turns out that the
formalism presented here is not naturally suited for representing degree of belief probabilities� This
means that the formalism cannot e
ciently deal with uncertainty in one�s knowledge� That is�
it can represent logical and statistical assertions� but it cannot represent uncertainty about these
assertions� Clearly� representing uncertainty in these assertions is important for certain applications�
However� since knowledge bases without uncertainty measures have many applications in AI� it is
to be expected that knowledge bases containing a richer variety of information �i�e�� statistical
information as well as logical information� will also be useful�

Subsequent to this work� however� it has been demonstrated how the formalism developed here
can be combined with formalisms for degree of belief probabilities to produce a formalism that
can deal with both types of probabilities simultaneously �Halpern� ���� The important part of
Halpern�s work is that it provides a formalism that can represent degrees of belief assigned to
statistical assertions� and this is important if one wants to study statistical inference� In support
of our claim� the work presented here was an necessary �rst step in this development�

��� Outline of the Presentation

The next section provides a discussion of previous work on the problem of representing probabilistic
information� Most of this work is aimed at dealing with degree of belief probabilities� and hence
these formalisms are not naturally suited for representing statistical knowledge� We then discuss
the logic Lp which has been developed to solve this problem� pointing out some of the types of
statistical knowledge that the formalism can represent along with the logic�s key features�

Section � starts into the formal results of the paper� �rst presenting the syntax and semantics
of Lp� and then giving examples of the types of knowledge representable with this logic�

The deductive proof theory is presented next� The proof theory is shown to be both sound and
complete� We also present some examples of the types of reasoning possible with this proof theory�
Nilsson ����� has developed a form of probabilistic reasoning he calls probabilistic entailment�
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and Pearl ����a� has developed a mechanism of probability reasoning using Bayesian networks�
Both Nilsson and Pearl developed their mechanisms for degree of belief probabilities� Since degree
of belief probabilities and statistical assertions satisfy the same axioms these mechanism have
analogues for statistical probabilities� It will be show that the proof theory forLp subsumes the
statistical analogues of these mechanisms�

The �nal section summarizes and discusses the results and contributions of the work presented�

� Previous Work

��� Probabilities over Possible Worlds

There has been an extensive quantity of work on representing and reasoning with degree of belief
probabilities� for example� �Carnap� ��	� Gaifman� ���� Scott and Krauss� ���� Nilsson� ����
Bundy� ���� Field� ���� van Fraassen� ���� LeBlanc� ���� Morgan� ���� Fagin et al�� �����

These works have investigated the assignment of probabilities to sentences of a logical language�
either �rst�order or propositional� One way of formalizing the attachment of probabilities to logical
sentences is to consider a probability distribution over a set of possible worlds� The probability
of any sentence then becomes the probability of the subset of possible worlds in which it is true�
Alternately� one can place a probability distribution over the Lindenbaum�Tarski algebra generated
by the sentences of the logic� This algebra is composed of equivalent classes of sentences that are
de�ned by the relation of provable equivalence�� �see Bell and Machover ������� The probability
of a sentence then becomes the probability of the equivalence class it is a member of� These
two approaches for attaching probabilities to sentences are essentially equivalent �Bacchus ����a�
�����

The sentences of such languages represent assertions about the world and probabilities assigned
to them act as degree of belief in these assertions� Instead of either asserting a sentence or its
negation� as in ordinary logic� one can attach some intermediate degree to it� a degree of belief� So�
for example� one could represent a degree of belief of greater than �� in the assertion �Tweety can
�y� by assigning the sentence Fly�Tweety� a probability greater than ��� These probabilities have
the properties that one would expect� e�g�� the probability of the negation of a sentence is � minus
the probability of the sentence� Furthermore� when the probabilities are all � and � the probability
logic reduces to ordinary logic�

Despite these advantages� however� it is not easy to represent statistical information� e�g�� the
assertion �More than �� of all birds �y���

We can �rst note that propositional languages do not possess su
cient power to represent
these kinds of statements� This particular statistical statement is an assertion which indicates a

�That is� if � � � is valid� then � and � are in the same equivalence class�
�It is well known that �rst�order logic is in some sense universally expressive� In particular� we can represent this

assertion in ordinary �rst�order logic by formalizing set theory� and then building up su�cient mathematics inside the
language to represent statements of this form �as does Kyburg ������� This can be done in �rst�order logic
 so it can
certainly be done in �rst�order logic generalized to have probabilities attached to the sentences� However� this is not
an e�cient representation� nor will there be any direct re�ection in the semantics of the statistical information �i�e��
the assertion will be buried in a complex construction of sets�� We are concerned here with e�cient representations
and intuitive semantics� Furthermore� if one chooses the route of using set theory one gives up any hope of �nding a
reasonable proof theory�
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relationship between the properties of being a bird and being able to �y� but it is not an assertion
about any particular bird� This indicates that some sort of variable is required� Propositional
languages do not have variables� and so are inadequate for this task even when they are generalized
to take on probabilities instead of just truth values�

When we move to �rst�order languages we do get access to variables� variables which can
range over the domain of individuals� A seemingly reasonable way to represent this statement is
to consider the probabilistic generalization of the universal sentence �x�Bird�x� 
 Fly�x�� The
universal in �rst�order logic says that all birds �y� so perhaps if we attach a probability of � ��
to it we will get what we need� Unfortunately� this is not the case� If there is single bird who is
thought to be unable to �y� the universal will be forced to have a probability close to zero� That is�
the probability of the universal must be � � pr��x�Bird�x�� �Fly�x��� where we use the notation
�pr���� to denote the probability of a sentence ���� Hence� if one believes to degree greater that ���
that a non��ying bird exists� the probability of the universal must be � ���

This di
culty can also be understood in terms of probabilities over possible worlds� It seems
quite reasonable to believe that the statement �More than �� of all birds �y� is true in most of
the worlds one believes possible� while at the same time believing that �x�Bird�x�� �Fly�x� is also
true in most of these worlds�

The simplest representation using universal quanti�cation� then� fails to do the job� Another
possibility� however� is to use conditional probabilities� We have probabilities attached to sentences
hence with two sentences we can form conditional probabilities� It has been suggested �Cheese�
man ������ that meta�level statements of the following form can be used to capture statistical
statements� in particular for the statement about birds�

�x�pr�Fly�x�jBird�x�� � � �� �

The reason that this is a meta�level quanti�cation is that the universal quanti�er is quantifying
over a formula pr�Fly�x�jBird�x�� which is not a formula of a �rst�order language since it contains
a �pr� operator� However� it is not di
cult to formalize a language in which such formulas are well�
formed� i�e�� we can reduce the meta�level quanti�cation to object�level quanti�cation in a richer
language �see �Bacchus� �����

This statement is intended to assert that for every term t in the �rst�order language the condi�
tional probability pr�Fly�t�jBird�t��� with the variable x substituted by the term t� is � ���

This representation cannot be considered to be a representation of the statistical assertion�
Rather� it is most reasonably interpreted as a prescription that determines how statistical informa�
tion can be used to specify how an agent should modify his degrees of belief� Consider the following
collection of assertions�

�� ��� of the provinces in Canada are east of Alberta�

	� British Columbia is a province of Canada�

�� British Columbia is not east of Alberta�

I am certain that these assertions are simultaneously true� If we could represent the statistical
assertion as claimed by Cheeseman� my current beliefs would be described by the following repre�
sentation�





�� �x�pr�East Alberta�x�jprovince�x�� � � ���

	� pr�province�B�C ��� � ��

�� pr��East Alberta�B�C ��� � ��

But it is not di
cult to see that this representation is inconsistent� In particular� since pr���� � � � pr����
we have that pr�East Alberta�B�C ��� � � � However� the �rst item says that

��� � pr
h
East Alberta�B�C��jprovince�B�C��

i

�
pr
h
East Alberta�B�C��� province�B�C��

i

pr
h
province�B�C��

i

�
pr
h
East Alberta�B�C��

i
�

� pr
h
East Alberta�B�C��

i
�

Hence� using this proposed representation of the statistical information we generate an inconsis�
tency� That is� under this representation I cannot be in an state of belief where I hold all three
beliefs simultaneously  There is no single probability function over my beliefs that will satisfy all
three of these constraints� But clearly this is unreasonable as I really do believe� as do millions of
other Canadians� that the three assertions are true simultaneously� Cheeseman has argued that in
these examples we need to distinguish between prior probabilities and posterior probabilities� It is
true that I would not be faced with a contradiction if I held the statisical belief in a prior state and
the beliefs about B�C� in a posterior state� but this argument misses the point� I hold all three of
these beliefs simultaneously in my current state of beliefs� Note also that the argument does not
depend on me having a degree of belief of � in the last two assertions� any reasonably high degree
of belief will also yield the contradiction�

One of the important uses of statistical information is its in�uence on an agent�s degrees of
beliefs� and although Cheeseman�s proposal fails to provide a representation of the statistical in�
formation� it does provide a speci�cation of how an agent�s degrees of beliefs can be determined� I
will argue later� however� that this speci�cation is �awed� but �rst we can examine the manner in
which it works�

Consider the formula

�x�pr�East Alberta�x�jprovince�x�� � ����

this formula can be used determine an agent�s beliefs about the properties of a particular provience�
If the agent has an initial state of beliefs in which his degrees of belief are described solely by quan�
ti�ed conditional probabilities of this form� then he can condition this initial state with facts about
particular individuals and generate reasonable inferences in his posterior state of beliefs� For exam�
ple� only the above formula is satis�ed by my initial state and I then condition on the new evidence
province�B�C��� then my posterior state of beliefs will assign a degree of belief of ��� to the asser�
tion East Alberta�B�C��� On the other hand if I condition my initial state with the new evidence
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province�B�C��� �East Alberta�B�C�� I will have a degree of belief of � in East Alberta�B�C�� in
my posterior state of beliefs� as the conditional

pr�East Alberta�B�C��jprovince�B�C���

does not determine the conditional

pr�East Alberta�B�C��jprovince�B�C��� �East Alberta�B�C����

In general� given such an initial state of beliefs� if you know nothing about a province other than
it is a province you will have a degree of belief of ��� that it is east of Alberta� i�e�� you will have a
degree of belief that is determined by the proportion of provinces that are east of Alberta�

Ge�ner and Pearl ����� use a representation like this in their system of default reasoning� In
their system the agent�s prior beliefs are described by a background context which contains univer�
sally quanti�ed conditional probabilities� Assertions about particular individuals are not allowed
in the background context� As we have shown such assertions can easily contradict the universal
assertions that are present� When reasoning about particular individuals the agent moves to a
posterior set of beliefs by conditioning on information speci�c to these individuals� For example�
to reason about the bird Tweety the agent will condition his background context with the for�
mula bird�Tweety�� As our example demonstrates� if the agent�s background context contains the
formula pr�fly�x�jbird�x�� � ��� the agent�s posterior beliefs will assign a high degree of belief
to �y�Tweety�� If� on the other hand� the agent knows that Tweety is a penguin� then when he
conditions his background context� his degree of belief in �y�Tweety� will be di�erent�

Although this representation supports a relationship between statistical informaton and an
agent�s degrees of belief� thus supporting a probabilistic approach to default reasoning� it has a
number of �aws�

�� To avoid inconsistency the approach requires an unnatural division in the agent�s beliefs�
I have lots of statistical beliefs which I hold simultaneously with beliefs about particular
individuals� and it seems to be quite unnatural to suppose that I actually have two disparate
sets of beliefs� a background context containing only statistical assertions and a evidence
corpus where I have all my information about particular individuals� However� such a split
is exactly what this representation requires�

	� After I have conditioned the background context with my evidence my posterior state of
beliefs no longer satis�es the universally quanti�ed conditionals in the background context�
Hence� as we learn new facts we always have to return to the initial prior and condition that
with the sum total of our evidence� For example� if we �rst learn that Oscar is a penguin and
we condition on this information� then we will not be able to incrementally condition on the
new information that Tweety is a bird� We will have to return to the background context and
condition on penguin�Oscar��bird�Tweety�� Such an approach is certainly at variance with
the normal Bayesian epistemology� Under that view today�s posterior becomes tomorrow�s
prior� That is� one never returns to a �xed prior� rather one�s state of beliefs continues to
evolve by conditioning on new evidence�
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�� The �representation� of the statistical information in the background context cannot be
used to support other tasks� For example� we cannot use this representation to support the
learning of statistical information� Under known approaches to learning statistics �statistical
inference�� statistical information is generated from samples which contain information about
particular individuals� One cannot start from a state of beliefs which contains beliefs about
provinces that are not east of Alberta and move to a state of beliefs where the formula
�x�pr�East Alberta�x�jprovince�x�� � ��� is true� That is� one cannot attain the state
described by the background context from information about particular individuals�

Nor can this representation support degrees of belief in statistical assertions without a resort
to complexities like second�order probabilities� Hence� we cannot represent and reason with
assertions like �I think that it is very likely that more than ��� of all birds �y��

�� Such a complex representation for capturing the e�ect of statistical information on an agent�s
degrees of belief is unnecessary� In �Bacchus� ��� a system for accomplishing this kind
of inference is developed� The system makes use of the formalism presented here and as a
result is able to provide a much more natural representation for the knowledge that under�
writes inferences of this type� In particular� there is no split in the agent�s knowledge into
background context and evidence� rather� the agent�s statistical knowledge co�exists with his
knowledge about particular individuals in a single knowlege base represented using the for�
malism presented here!no inconsistency is generated� Furthermore� the formalism supports
an extensive amount of reasoning with the statistical assertions� something that is not easy
with the more complex represention using the universally quanti�ed conditional probabilities�

The problematic nature of these attempts to represent statistical information give some ev�
idence to our claim that degree of belief probabilities are not naturally suited for representing
statistical assertions� The most convincing argument� however� will come in when we present our
own formalism for representing such information� The formalism� a logic called Lp� o�ers a natural
representation for statistical assertions through a semantic structure that is markedly di�erent from
the assignment of probabilities to possible worlds that is used for degree of belief probabilities�

Lp does not have a probability distribution over a set of possible worlds� instead� it has a
probability distribution over the domain of discourse� In the logic statistical assertions are expressed
through probability terms which contain open formulas �i�e�� formulas with free variables�� For
example� the statement �More than ��� of all dogs bark� can be expressed with the Lp sentence
�Bark�x�jDog�x��x � � �	� This sentence is formed from the ��� predicate symbol� the constant
�� �	�� and a probability term which contains two open formulas� Bark�x� and Dog�x�� The square
brackets are used to form probability terms� These terms are formed by binding some of the free
variables of the open formula� In this case the free variable �x� is bound by the probability term�

Intuitively� the probability term represents the probability that a randomly selected dog� x� will
be able to bark� Equivalently� it can be viewed as representing the proportion of objects� x � that
bark among those that are dogs� These probability terms have a completely di�erent semantics
from the semantics of universally quanti�ed sentences� and can be used to express a wide variety
of statistical knowledge�

In Lp� however� closed formulas can only have probability one or zero� That is� in Lp a closed
formula like Bark�Fido� is either true or false� no intermediate value is possible� This result�
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which will be proved later� indicates there are de�nite formal di�erences in the logics suitable
for representing statistical assertions and the logics suitable for representing degrees of belief� a
di�erence that re�ects the fundamental di�erence in the meaning of these two types of probabilities�

��� Probabilities over the Domain of Discourse

As mentioned above� the logic Lp uses a probability distribution over the domain of discourse�
There has been some previous work using this idea�

Most closely related to Lp is a probability logic developed by Keisler ������ His work lays
some useful foundations for probability logics where the probability distribution is de�ned over the
domain of discourse� The aim of his work is� however� to develop a logic for expressing mathematical
notions where uncountable domains of discourse are common� Keisler has shown that when the
domain is uncountable there are problems in developing a logic that possesses both probabilities
over the domain of discourse and universal quanti�cation�� Uncountable domains are not� however�
of paramount importance in AI� where we are primarily concerned with statements about the
�ordinary objects� of human experience� We have restricted the class of admissible models to be
at most countably in�nite in cardinality which has enabled the creation of a probabilistic logic
that retains universal quanti�cation� In fact� Lp� unlike Keisler�s logic� is an extension of ordinary
�rst�order logic� thus it can represent all statements expressible in �rst�order logic� as well as
probabilistic knowledge�

Another key di�erence between Lp and Keisler�s logic is that Keisler uses a device he calls
probability quanti�ers �P�quanti�ers�� This device is similar to the so called J�operators which are
standard in many�valued logics �see Rosser and Turquette ���	��� The intent of this device is to
give access in the object language �syntax� to the probabilities that exist in the semantics� For
example� one can write the sentence �Px � ����� to indicate that ��� of the objects in the domain
satisfy the formula � �i�e�� � is true when the variable x in � is interpreted as that object�� These
P�quanti�ers become part of the �xed logical symbols of the language� With these P�quanti�ers�
however� the numerical values of the probabilities remain outside the main part of the logic� That
is� the numbers �like ���� which appear inside the P�quanti�ers cannot be referred to outside of
the P�quanti�ers� Nor can we use variables instead of numbers inside of the P�quanti�ers� since we
would not be able to quantify over these variables�

There are two consequences of this restriction� First� arithmetic relationships between prob�
abilities cannot be expressed� For example� it is not possible to express the statement� �More
politicians are lawyer than engineers� using P�quanti�ers� This statement cannot be expressed
without a commitment to the values of the probabilities of both cases� That is� we could say
something like �Px � ����Lawyer�x�jPolitician�x�� and �Px � ����Engineer�x�jPolitician�x�� but
not something like

�Px��Lawyer�x�jPolitician�x�� � �Px��Engineer�x�jPolitician�x���

as this is not a valid form of the P�quanti�er� Hence� we have no way of representing qualitative
notions of probability� which� we will argue later� are crucial for AI applications�

�This limitation arises from the fact that the projection sets generated through universal quanti�cation may not�
in general� be in the domain of any probability function
 i�e�� they might not be measurable sets�
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The second consequence is that since the probabilities are hidden inside the P�quanti�ers
Keisler�s logic cannot be used to reason with the probabilities themselves� Again� this severely
limits its usefulness for AI applications�

There has also been some work in the philosophy of language which has used probabilities over
the domain of discourse� "Aqvist et al� ����� give a semantic analysis of adverbs of frequency �e�g��
always� sometimes� often�� Their semantic model is essentially a �rst�order logic with a probability
distribution over the domain of discourse� They� however� restrict themselves to �nite models and a
less expressive logic� They have concentrated on representing adverbs of frequency� and their logic
is otherwise quite limited in its expressive power� Also they have not addressed any proof theoretic
issues� so� like Keisler� their logic cannot be used to reason with the probabilities�

� Description of the Formalism

��� Types of Statistical Knowledge

One of the criticisms of the use of probabilities in AI was stated in an in�uential article by McCarthy
and Hayes ����� in which they observed�

The information necessary to assign numerical probabilities is not ordinarily available�
Therefore� a formalism that required numerical probabilities would be epistemologically
inadequate�

This has been an on�going and valid criticism of the use of probabilities for general knowledge
representation�

Perhaps this is also the reason why the area in which probabilities have had their major impact
has been in specialized expert systems� In such domains numbers �of some degree of accuracy� are
often available� and are obtained by interviewing domain experts� The development of methods for
structuring probabilities into causal networks �Pearl ����a�� has further increased the popularity
of using probabilities in expert systems� especially for medical diagnosis where probabilities seem to
have some de�nite advantages �for example� see the arguments presented by Horvitz et al� ������
Heckerman et al� ����� and Schachter et al� �������

However� the impact of probabilities in general knowledge representation tasks remains limited�
These approaches still require a signi�cant amount of numerical data� which makes them unsuitable
for general knowledge� Furthermore� all of this work has been based on propositional languages�
and such languages are inadequate for general representation tasks�

This work meets the objection of McCarthy and Hayes by developing a logic which is capable
of expressing a wide range of non�numerical probabilistic knowledge� furthermore� if numbers are
available they too can be represented�	 It is useful to note some of the qualitative varieties of
statistical information�

Relative� Statistical knowledge may be strictly comparative� For example� while most would agree
that more politicians were trained as lawyers than as engineers� few would be able to assign
values to these probabilities�

�Clearly we do not want a representation of probabilities that is incapable of representing the numerical information
that we might have�
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Interval� Even when we can give numeric values to the statistics in question these values may
only be in the form of intervals� e�g�� the proportion of politicians who are lawyers may be
in the range ���#��� This form of statistical information is particularly important since it is
exactly the form produced by statistical inference�

Functional� We might also know functional determiners of statistics� For example� it would seem
that the weight of a bird is a factor in its ability to �y� It is clear that given the weight of
a bird we cannot deduce its ability to �y� nor its inability to �y �except perhaps in extreme
cases�� This knowledge could� however� be expressed as �A greater proportion of birds will be
�iers among a set of lighter birds than among a set of heavier birds�� This kind or functional
information is common in medical domains�

Conditional� In a general knowledge base we may have totally unrelated sets of statistical knowl�
edge� e�g�� �Most dogs bark� along with �Most old cars need repairs�� Conditional proba�
bilities can be used to represent the fact that these pieces of information are only applicable
to certain types of individuals�
 For example� if we construe �Most� as meaning more than
���� these statements could be represented as the Lp sentences ��Bark�x�jDog�x��x � � �	�
and ��Needs Repairs�x�jOld Car�x��x � � �	�� where the square brackets are used to indicate
probability and x can be considered to be a random member of the predicates� denotations�
In the �rst sentence� for example� no assertion is being made about the probability of a
randomly selected object� x� barking unless x is known to be a dog�

Independence� Knowledge of independence is also a type of statistical knowledge that people
possess� For example� most doctors would agree that the color of their patients� shoes has no
in�uence on their illness� Work by Pearl and his associates has demonstrated the importance
of this kind of knowledge ��Pearl� ���b� Pearl and Paz� ���� Pearl and Verma� ������

The logic developed in this work can represent and reason with all of these di�erent types of
statistical information�

Along with all of this statistical knowledge it is also clear that a lot of the knowledge that we
need to use is purely logical or taxonomic �for example� see the arguments put forward by Schubert
in ������� Lp is an extension of �rst�order logic� so logical knowledge of this nature can also be
expressed� Furthermore� the proof theory smoothly integrates logical reasoning with probabilistic
reasoning�

��� The Field of Numbers

A key innovation that enabled us to solve the problem of epistemological adequacy� was to make
the logic two�sorted� by including a totally ordered �eld of numbers in the semantic model� One
sort of entity in the logic is a set of objects� O� and the other sort is a �eld of numbers� F � The

	Hempel ������ page ��� makes a cogent argument that all probabilities are in fact conditional probabilities� In�
deed� in the logic constructed unconditional probabilities make very little sense� except perhaps� in very circumscribed
domains�
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intention is that the set of objects consists of the things of interest �e�g�� cars� people� kinds of cars��
while the �eld of numbers consists of ordinary real numbers���

With numbers as part of the object language the numeric values of the probability terms become
accessible at the syntactic and proof theoretic level� accomplishing what Keisler accomplished with
his P�quanti�ers� but doing it more �exibly� With the numeric values of the probability terms as
part of the object language� it becomes possible to express relationships between them without
specifying the actual numbers� For example� it is possible to express the previous statement �More
politicians are lawyers than engineers� in Lp as

�Lawyer�x�jPolitician�x��x � �Engineer�x�jPolitician�x��x�

No commitment is made to a speci�c value for either of the probability terms mentioned� i�e�� no
value is asserted for either �Lawyer�x�jPolitician�x��x or �Engineer�x�jPolitician�x��x� Furthermore�
from the distinguished symbols ���� ��� and ����� that are also part of the object language� it becomes
possible to build up by de�nition terms which denote any rational number that we may wish to
refer to� Using these terms it becomes possible to express intervals� For example� if the terms �����
and ���� are added to the language by de�nition� statements like �The proportion of politicians
that are lawyers is between ��� and ��� can be represented by the Lp sentence�

�Lawyer�x�jPolitician�x��x � �� �
 � � ����

Of course one need not make direct use of axioms to reason about such rational number terms�
One can compute expressions containing only rational number terms using standard arithmetic
hardware� Any computations performed in this manner will be sound inferences which could have
been duplicated by the proof theory�

Once a �eld of numbers was added to the logic it also becomes possible to include �measuring�
functions in the logic� These measuring functions map the set of objects to the �eld of num�
bers� Using the measuring functions it is possible to express a statement like �Jack�s weight is
�� kilograms�� This can be expressed with the Lp sentence Weight in Kgs�Jack� � ��� where
Weight in Kgs is de�ned to be a measuring function and Jack and �� are constants �object and
�eld constants respectively�� The ability to express functional probabilistic knowledge was gained
by allowing sentences to be constructed recursively from these types of symbols� For example� the
statement �Heavier birds are less likely to be able to �y� can be expressed in Lp using a measuring
function symbol���

�
Using real numbers was the intention
 however� a reasonable proof theory can only be developed for totally
ordered �elds �see Section �����

��These measuring functions are very similar to Hayes�s ����� quality spaces� In particular� we could have de�ned
�Weight� to be a function from individuals to an abstract numeric quantity of weight and further de�ned �kilograms��
�pounds �� etc� as �eld functions from the abstract numeric quantities to numbers which give the weight in particular
units� The only di�erence is that we would be assuming that the abstract quantities are elements of a totally ordered
�eld� Hayes� on the other hand� simply assumes that the abstract quantities are closed under addition� Furthermore�
we have chosen to avoid the name �measure� function used by Hayes to avoid confusion with the mathematical
concept of a measure function� of which probability functions are instances�
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��� Finitely�additive� Field�valued Probabilities

Mathematically standard probabilities are real�valued measures that are typically required to be
sigma�additive �Section ��	����

The probabilities used in this work di�er in both respects� First� their range of values is only
required to be a totally ordered �eld instead of being restricted to a particular totally ordered �eld�
the reals� Second� they are only required to be �nitely�additive instead of being restricted to be
sigma�additive� We have chosen to weaken these two requirements as we desire an expressive logic
that still retains some reasonable proof theoretic properties� in particular� that possesses a complete
proof theory�

Complete proof theories possess two very important properties� First� they allow semantic
proofs of valid deductions� Completeness implies that every semantic entailment will be mirrored
by a deductive proof� hence� with completeness one need only demonstrate semantic entailment
and one will have the guarantee that the syntactic proof also exists� It may sometimes be useful to
give the detailed syntactic proof� but often this is very tedious� Completeness allows one to explore
the theoretical reasoning power of the logic by examining the semantics instead of by manipulating
symbols�

The second advantage of a complete proof theory is it gives a formal speci�cation for the set of
valid inferences which can be made within a logic� This formal speci�cation can be used to guide
the construction of automated reasoners �which may or may not have any surface resemblance to
the formal proof theory�� It can also be used to analyze the power of tractable subsets of the logic�
i�e�� to answer the important question �What inferences are these tractable subsets giving up to
attain their tractability$�

Recently Abadi and Halpern ����� have demonstrated that the set of valid formulas of a �rst�
order probability logic with real�valued sigma�additive probabilities over the domain of discourse is
not recursively enumerable� except when the domain is bounded in size� In particular� this means
that one cannot give a complete proof theory for a logic like Lp under the requirement that the
probability functions be sigma�additive and real�valued� complete proof theories do not exist for
this case�

There are two aspects to this problem� the requirement for sigma�additivity and the requirement
for real values��� A trivial way to deal with the problem of sigma�additivity is to restrict the
domain of discourse to be �nite� For �nite domains� �nite additivity trivially corresponds to sigma
additivity� This is essentially the route taken by Fagin et al� ������ they restrict their attention
to propositional languages where it is impossible to refer to an in�nite set �since sentences� being
�nite in length� can only refer to a �nite collection of atomic symbols�� First�order languages�
however� allow one to refer to an in�nite collection of objects in a sentence of �nite length through
quanti�cation�

One can still trivialize the problem of sigma�additivity in �rst�order logics by restricting the
domain of discourse to be �nite� and perhaps one can argue that �nite domains are su
cient for AI�
Unfortunately one cannot give a complete proof theory even for �nite domains� as demonstrated by

��It can also be pointed out that these two requirements on probability functions have been questioned before�
Koopman ����	 and more recently Aleliunas ����� have investigated non�real�valued probability functions� and
Savage ����� used �nitely�additive probability functions in his development of the Bayesian approach to statistical
inference� instead of sigma�additive function�
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Abadi and Halpern� To have a complete proof theory one must make the stronger restriction that
the domain is bounded in size by some �nite number �N �� This is much more di
cult to justify
even for AI domains� The domain may be �nite� but where do we �nd a �xed upper bound� N � on
its size� one can always imagine one more individual in the domain� Furthermore� there are many
domains which we may want an AI program to reason about that are not �nite� e�g�� commonsense
reasoning about arithmetic �Simmons� �����

By just requiring the probabilities to be �nitely�additive� not sigma�additive� we are able to
attain a logic with a complete proof theory while still allowing in�nite domains �we still restrict
ourselves to countably in�nite domains� however�� One implication is that the probability functions
that we use will not have all of the properties that standard probability functions have� However� all
of the properties that our more relaxed probability functions possess will also be properties of sigma�
additive probability functions� standard sigma�additive probability functions are �nitely�additive�
but not vice�versa� The extra properties possessed by sigma�additive probability functions show up
when considering limit properties of the probability functions� for normal �nite computations our
�nitely�additive probabilities will behave just like sigma�additive ones�

The other relaxation in the probability functions we use is that fact that they are �eld�valued
not necessarily real�valued� Fagin et al� ����� and also Halpern ���� are able to axiomatize real�
valued probabilities by using the theory of real�closed �elds �see Shoenfeld ������� Tarski ����� has
shown that this theory is complete for the reals� That is� any sentence in the theory of real�closed
�elds is provable if and only if it is true of the reals� However� this completeness comes at the price
of expressiveness� It is well know that there is no �rst�order axiomatization that characterize the
reals up to isomorphism �Barwise ������� What the theory of real�closed �elds does is to carve out
a characterizable piece of the theory of the reals� In particular� it restricts the language so that
only a limited set of the sentences can be written in the theory� It is for this limited set of sentences
that the completeness result cited above holds�

The result is that the theory of real�closed �elds is not very expressive� Its main weakness is
that it allows no functions other that addition and multiplication� Also it does not allow constants
other than those that can be built up from �� �� and �� �i�e�� built up under arithmetic as solutions
to polynomials�� In particular� it does not allow �inde�nite� numeric constants� i�e�� numeric
constants whose denotation is de�ned by something other than a particular number� e�g�� one could
not represent a constant whose denotation is the number of members of AAAI� if one did not know
exactly what this number was�

This means that the �measuring� functions used here� which play a key role in extending the
expressiveness of Lp� would not be allowed� Also it would not be possible to make statements that
assert that probabilities are functions of other values� So� for example� one could not assert that
certain quantities are normally distributed�

Again� the desire for expressiveness in conjunction with a reasonable proof theory mandated
considering a more relaxed version of probability functions� By allowing our probabilities to be
�eld�valued instead of just real�valued we are able to include the expressive features� like measuring
functions� without giving up a reasonable proof theory���

��It should be noted that Fagin et al� ����� and Halpern ����� are concerned with various applications in theoretical
computer science� For these applications it is important to have standard probabilities� and thus they are justi�ably
concerned with forcing the probabilities to be real�valued and sigma�additive� even at the cost of expressiveness�
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In terms of behavior �eld�valued probabilities present less of a problem than do non�sigma�
additive probabilities� The reals are a totally ordered �eld� thus anything true of �eld�valued
probabilities will also be true of real�valued ones� It is also known that every totally ordered �eld
contains the rationals as a sub�eld� which means that the probabilities in Lp can be assigned any
rational values �between � and �� that one wishes� This means that �eld�valued probabilities will
be su
cient for computational purposes�

As with sigma�additive probabilities� real�valued probabilities possess certain limit properties
that go beyond the properties of the �eld�valued probabilities used here� However� every property
of the �eld�valued probabilities will also be a property of real�valued probabilities� real�valued
probabilities are �eld�valued� but not vice�versa�

It will be shown later that many interesting statements true of standard probabilities are also
provable of the probabilities used here� In fact� existent work in AI has only used simple properties
of standard probabilities� properties that are also provable of the probabilities used here�

It is important to comment on what a completeness result for �nitely�additive� �eld�valued
probabilities means� All sentences valid for these probabilities will be deducible� and all of these
sentences will also be valid for standard probabilities� That is� the proof theory will be sound
with respect to standard probabilities� However� there will be some sentences valid for standard
probabilities which will not be deducible� That is� the proof theory will not be complete for standard
probabilities �indeed� as Abadi and Halpern have shown� no complete proof theory exists�� However�
we will still have the advantages of a complete proof theory cited above� That is� we will be able
to examine the power of the proof theory through the semantics� as long as we ensure that we do
not depend on sigma�additivity or real values� and only use those properties of probabilities that
are true of our �nitely�additive and �eld�valued probabilities� Furthermore� we can still use the
proof theory as a formal speci�cation for a wide set of valid inferences� The semantics already
tells us exactly what properties of standard probabilities this formal speci�cation captures� i�e��
their �nitely�additive and �eld�valued properties� In other words we start o� with a speci�cation
which captures a well de�ned subset of the valid inferences��� and use this speci�cation to guide
the construction of automated reasoners which� most probably� will only capture subsets of this
subset�

� The Logic Lp

This section presents the syntax and semantics of the logic Lp� The formalization of Lp follows
the standard steps used in the development of ordinary �rst�order logic �see for example �Bell and
Machover� ������ First� the set of allowed symbols is de�ned� Then rules are given which specify
the strings of symbols that are the well�formed formulas� This de�nes the syntax of Lp� Next� the
semantics of Lp are given� by �rst de�ning the set of admissible models� the Lp�structures� then a
correspondence between truth in the models and the well formed formulas� In the next section a
deductive proof theory is presented which provides a correspondence between truth in the model
and a syntactic manipulation of the formulas� The deductive proof theory is shown to be both
sound and complete with respect to the Lp�structures�

��One could argue that this subset is the most useful for AI� since we are primarily concerned with objects of
ordinary experience� which must be �nitary�
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The letters �n� and �m� are used as meta�variables rangeing over the natural numbers�

��� Symbols

We start with a collection of symbols chosen by the user to be suitable for describing the domain
of interest� This collection includes a set of constant symbols �a� b� c� � � ��� a set of function symbols
�f� g� h� � � ��� a set of predicate symbols �P�Q�R� � � ��� and a set of measuring function symbols� e�g��
�Weight� Size� �� 	� 
� � � ���

These symbols can be of two sorts� object symbols and �eld symbols� We will write the �eld
symbols in a bold font when there is a danger of confusion�

Along with the user de�ned symbols we have a collection of distinguished symbols that are
always part of the language regardless of the user�s choice of vocabulary� The distinguished symbols
include a set of variables �x� y� z� � � ��� which also come in two sorts� the binary object predicate
symbol �� the �eld constant symbols �� � and ��� the �eld binary predicate symbols � and ����
the �eld binary function symbols �� � and �� the logical connectives � and �� the quanti�er ��
and the probability term formers �� and ��

��� Formulas

From these symbols we generate the formulas of Lp in a manner standard for a sorted �rst�order
logic�

T�	 A single object variable or constant is an o�term� a single �eld variable or constant is an
f�term�

T�	 If f is an n�ary object function symbol and �nt are o�terms� then ft� � � � tn is an o�term� If f
is an n�ary �eld function symbol and �nt are f�terms then� ft� � � �tn is an f�term� If 	 is an
n�ary measuring function symbol and �nt are o�terms� then 	t� � � � tn is an f�term�

F�	 If P is an n�ary object predicate symbol and �nt are o�terms� then Pt� � � � tn is a formula� If P
is an n�ary �eld predicate symbol and �nt are f�terms� then Pt� � � �tn is a formula�

F�	 If � is a formula then so is ���

F�	 If � and � are formulas then so is � � ��

F
	 If � is a formula and x is a variable �of either type�� then �x�� is a formula�

T�	 If � is a formula and �x is a vector of n object variables h�nxi� then ����x is an f�term� In
particular� terms of this type are probability terms� We will call the variables �x used in the
probability terms random designators�

This de�nition of formulas is di�erent from the standard �rst�order de�nition� the last rule of
formation allows terms to be constructed from formulas�

The connectives �� 
 and �� and the quanti�er � are de�ned in the standard manner from
the given primitives� The predicate symbols � and � as well as the function symbols �� � and

��Note� ��� is used both as a �eld and as an object equality symbol� However� this should not cause any confusion�
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� are written in the more readable in�x form� Furthermore� standard conventions of scope and
precedence are used to limit the use of parentheses� It is also convenient to introduce the following
abbreviations to express inequalities between �eld terms�

De�nition 
�� a� x � y �df y � x b� x � �y� z� �df y�x � x�z
c� x � y �df ��x � y� d� x � y �df ��y � x�

We also need to extend our language to include conditional probability terms�

De�nition 
�� �Axiom of Conditional Probabilities�

����x ��� 
 ��j���x  ����x � �� � ���x � ����x � � 
 ��j���x � ��

The important feature of this de�nition is that conditional probabilities are de�ned to be equal
to zero if the conditioning formula has zero probability� Normally such conditional probabilities
remain unde�ned� but in a logical language there is no way of duplicating this� In the syntax
we have no access to the denotation of the terms� hence� we have no way of determining in the
syntax if a probability term is equal to zero� If we wish to generate conditional probability terms in
the syntax we must make provision for those terms formed by conditioning on formulas with zero
probability� We have chosen here to make these terms equal to zero�

With this de�nition we can always rewrite a formula containing a conditional probability term
into an equivalent formula containing only standard probability terms� With this observation it
can be demonstrated that any formula of the extended language� containing conditional probability
terms� will be provable from a proof theory augmented by the above de�nitional axiom if and only if
its equivalent formula in the unextended language is provable from the unaugmented proof theory���

These results allow us to use conditional probability terms in our language and at the same time
not worry about them in the formal development of the language�

We will also freely extend our language to include constants denoting any non�transcendental
real number� i�e�� any number which is the root of a rational coe
cient polynomial� We can capture
the behavior of such constants by adding de�ning axioms� For example� if we wished to add the
new constant ����� and have it behave in the proper manner �e�g�� we want ��� � ��� � � to be valid
in the extended language� we could add the new constant along with the axiom ��� �� � �� � ��
Similarly� we could add the constant

p
	 by adding the axiom

p
	  p

	 � �� � ��� As with the
conditional probabilities it can be shown that such extensions of the language do not change its
proof�theoretic properties �Shoen�eld� ����� That is� we can always rewrite the formulas containing
the new constants to equivalent formulas containing just the initial constants ��� � and ��

��� Semantic Model

De�nition 
�� �The Model� An Lp�Structure is de�ned to be the tuple

M �
D
O�F � f�n� �n j n � �� 	 � � �g

E

��See Shoen�eld ������ p� �� for a description of how de�nitional extensions like this one can be used to rewrite
formulas in the extended language to equivalent formulas of the unextended language� and a proof that such extensions
do not change the proof�theoretic properties of the language�

	�



Where�

a	 O represents a countable set of individual objects O�

b	 F represents a totally ordered �eld of numbers F � Like every totally ordered �eld� F contains
two distinguished elements that are the units of addition and multiplication� In the �eld of
real numbers these units are called zero and one� and the same names will be used to refer
to the units of F �

c	 Each �n is a �eld of subsets of On� This �eld contains all singleton sets of On� i�e�� every
singleton n�tuple� It also contains all subsets of On de�ned by the formulas of Lp �later the
semantic de�nition of the formulas will give a more precise characterization of these subsets��
�n is the domain of �n�

e	 f�n j n � �� 	� � � �g is a sequence of probability functions� The domain of each �n is �n� and it
range is F �

The sequence of probability functions is subject to some further constraints which ensure that
the probability terms behave coherently� The implications of these constraints are discussed
in the next section�

�� The sequence of probability functions is a sequence of product measures� That is� for any
two sets A � On and B � Om� and their Cartesian product A  B � On�m� if A � �n

and B � �m� then

A B � �n�m and �n�m�A B� � �n�A� �m�B����

For models where the domain of discourse is �nite the product measure constraint is su
cient�
However� there are many natural notions which involve countably in�nite sequences of events
or individuals� For example� in�nite sequences of trials are often referred to in the study of
statistics� Usually� to deal with in�nite domains the probability functions are required to be
sigma�additive�

As noted previously� making this restriction presents a di
culty when developing a proof
theory� In particular� it is not possible to produce a proof theory that is complete for sigma�
additive probabilities� To avoid this problem a weaker constraint is placed on the probability
functions� When On is �nite this weaker constraint is already satis�ed!it can be deduced
directly from the condition of �niteness and the facts that �a� every singleton set in On is
�n measurable� and �b� the �n are product measures� When On is countably in�nite the
constraint is not guaranteed� but it is weaker than the condition of sigma�additivity� the
constraint is a consequence of sigma�additivity and the use of product measures� but not
vice�versa�

The weaker constraint has the advantage �over sigma�additivity� of being speci�able as an
axiom in the logic� and it ensures that the probability terms in Lp have a necessary coherence
property� The additional constraint is quite simple�

��The reader familiar with measure theory may wonder why we did not just de�ne �n to be �� � � � � � �� �n
times�� as does Halpern ������ The reason is that this simpler de�nition will not work for probabilities which are
not sigma�additive�

		



�� Each �n is invariant under permutations� That is� for every permutation  of f�� � � � � ng
and S � �n if

S � f�a���� � � � � a�n�� � ��na� � Sg�
then

S � �n and �n�S� � �n�S��

��� The E	ect of The Product Measure Constraint

Constraining the sequence of probability functions to be a sequence of product measures insures
that distinct variables bound by the probability term formers behave in an independent manner�
This is similar to the independence of distinct universally quanti�ed variables in �rst�order logic�
e�g�� the sentence �x�y�P�x��Q�y� can be decomposed into two independent sentences� i�e�� �x�P�x�
and �y�Q�y�� Since y and x are distinct variables bound by separate quanti�ers� their meanings are
independent of each other�

With this independence we have� for example� that the probability terms are una�ected by
tautologies� e�g�� �P�x�� �R�y�� �R�y���hx�yi � �P�x��hxi� This is a result of the fact that the random
designator �y� is independent of the designator �x��

It should be noted that this constraint on the probability functions does not make any implicit
assumptions of independence of the form commonly found in probabilistic inference engines �e�g��
the independence assumptions of the Prospector system �Duda et al�� ����� see Johnson �������
This constraint a�ects the values of probability terms with distinct variables� also� complex prob�
ability terms� e�g�� ����x � z�y� �This can be seen from axiom �P��� presented in the next section�
which expresses the constraint�� The constraint does not� however� make any presumptions con�
cerning the independence of formulas containing the same set of probability variables� That is� in
general� �� � ���x �� ����x  ����x�

In fact� the probabilistic knowledge that we wish to express in Lp normally makes some claim
of correlation between the properties possessed by the same object �or tuple of objects�� e�g�� the
correlation between the properties of being a bird and being able to �y� In this example� the
correlation can be expressed by the probability term �Fly�x�jBird�x��x where the same variable
appears in both formulas� This probability term expresses the proportion of �ying birds among
birds� This can be contrasted with the probability term �Fly�y�jBird�x��hx�yi� In this term the
variables are distinct� and its semantic meaning is that we have chosen pairs of objects and are
expressing the proportion of the pairs in which the �rst object is a bird while the second object
can �y to the pairs in which the �rst object is a bird irrespective of the properties of the second
object� Since we are referring to di�erent objects� there is no reason for there to be any correlation
between their properties�

Correlations between the properties of a particular tuple of objects can be expressed through
the use of n�place predicates� For example� the probability term

��Boy�x��Girl�y��� �Girl�x��Boy�y��jLoves�x� y��hx�yi

is not� in general� equal to the product any simpler probability terms�
The property ensured by the second constraint is that the probability terms are invariant under

permutation of the variables� That is� the order of the variables cited in the probability terms
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makes no di�erence� e�g�� ���hx�yi � ���hy�xi� Universal quanti�cation also displays this property�
e�g�� �x�y�� � �y�x���

A further coherence property of the probability terms� which is not due to either of the con�
straints on the probability measures� is that they are invariant under variable name changes� e�g��
�P�x��x � �P�y��y� This behavior comes from the manner in which the semantics of the formulas is
de�ned�

��
 Semantics of Formulas

Meaning is given to the formulas of Lp by de�ning a correspondence between the formulas and an
Lp�Structure� M� augmented by the truth values � and � �true and false�� Such a correspondence
is called an interpretation� An interpretation assigns to every object constant symbol an element
of O� to every n�ary object function symbol a function from On to O� and to every n�ary object
predicate symbol a subset of On� It maps the distinguished predicate symbol ��� to the equality
relation� i�e�� the set fhx� yi � hx� yi � O� and x � yg� Similarly� it maps the �eld constant� function
and predicate symbols to elements of F � functions from Fn to F � and subsets of Fn respectively�
mapping the distinguished symbols �� �� ��� �� � �� �� and �� to the expected constants�
operations� and relations� It maps each n�ary measuring function symbol to a function from On

to F � Finally� it assigns to each object variable x an element of O and to each �eld variable x an
element of F �

These assignments serve as the inductive basis for an interpretation of the formulas� Two
interpretations � and � are said to agree on a given symbol � if �� � �� � where �� denotes the
interpretation of � under �� Also� � and � are said to have the same underlying structure if
they agree on all constant� predicate� and function symbols �of all types�� Let ��x�o� denote a
new interpretation which is identical to � except that it assigns the individual o to the variable
x �types must match�� More generally� let ���x��a�� where �a � h�nai and �x � h�nxi are vectors of
individuals and variables �of matching type�� denote a new interpretation identical to � except
that �xi���x��a� � ai i�������n�� An interpretation � is extended to a truth value interpretation of the
formulas of Lp in the following recursive manner�

T�	 If x is a variable or constant �of either type� then x� is already de�ned�

T�	 If f is an n�ary function symbol �of either type� and �nt are terms of the same type� or if f
is an n�ary measuring function symbol and �nt are o�terms� then

�ft� � � � tn�� � f��t�� � � � t
�
n��

F�	 If P is an n�ary predicate symbol �of either type� and �nt are terms of the same type then

�Pt� � � � tn�� �

�� if ht�� � � � � � t�ni � P � �
� otherwise�

F�	 For every formula ��

����� �

�� if �� � ��
� otherwise�
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F�	 For every pair of formulas � and ��

�� � ��� �

�� if �� � � and �� � ��
� otherwise�

F
a	 For every formula � and object variable x�

��x���� �

�
� if ��x�a� � � for every a � O�
� otherwise�

F
b	 For every formula � and �eld variable x�

��x���� �

�� if ��x�u� � � for every u � F �
� otherwise�

T�	 For every formula � the f�term created by the probability term former� ����x� is given the
interpretation�

�����x�
�

� �nf�aj���x��a� � �g�
Since �n is a probability function which maps to the �eld of numbers F � it is clear that ����x
denotes an element of F under any interpretation �� thus� it is a valid f�term� As mentioned
before� �n� the domain of �n� is a �eld of subsets of On which includes those subsets de�ned
by the formulas of Lp� Hence� the above set is in �n�

� Examples of Knowledge Representable in Lp

Now we present some examples of what can be represented in Lp�

Example � �Notions of typicality� �Most birds can �y��

��y�x�jbird�x��x � � �	�

where �� ���� is the least presumptive reading of �Most��

Example � �Functional probabilistic relations� �Heavier birds are less likely to be able to �y��

�r�
�
�weight�x� � rjbird�x��x � � � �weight�x� � rjbird�x��x � � 

��y�x�jbird�x�� weight�x� � r�x � ��y�x�jbird�x�� weight�x� � r�x

�

That is� for every number r as long are there are some birds with weight greater than r and some
birds with weight less than r� the proportion of �ying birds among the set of birds lighter than r

is greater than the proportion of �ying birds among the set of birds heavier than r�
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Example � �Mixing universal quanti�cation and probabilities� �The probability of �nding a given
type of animal at a zoo is given by a function� f� of the expense of acquiring and maintaining that
type of animal��

�x�
�
animal type�x� 
 �at�x� y�jzoo�y��y � f�expense�x��

�
�

where expense is a measuring function symbol and f is a �eld function symbol� Here expense might
be a function that can be calculated through other information in the knowledge base� e�g��

�x��expense�x� � weight�x� ��� � initial cost�x���

Also� f could be declared to be non�decreasing�

�r�r���r� � r� 
 f�r�� � f�r����

Example 
 �Knowledge of independence� The canonical tri�functional expression of independence
�see �Pearl� ���b�� �The properties P and Q are independent given R� can be expressed in Lp�

�P�x��Q�x�jR�x��x � �P�x�jR�x��x  �Q�x�jR�x��x�

In most systems of probabilistic reasoning knowledge of property independence can only be captured
at a meta�level�

Example � �Notions from Statistics�

�� �A sequence of ten tosses of a fair coin will land heads with a frequency between ��#��� with
greater than �� probability��

�frequency heads�x� � �� ��	 � ��		�jsequence of tosses�x��x � � ��	 �

Here the domain contains a set of objects� sequence of tosses�x�� each member of which repre�
sents a sequence of ten coin tosses of a fair coin� and a measuring function� frequency heads�
that maps each sequence of tosses to a number in the closed interval ������ a number which
represents the relative frequency of heads in that sequence�

	� �The height of adult males �humans� is normally distributed with mean ���cm and standard
deviation ��cm��

�xy�
�
�height�z� � �x�y�jAdult male�z��z � normal�x�y� �

� ���

�

Here normal is a �eld function which� given an interval �x�y�� a mean� and a standard
deviation� returns an approximation of the integral over the given interval of a normal distri�
bution with the speci�ed mean and standard deviation over the given interval� �The result
is an approximation since we only have access to rational number approximations of the real
values��
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� Deductive Proof Theory

This section provides a deductive proof theory for Lp� The proof theory consists of a set of axioms
and rules of inference� and is shown to be both sound and complete� The proof theory for Lp
is very similar to the proof theory for ordinary �rst�order logic��	 the major change being in the
set of axioms� Two new sets of axioms must be introduced� one set to deal with the logic of the
probability function� and another set to de�ne the logic of the �eld F � There are� however� a few
technical di
culties arising from the probability function�

One technicality arises from the fact that when probability terms are formed by rule T� �Sec�
tion ��	� all of the variables xi � �x� which appear in the formula �� are bound by the probability
term former� That is� their semantic interpretation is altered� as speci�ed by the rule of inter�
pretation T� �Section ����� This creates a di
culty with those formulas which also contain other
quanti�ers� a di
culty that is similar to the di
culty arising from nested quanti�ers in ordinary
�rst�order logic�

One of the rules of inference in �rst�order logic allows terms to be substituted for the variable
bound by the universal quanti�er� For example� in �rst�order logic it is valid to infer the sentence
Man�Socrates� 
 Mortal�Socrates� given the sentence �x��Man�x� 
 Mortal�x��� Here the term
Socrates has been substituted for the bound variable x� When �rst�order quanti�ers are nested�
care must be used to avoid invalid conclusions� For example� in the formula �x�P�x� 
 �x�Q�x� a
term t substituted for the �rst �universally� quanti�ed x cannot be substituted for the second x�
the second x is in the scope of a distinct quanti�er� Such a substitution would lead to the erroneous
conclusion P�t� 
 Q�t�� In general� if a term t is to be substituted for the universally quanti�ed
variable x in �x��� t can only be substituted for the free occurrences of x in ��

Another technicality arises from the fact that the term t may itself contain variables �especially
in Lp� where the probability terms can contain arbitrary formulas�� When such a term is substi�
tuted into a formula its variables may be accidently captured by other quanti�ers in the formula�
For example� in the formula �x�y �P�x��Q�y� if the term f �y� is substituted for the variable x
the formula �y �P�f �y���Q�y� results� where the y in f �y� has been captured by the existential
quanti�er� This formula cannot be validly inferred from the previous formula�

Since the probability terms bind variables� these two di
culties arise in the interaction of the
probability terms with the ordinary quanti�ers � and �� These di
culties are dealt with� as in �rst�
order logic� by de�nitions which specify when a given variable is free in a given formula� Substitution
of terms for variables is then de�ned in such a way that only free variables are a�ected� The problem
of accidental capture is overcome by developing rules for renaming quanti�ed variables� These rules
transform formulas to new formulas which are identical in their semantic meaning and in which
there is no possibility of accidently capturing any of the variables in the term to be substituted in�

The �nal technicality is that the probability function generates terms from formulas� Most of
the theorems of �rst�order logic are proved by induction on the formulas of the logic� With Lp
these theorems must be proved by simultaneous induction on both the formulas and the terms�

The development of the proof theory consists of two parts� First we discuss how the notions of
substitution can be extended to suit the requirements of Lp� After this� we present the axioms and

��A reference for all discussions of �rst�order logic in this section is the textbook A Course in Mathematical Logic

by Bell and Machover ������
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rules of inference which make up the deductive proof theory of Lp� This proof theory is shown to
be sound and complete�

��� Substitution

In this section � and � are used to refer either to terms or formulas of Lp� We can extend
the standard �rst�order de�nitions which relate to substitution to handle the variables bound by
the probability terms� and we can prove various theorems to demonstrate that the behavior of
substitution in Lp is a natural extension of its behavior in �rst�order logic� Here we simply discuss
these matters as a mostly intuitive level� A rigorous development of substitution in Lp is contained
in �Bacchus� ���b�� which also contains the proofs of the theorems cited�

As usual we start with the notion of free and bound occurrences of variables in formulas� In Lp�
just as in �rst�order logic� a particular occurrence is free if and only if it is not bound� However�
not only are the universally quanti�ed variables bound� but also those variables which appear in
the probability term�

De�nition ��� If � � ����x� and x � �x �i�e�� x � xi for some i�� then every occurrence of x in � is
bound in �� Otherwise� a given occurrence of x in � is free in � i� that occurrence is free in ��

We say x is free in � if x has at least one free occurrence in �� The free variables of � are
all those variables that are free in �� The next theorem shows that it is only the free variables of
a formula or term which can alter its meaning� once we have �xed on a speci�c Lp�Structure�

Theorem ��� Let � and � be interpretations with the same underlying structure M and which
agree on every free variable of �� Then

�� � �� �

A formula � which has no free variables is called a sentence or a closed formula� This theorem
implies that the truth value of a sentence� ��� depends only on the underlying structure M� This
allows a de�nition of structure �model� satisfaction�

De�nition ��� An Lp�structure M satis�es a sentence �� written M j� �� if �� � � for all
interpretations� �� whose underlying structure is M� More generally� an interpretation � satis�es
a formula � �set of formulas %� if �� � � ��� � � for every � � %�� written � j� � �� j� %��
Finally� a set of formulas % entails a formula � �written % j� �� if every interpretation which
satis�es % also satis�es ��

To deal with substitution when an accidental capture might occur it is necessary to rename
some of the bound variables in the formula� In �rst�order logic this is accomplished by de�ning
rules which generate variants� Variants are new formulas that contain di�erent variable names�
but preserve the semantics of the original formula� First�order logic gives rules which allow one to
recursively change the names of universally quanti�ed variables� By renaming the variables in this
manner we avoid the problem of accidental capture� In Lp we can extend the notion of variants to
the probability variables� For example� if we wanted to substitute the term �f�y�� for the variable �x�
in the formula �x�P�x� 
 �R�x� y��y � � �	 we would get �x�P�x� 
 �R�f �y�� y��y � � �	� in which
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the y has been accidentally captured by the binding of the probability term� It is necessary to
produce a variant of the original formula in which the probability term has a renamed variable� e�g��
the variant �x�P�x� 
 �R�x� z��z � � �	� Substitution with the variant formula can then proceed
without problem� For our purposes we simply note that among the set of variants of a formula are
the following variants de�ned by variant probability terms�

De�nition ��
 �Variant probability terms� If ����x is a probability term then ����x��y���y� is a variant
probability term� where �y is a vector of object variables of the same size as the vector �x� and
we have that either yi � xi �i�e�� no variable name change for the i�th probability variable� or yi is
a new variable which does not occur in �� Furthermore� ���x��y� indicates the new formula which
results from substituting all free occurrences of xi in � by yi� for all i�

De�nition ��� �Variant formulas generated by variant probability terms� If � is a formula which
contains a probability term ����x and �����y is a variant of ����x� then the new formula ������x������y��
which is the result of substituting the probability term by its variant� is a variant �formula� of ��

These variants are in addition to the variants generated by renaming the universally quanti�ed
variables�

Variants have the property that they preserve meaning� and the following theorem shows that
this property is preserved by the extended set of variants de�ned in Lp�

Theorem ��� If �� is a variant of � then for every interpretation function �

��
�

� �� �

Furthermore� the underlying sets de�ned by two variant probability terms are identical� That is� if
�� � �����y and � � ����x� then

f�aj����y��a� � �g � f�aj���x��a� � �g�
With the concept of a variant we can give a speci�cation of how any term t can be substituted

for any variable x in any formula �� We �rst form a variant of �� ��� such that �� does not have
any variables in common with t� Then we proceed to substitute t for all free occurances of x in ���
We denote the new formula formed by the substitution process ��x�t�� For example� to substitute
the term f�y� for x in the formula �R�x� y��y � ��� we �rst form a variant� �R�x� z��z � ��� will
do� Then we preform the substitution to produce �R�f�y�� z��z � ���� That is� this formula is
��R�x� y��y � �����x�f�y���

The next theorem shows that substitution in Lp behaves semantically in the same manner as
in �rst�order logic�

Theorem �� For all �� t� x and interpretations �

��x�t�� � ��x�t�� where t� � t��

The results of this section allow us to prove that the subsets of On de�ned by the formulas of
Lp forms a �eld of subsets� This fact will be used later in the proof of completeness� We include
the proof here since it gives a �avor of the semantic behavior of the probability terms�

	



Theorem ��� The set of subsets of On de�ned by the formulas of Lp� is a �eld of subsets�

Proof� Let A and B be two subsets of On de�ned by formulas of Lp� i�e�� A � f�aj���x��a� � �g
and B � f�bj���y��b� � �g� By De�nition ���� there exists two variants of ����x and ����y� �����z and
�����z� formed by substituting all the variables xi � �x in � and all the variables yi � �y in � by a new
set of variables h�nzi which do not appear in � or �� By Theorem ���� A� � f�c j����z��c � � �g � A�
and B� � f�c j����z��c � � �g � B� thus� A � B � A� � B� � f�c j��� � �����z��c � � �g� That is� the
intersection of A and B is de�nable by a formula of Lp� Similarly� for A� as de�ned above� by the
semantic de�nition� ���x��a� � � i� ����x��a� � �� Thus� �a � A i� �a �� A� � f�aj����x��a� � �g� That
is� A� is the complement of A with respect to On� and is de�nable by a formula of Lp� Finally� if
we take the term �� � ����x the set A � f�aj�� � �����x��a� � �g is equal to On� thus the universal
set is de�nable by a formula of Lp� Hence� the set of subsets of On de�nable by formulas of Lp is
closed under intersections and complementations� and it contains On�

��� Proof Theory

This section gives a proof theory for Lp� The proof theory consists of a set of axioms and rules of
inference� and it is shown to be both sound and complete� There are� in addition to the normal
�rst�order axioms� two new sets of axioms� One set of axioms de�nes the logic of the probability
terms� and the other set de�nes the logic of the �eld F �

In this subsection �� �� etc�� will usually be used to represent formulas� not formulas or terms�
as was the common usage in the previous subsection� It will be explicitly stated when they may
also refer to terms�

����� Axioms and Rules of Inference

First the axioms and rules of inference �actually there is only one� for the proof theory are presented�
If � is a formula of Lp then a generalization of � is any formula of the form �x� � � ��xn��� where

f�nxg is a set variables of any type�
First�order Axioms All the axioms of the Predicate Calculus with equality�

PC�a	 �
 � 
 ��

PC�b	 ��
 � 
 �� 
 ��
 �� 
 �
 ��

PC�c	 ���
 �� 
 ���
 ��� 
 ��

PC�	 �x���
 �� 
 �x��
 �x���

PC�	 �
 �x���
where x is not free in ��

PC
	 �x��
 ��x�t��
where t is any term� of the same type as x�

EQ�	 t � t�
where t is any term�

��



EQ�	 t��tn�� 
 � � � 
 tn�t�n 
 ft� � � � tn�ftn�� � � � t�n�
where f is any n�ary function symbol and t�� � � � � t�n are terms of a compatible type�

EQ	 t��tn�� 
 � � � 
 tn�t�n 
 Pt� � � � tn
Ptn�� � � � t�n�
where P is any n�ary predicate symbol and t�� � � � � t�n are terms of the same type�

Note that the axioms PC� are axioms which can generate all tautologies of the propositional
calculus�
Field Axioms All of the axioms of a totally ordered �eld �see �MacLane and Birkho�� ������
Here all variables are �eld variables and they are all universally quanti�ed� unless the existential
quanti�er is used�

F�	 x � �y � z� � �x � y� � z�

F�	 x � � � x�

F�	 �y��x � y � ���

F
	 x � y � y � x�

F�	 x � � x�

F�	 x �y  z� � �x y� z�

F	 x y � y  x�

F�	 x �y � z� � �x y� � �x z��

F�	 � � � � ��� � ���

F��	 x �� � 
 �y��y  x � ���

F��	 �x � y � y � z� 
 x � z�

F��	 �x � y � y � x� 
 x � y�

F��	 x � x�

F�
	 x � y � y � x�

F��	 x � y 
 x � z � y � z�

F��	 �x � y � z � �� 
 x z � y  z�

Probability Function Axioms

P�	 �x� � � ��xn��
 ����x � ��
where �x � h�nxi and every xi is an object variable�
This axiom says that if the set of satisfying instances of a formula are all the vectors of On

then the probability of this set will be one� That is� On has probability one�

��



P�	 ����x � ��

P�	 ����x � �����x � ��

P
	 ����x � ����x � �� � ���x�

P�	 �� � ���x � � 
 ����x � ����x � �� � ���x�
These four axioms express the normal behavior of probabilities� i�e�� that they are non�
negative� the entire domain has probability one� and they are �nitely�additive�

P�	 ����x � ���xi�z���xxi�z��
where z is an object variable that does not occur in �� and �x�xi�z� is the new vector of object
variables� hx�� � � � � xi��� z� xi��� � � � � xni�
This axiom captures the fact that variant probability terms are equal �Theorem �����

P	 �z�z�������x � z���y � z� 
 ����h�x��yi � z�z���
This is a technical axiom which enforces the product measure constraint� The completeness
proof will demonstrate how it accomplishes this�

P�	 ����x � �����x��
where  is any permutation of f�� � � � � ng� and ��x� is the permuted vector �x� i�e�� ��x� �
hx���� � � � � x�n�i�
This axiom enforces the constraint that the probabilities are invariant under permutations�

Generalization

G�	 All generalizations of the preceding axioms�

Rule of inference The only rule of inference is modus ponens� i�e��

R�	 From f�� �
 �g infer ��

����� Deductions

Here we review the standard notion of a special sequence of formulas called a deduction� and notes
some of its properties�

De�nition ��� Let % be a set of Lp formulas� A deduction � in Lp is a �nite non�empty
sequence of formulas �n� such that for each k �� � k � n� �k is an axiom of Lp� or �k � %� or �k
is obtained by modus ponens from earlier formulas in the same sequence �i�e�� there exists i� j � k

such that �j � �i 
 �k�� The set % is called the set of hypotheses� If % is empty the deduction
is called a proof� i�e�� a proof is a deduction which just uses the axioms of Lp� A deduction whose
last formula is � is called a deduction of �� The symbol ��� is used to indicate deducibility� i�e��
�% � �� means there is a deduction of � from %� and �� �� means that there is a proof of ��

Theorem ���� �Deduction Theorem	 Given a deduction of � from f%� �g� a deduction of �
 �
can be constructed from %�

�	



Proof� Standard �rst�order proof holds�

To demonstrate some deductions in Lp we prove the following results�

Lemma ���� The following are provable in Lp�

a	 � is an equivalence relation� That is� for any terms t�� t�� and t� of Lp we have�

�i	 � t��t��

�ii	 � t��t� 
 t��t��

�iii	 � t��t� � t��t� 
 t��t��

b	 � ���
 ���x � � � �� 
 ���x � �� 
 ����x � ����x�

Proof� The �rst proposition will be used in the completeness proof� and the second is a handy fact
about the probability terms which is often used� The proofs demonstrate the nature of symbolic
reasoning with the various axioms using the formal proof theory� The proof of �a	 is a standard
�rst�order proof�

a	 t��t� is an instance of axiom EQ�� With the predicate symbol P taken to be the equality
predicate symbol ��� we have t��t� 
 t��t� 
 t��t� is an instance of axiom EQ�� So we have
t��t� � t��t�� And� by the deduction theorem� � t��t� 
 t��t�� Also� t��t� 
 t��t� 
 t��t� 

t��t� is another instance of EQ�� Since t��t� � t��t� � t��t� by tautologies and t��t� � t��t�� we
have� through applications of modus ponens� t��t�� t��t� � t��t�� Thus� � t��t�� t��t� 
 t��t��
by the deduction theorem�

b	 We construct a deduction of ����x � ����x from �� 
 ���x�� � �� 
 ���x�� �The axiom or rule of
inference used in each step is speci�ed at the right��

�
��
 ���x � � � �� 
 ���x � �

�

 ��
 ���x � � �PC��

��
 ���x � � � �� 
 ���x � � �Hyp��
��
 ���x � � �m�p��
��� � ���x � �
�����x � ����x � ��� � ���x �P��
��� � ���x � � 
 �����x � ����x � ��� � ���x 
 �����x � ����x � � �EQ��
�����x � ����x � � �m�p��
�����x � ����x � � �P��
�����x � ����x � �����x � ����x �EQ��
�����x � ��������x � � �F��
�����x � ����x � ��������x � ����x � ����x � ��������x �F��� m�p�
����x � � � ����x � � �F�� EQ��
����x � ����x� �F	� EQ��
Similarly from ��� � ���x � � we derive
����x � ����x
thus
����x � ����x� �F�	� m�p��

��



So ��
 ���x�� � �� 
 ���x�� � ����x�����x� thus by the deduction theorem�

� ���
 ���x��� �� 
 ���x��� 
 ����x�����x�

����� Soundness and Completeness of the Proof Theory

The proof theory given above is sound and complete with respect to the class of Lp�structures
de�ned in Section ���� Completeness is proved by way of a Henkin construction and is given in the
appendix� along with the proof of soundness�

Let % be a set of Lp sentences� and let � an Lp sentence�

Theorem ���� �Completeness	 If % j� �� then % � ��

This theorem says that if the sentence � is true in every Lp�structure which is a model for %
�i�e�� every sentence of % is true in the structure� then a syntactic proof of � from % will exist using
the proof theory supplied� In other words� syntactic proofs exist for every semantic entailment�

Theorem ���� �Soundness	 If % � �� then % j� ��

This theorem says that if � is provable from % using the proof theory then � must be true
in every Lp�structure which is a model of %� In other words� syntactic proofs only generate valid
semantic entailments�

��� Properties of the Probability Terms

This section demonstrates some of the properties of the probability terms� The existence of a
completeness proof allows a proof of these lemmas from the semantics� the corresponding syntactic
proof is guaranteed to exist� In these cases� a proof from the semantics is much simpler� as it
just requires using some notions from set theory and probability theory� whereas� a syntactic proof
would involve extensive symbolic manipulation� a task more suited to an automatic theorem prover�
It should be noted that the semantic proofs only use those properties of probabilities that are
true of the �nitely�additive� �eld�valued probabilities used in the Lp�structures� The guarantee
that a syntactic proof will exist does not hold if we use any of the special properties of standard
probabilities �i�e�� if we use sigma�additivity or any special properties of the reals��

Lemma ���
 The following are provable in Lp�

a	 ����x � ��

b	 �� � ���x � ����x and �� � ���x � ����x�

c	 �� � ���x � ����x and �� � ���x � ����x�

d	 �� � ���x � ����x � ����x � �� � ���x�

��



Proof� All of these results can be simply deduced from the fact that semantically the probability
terms represent assignments of probability� That is� each probability term represents the probability
of a corresponding set of objects in On� Hence� all of these results follow from the properties of the
probability functions �n� Equivalently they can be deduced from the probability and �eld axioms�
in a manner similar to the proof of Lemma �����

That these results are provable in Lp is an important point� They indicate that the probability
functions have the familiar properties of standard probability functions� even though they assume
values in an arbitrary totally ordered �eld instead of in the �eld of real numbers�

The advantage of having the �eld axioms arises in those situation where numeric probabilities
are not available� In this case the �eld axioms allow one to reason with whatever information is
available� For example� if the knowledge base contained the set of statements f�P�x��x � �Q�x��x�
�Q�x��x � �R�x��xg� then it would be possible� using axiom F��� to infer �P�x��x � �R�x��x� even though
no numeric values were available� The axioms also allow one to combine numeric and qualitative
reasoning� For example if the knowledge base contained f�P�x��x � �Q�x��x� �Q�x��x � �R�x��x��S�x��x�
�R�x��x � ��� �S�x��x � ��g� the �eld axioms� the axioms of equality� and some numeric computation
could be used to infer that �P�x��x � ����

Lemma ���� �Bayes�s Theorem	 Using De�nition ���� the following is provable in Lp�

�����x �� � � ����x �� �� 
 ��j���x � ��j���x  ����x
����x

�

This theorem shows that the powerful mechanisms of Bayesian inference are also valid in Lp�
Bayesian analysis is useful when numeric probabilities are available� It requires a certain mini�
mum amount of probabilistic information �although� as Pearl has shown ����a�� the information
requirements can be made reasonable if knowledge of dependencies are also available�� Inference
engines formally based on Bayes�s theorem and the laws of probability can be used on numeric
probabilities expressed in Lp� Since both the probability axioms and Bayes�s theorem are valid in
Lp� the conclusions obtained from such inference engines will be valid deductions in Lp�

Let & be any set of Lp sentences� including possibly the empty set� The next lemma shows that
when & � � 
 �� � does not a�ect the conditional probability�

Lemma ���� If & � �x�� � � � � xn�� 
 � then & � ��j� � ���x � ��j���x�

Proof� If ����x � � then� by the de�nition of the conditional probabilities� we will have that both
probability terms are equal to zero�

Let M j� & be a model of & and let � be any interpretation whose underlying structure
is M� If ����x � � then f�aj�����x��a� � �g is not empty� Let �c be a member of this set�
By the soundness theorem & j� �x�� � � � � xn�� 
 �� Hence� since ���x��c � � � we have that
���x��c � � �� and� by the semantic de�nition� �c � f�aj�� � ����x��a� � �g� Therefore� we have
f�aj�����x��a� � �g � f�aj�������x��a� � �g� Clearly� the opposite containment also holds� hence� the
two sets are equal� By the semantic de�nition we have ����x � �� � ���x� and it is easy to show that
�� � ���x � �� � �� ���x also� The lemma follows from the de�nition of conditional probabilities and
the completeness theorem�

��



We can also show that deductive consequences always have greater conditional probability�

Lemma ��� If & � �x� � � � xn��� 
 �� then & � ��j���x � ��j���x�

Proof� Again let � be any interpretation whose underlying structure is a model of &� Using the
soundness theorem it is easy to show that f�aj�������x��a� � �g is a subset of f�aj�������x��a� � �g�
Since �n is a probability function �� � ���x � �� � ���x� and the result follows from the de�nition of
conditionals�

Finally we show that closed formulas �sentences� in Lp can only have probability � or �� This
result shows that Lp is not naturally suited for representing degree of belief probabilities� It should
be noted� however� that there are technical encodings which permit Lp to represent degrees of
belief �Abadi and Halpern� �����

Lemma ���� If � is a closed formula then ����x � � or ��

Proof� By the semantic de�nition� for any interpretation ��

�����x�
� � �nf�aj���x��a� � �g�

Since � has no free variables� � and ���x��a� will agree on all the free variables of �� for any �a�
Hence� by Theorem ��	� �� � ���x��a�� Either �� � � or �� � �� since � is an interpretation and
� is a formula� Thus� the above set of �a is either all of On or the empty set� and� for any �n� the
probability is either � or ��

��� Examples of Reasoning with the Statistical Knowledge

Example � �Nilsson�s Probabilistic Entailment� Nilsson ����� developed a probability logic based
on the possible worlds approach� He shows how the probabilities of sentences in the logic are
constrained by known probabilities� i�e�� constrained by the probabilities of a base set of sentences�
For example� if pr�P �Q� � � �	� then the values of prP� and prQ� are both constrained to be � � �	�
Nilsson demonstrates how the implied constraints of a base set of sentences can be represented in
a canonical manner� as a set of linear equations� These linear equations can be used to identify
the strongest constraints on the probability of a new sentence� i�e�� the tightest bounds on its
probability� These constraints are� in Nilsson�s terms� probabilistic entailments�

Nilsson gives some approximate methods for calculating these entailments� as well as noting
that the methods of linear programming can give exact solutions� The important point� however�
is that these bounds are simply consequences of the laws of probability�

The probabilities that Nilsson works with are degree of belief probabilities� while Lp deals
with statistical probabilities� However� since both types of probabilities satisfy the same set of
axioms there is a statistical analogue to Nilsson�s probabilistic entailment� Furthermore� the proof
theory we have developed is su
ciently powerful to capture the statistical version of probabilistic
entailment�

For example� if the base set in Nilsson�s logic is fpr�P��� ��� pr�P 
 Q��� ��g� probabilis�
tic entailment gives the conclusion � �� � pr�Q� � � ��� If we write the symbols P and Q as one

��



place predicates� then in Lp we could write a statistical analogue of this base set as the formulas
�P�x��x � � ��� and �P�x� 
 Q�x��x � � ���

From this knowledge it is easy to deduce the bounds �� �� � � �� � on the probability term �Q�x��x �
More generally� any bounds that can be computed using Nilsson�s notion of probabilistic entailment
can be deduced from Lp�s proof theory�

Example  �Reasoning with empirical generalizations �defaults��

�� If the statement �P�s are typically Q�s� is given the statistical interpretation that the propor�
tion of P�s that are Q�s is greater than c� where c is some number close to �� then the opposite
conclusion� that �P�s are typically not Q�s�� can be proved to be false��
 That is�

�Q�x�jP�x��x � c � c � � �	 � �
�
��Q�x�jP�x��x � c

�
�

The derivation follows from axiom P��

	� Similarly� the if the statement �P�s are Q�s� is asserted then the statement �P�s are typically
not Q�s�� can be proved to be false� For example� �Penguins are birds� implies that �Penguins
are typically not birds� is false�

�x�penguin�x� 
 bird�x� � �
�
��bird�x�jpenguin�x��x � c

�
�

The derivation follows from axioms P� and P��

�� The knowledge� �Most ravens are black� along with �Black objects are not white�� can be
used to deduce that �Most ravens are not white��

f�black�x�jraven�x��x � c�

�x�black�x� 
 �white�x�g
� ��white�x�jraven�x��x � c�

This can be shown with an argument similar to Lemma �����

�� The knowledge� �Most birds �y� along with �Penguins do not �y�� can be used to deduce
that �Most birds are not penguins��

f��y�x�jbird�x��x � c�

�x�penguin�x� 
 ��y�x�g
� ��penguin�x�jbird�x��x � c�

These examples demonstrate that if defaults are treated as qualitative statistical assertions
we can use Lp to represent and reason with them� Using Lp in this way is the basis for a
statistical approach to default reasoning �Bacchus� ��� Bacchus� ����

�	The fact that many non�monotonic formalisms allow both of these statements to be asserted without contradiction
has been noted� and cited as a weakness� by both Touretzky et al� ����� and Delgrande ������
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Figure �� A Bayes net

Example � �Bayesian Networks�
Consider the Bayes net in Figure �� If all of the variables X�#X� are propositional �binary�

variables one could write them as one place predicates in Lp� Hence� the open formula �X��x��� for
example� would denote the set of individuals with property X�� The Bayes net gives a graphical
device for specifying a product form for the joint distribution of the properties Xi �Pearl� ���a��
In this case the distribution represented by the Bayes net in the �gure could also be speci�ed by
the Lp sentence

�X��x��X��x��X��x� �X��x��x

� �X��x�jX��x� �X��x��x  �X��x�jX��x��x  �X��x�jX��x��x  �X��x��x

It can easily be demonstrated that any probability distribution which satis�es this equation will
also satisfy every equation of the same form with any number of the predicates negated �uniformly��
For example� the equation

�X��x� � �X��x��X��x� � �X��x��x

� ��X��x�jX��x� � �X��x��x  �X��x�jX��x��x  ��X��x�jX��x��x  �X��x��x

will be satis�ed by every probability distribution which satis�es the �rst equation� Furthermore�
the proof depends only on �nite properties of the probability function� i�e�� only on properties true
of the probabilities used in the Lp�structures� Hence� by the completeness result� all such equations
will be provable from the �rst via Lp�s proof theory�

This means that the behavior of the Bayes net is captured by the �rst Lp sentence� That is� the
fact that this product decomposition holds for every instantiation of the properties Xi is captured
by the proof theory�

In addition to the structural decomposition� Bayes nets must provide a quanti�cation of the
links� This means the conditional probabilities in the product must be speci�ed� In this example if
we add the Lp sentences f�X��x��x � ���� �X��x�jX��x��x � ���� �X��x�jX��x��x � ��� �X��x�jX��x��
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X��x��x � ��g� we can then determine the proportion of individuals with any particular property
among the set of individuals with any particular collection of properties� e�g�� the values of terms like
�X��x�jX��x� � �X��x��x� Again these probabilities will be semantically entailed by the product
decomposition and by the link conditional probabilities� Thus� the new probability values will
be provable from the proof theory� Note that the probabilities represented in Lp are statistical�
However� this is the appropriate interpretation for many applications of Bayes nets� particularly in
expert system applications�

Of course the proof theory has none of the computational advantages of the Bayes net� However�
what is important is that Lp provides a declarative representation of the net� The structure
embedded in the net is represented in a form that can be reasoned with and can be easily changed�
There is also the possibility of automatically compiling Bayes net structures from declarative Lp
sentences� Furthermore� the proof theory o�ers the possibility of integrating Bayes net reasoning
with more general logical and qualitative statistical reasoning�

� Conclusions and Future Research

We have presented a logical framework for representing and reasoning with a very wide variety
of statistical and logical information� The logical framework includes a proof theory which gives
a formal speci�cation for the set of valid inferences that can be made from a knowledge base of
statistical and logical information� The interesting feature of the proof theory is that it captures
the interaction between qualitative statistical reasoning� quantitative statistical reasoning� and
�rst�order logical reasoning� Examples have been provided which demonstrate the framework�s
representational and reasoning power�

Given the ability to represent statistical information provided by the formalism� many interest�
ing applications of statistical information become possible�

Mechanisms for integrating Lp with formalisms for representing degree of belief probabilities
have already been developed by Halpern ����� who has built on the logic developed here �see
�Bacchus� ��� for a detailed description�� This work has produced a formalism that can deal with
both types of probabilities and can represent and agent�s degrees of belief in statistical assertions�
This opens the door to further work using statistical knowledge�

One such area is the problem of statistical inference� how can an agent infer degrees of belief
in statistical assertions from knowledge of individual cases� Such work would have an impact on
learning research�

Another application of Lp�s ability to represent statistical knowledge comes in non�monotonic
reasoning� A system of non�monotonic reasoning has been developed �Bacchus� ��� which bases
its default conclusions on statistical information� As one of our examples demonstrated� using Lp
gives one the ability to reason extensively with the defaults�

Lp has much in common with ordinary �rst�order logic� so it would be useful to review some
classical applications of �rst�order logic in AI with an eye to incorporating input from statistical
sources� In particular� planning and diagnosis could both be viewed from a more general point of
view once one has a general mechanism for handling statistical information�

Finally� there is the problem of automated reasoning within this framework� It is clear that
a naive application of automated theorem proving techniques would not be su
cient� reasoning

�



about the �eld terms would probably prove to be very di
cult� Much more promising and inter�
esting would be the investigation of hybrid techniques using existent probabilistic reasoners� like
Bayes nets� in conjunction with slower but more general ATP techniques� The use of such hybrid
techniques has already proved to be very useful in speeding up deductive inference �Schubert et al��
����� The important point here is that the logic and its proof theory provides formal tools which
can be used to analyze the completeness and soundness of particular implementations�

In sum� the work presented here is a necessary �rst step towards greater use of statistical infor�
mation in AI� and opens up the possibility for many interesting applications of such information�
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A Appendix� Proof of Soundness and Completeness Theorems

Theorem �Soundness	 ���� If % � �� then % j� ��

Proof� Let �n� be a deduction of � from %� i�e� �n � �� We show by induction on k � �� � � �n that
% j� �k� If �k is an axiom then we claim that �k is satis�ed by every interpretation� Thus� % j� �k�
If �k � % then it is clear that % j� �k� The last case is if for some i� j � k we have �j � �i 
 �k�
By induction % j� �i and % j� �j � so� from the semantic de�nition and the de�nition of �
�� it
follows that % j� �k� Now� all that remains is to prove the claim that the axioms of Lp are satis�ed
by every interpretation� The �rst�order axioms pose no problem� since Lp is an extension of �rst�
order logic and has almost the same model structure� The standard proof of the soundness theorem
for �rst�order logic su
ces to show that these axioms are valid �satis�ed by every interpretation��
Since in the Lp�Structure F is de�ned to be an ordered �eld� it is clear that all of the �eld axioms
are valid� Finally� since each �n is de�ned to be a probability function in the Lp�Structure� we
can use the semantic de�nition of the probability terms ����x to see that axioms P��P� are valid�
Theorem ��� shows that axiom P� is valid� The fact that the sequence of probability functions
is a sequence of product measures yields the validity of axiom P�� The additional constraint ��	
ensures that axiom P� is valid�

We will give a rough proof of the completeness theorem� A rigorous treatment is contained
in �Bacchus� ���b�� The proof is accomplished by way of a Henkin construction� and the main
complication is ensuring that all of the standard results about provable equivalence and maximal
consistent sets of formulas that are true in �rst�order logic continue to hold in Lp�

A�� Provable Equivalence

The notion of provable equivalence is important for the Henkin construction� It has already been
shown that the terms in the language are divided into equivalence classes by the ��� relation
�Lemma ������ We also need to show that the extended set of variants in Lp possess the property
of provable equivalence�

De�nition A�� Two formulas � and � are said to be provably equivalent if � � � and � � ��
Two terms � and � are said to be provably equivalent if � � � ��

Theorem A�� If �� is a variant of � then �� and � are provably equivalent� where � can be either
a term or a formula�

A�� Maximal Consistency

To prove the completeness theorem we need the notion of maximal consistent sets of formulas� It
can be shown that the standard properties of maximal consistent sets of formulas continue to hold
in Lp�

De�nition A�� A set of Lp formulas % is inconsistent if for some � both % � � and % � ���
otherwise� % is consistent� % is maximal consistent if % is consistent and is not a proper subset
of any other consistent set of formulas�

��



The important results about these notions are given by the following theorems�

Theorem A�
 For any % and ��

a	 %��� is inconsistent i� % � ��

b	 %� � is inconsistent i� % � ���

Theorem A�� A set % is maximal consistent i� both of the following conditions are satis�ed�

a	 % is consistent�

b	 For every formula �� � � % or �� � %�

Theorem A�� If % is maximal consistent and % � � then � � %�

A�� Completeness of the Proof Theory

The completeness proof is a direct consequence of the following model existence proof which uses
a standard Henkin construction with modi�cations to deal with the de�nition of the probability
function and to handle the two sorted universe�

Theorem A� �Existence of a Model	 If ) is a consistent set of Lp formulas then there exists an
interpretation �� with underlying Lp�Structure M� which satis�es )� That is� �� � � for all
� � )�

Proof� First� we extend Lp to a new language LP�C	 by adding a denumerable set of new
constants fciji � �� �� � � �g� Clearly� if ) is a consistent set of Lp formulas then it will also be
a consistent set of LP�C	 formulas� Next� we extend ) to a maximal consistent set of LP�C	
formulas % which has witnesses� i�e� if ��x�� � % then for some constant c� ���x�c� � %� If a
witness for �x�� does not already exist in Lp we use one of the new constants as a witness�

Now we construct an Lp�Structure and an interpretation which satis�es the maximal set %�
For each term t we de�ne ��t�� � fsjs � t � %g� By Lemma ���� it is deducible that ��� de�nes
an equivalence relation and since %� being maximal consistent� is closed under deduction it follows
that these are equivalence classes of terms in Lp�C	� Since these are equivalence classes� it is clear
that ��t�� � ��s�� i� s � t � %�

Lemma A�� Let t�� � � � � t�n be terms of identical type such that ��ti�� � ��ti�n�� �i � �� � � � � n� then�

�a	 For any n�ary function symbol� f � of type compatible with the terms t�� � � � � t�n

��f�nt�� � ��ftn�� � � � t�n���

�b	 For any n�ary predicate symbol� P � of the same type as the terms t�� � � � � t�n

if P�nt � % then Ptn�� � � � t�n � %�

��



For each variable� x� we put x� � ��x��� where x can be a variable of either type�
Finally we de�ne the sequence of probability functions �n on any set of On de�ned by a formula

� by

�n
n
h��a���� � � � � ��an��i����x�h��a� ���������an ��i� � �

o
� ������x���

Lemma A�� For any n the probability function �n is well de�ned� That is� if A is a set of tuples
in On de�ned by two di�erent formulas � and � then �n�A� is independent of which formula is
used�

Proof� By assumption� A � fh��a���� � � � � ��an��i����x�h��a� ���������an ��i� � �g and also
A � fh��b���� � � � � ��bn��i� ���y�h��b� ���������bn ��i� � �g� By de�nition� �n�A� � ������x�� also �n�A� � ������y���
The claim of the lemma is that ������x�� � ������y��� Let �z � h�nzi be a new set of object variables which
do not appear in either � or �� There exists two variants � and �� called �� and �� respectively�
formed by substituting all the variables xi � �x in � and all the variables yi � �y in � by the new
variables zi � �z� By Theorem ���� the sets A� and B� �of tuples of On� de�ned by these variants is
the same as the set A� Further� by Theorem A�	� it is provable that �����z � ����x also �����z � ����y�
So by Theorem A�� we have �������z�� � ������x�� also �������z�� � ������y��� Hence� the claim can be reduced
to proving that �������z�� � �������z���

Since

fh��c���� � � � � ��cn��i�����z�h��c� ���������cn ��i� � �g �

fh��c���� � � � � ��cn��i� ����z�h��c� ���������cn ��i� � �g

it must be the case that the formulas �zi � � ��zn���� 
 ��� and �zi � � ��zn���� 
 ��� are in %� As
% is maximal consistent� either these formulas or their negations must be in %� If their negations
are in % it is easy to see� using the witness property of %� that the two sets A� and B� cannot be
equal� Using axiom P� and Theorem A��� the formulas ��� 
 ����z � � and ��� 
 ����z � � must be
in %� Thus� by Lemma ����� �����z � �����z � %� Hence� by de�nition� �������z�� � �������z���

This de�nes each �n on all subsets of On de�ned by formulas of Lp� It should also be clear
from the construction of O that �n is also de�ned on each singleton set of On� since the formula
�x� � t� � � � �� xn � tn��x de�nes the singleton set fh��t���� � � � � ��tn��ig� In an Lp�Structure each �n is
de�ned on a �eld of subsets of On� �n� However� Theorem ��� shows that the set of subsets de�ned
by the formulas of Lp is itself a �eld of subsets� Hence� �n is already de�ned over a �eld of subsets
which includes all singleton sets as well as all subsets de�ned by the formulas of Lp� That is� �n

can be taken to be the �eld of subsets over which �n is already de�ned�

Lemma A��� For each term t t� � ��t���

Now we can prove that % is in fact satis�ed by �� We prove by induction �on the length of a
formula �� that

�a	 if � � % then �� � �� and

�b	 if �� � % then �� � � �hence ��� � ���

��



See �Bacchus� ���b� for the details�
Thus �� � � for all � � %� Since % is maximal consistent it contains all instances of all axioms�

Thus the structure and interpretation constructed satis�es all of these axioms� In particular� since
all of the �eld axioms are true it is clear that F has the structure of a �eld� Further� since all of
the probability axioms are true it is the case that the functions �n are in fact probability functions�

The sequence of probability functions is a sequence of product measures� since every instance
of axiom P� is true� Let A � f�aj���x��a� � �g � On and B � f�bj���y��b� � �g � Om be two sets in
the domain of �n and �m respectively� with �n�A� � z� and �m�B� � z�� It can be seen that the
equivalence class of the probability term �� � ��h�x��yi is equal to the probability of their Cartesian
product� We have �������x � z���y � z� is true� so must be in %� Hence� by axiom P� the probability
of the Cartesian product is greater than or equal to z�  z�� It must be shown that it is in fact
equal� This can be done by considering the complement of the Cartesian product� This set is not
a product set� but it is equal to the union of two product sets� That is� it is equal to the �disjoint�
union of �AOm and A�B� Using P� again� we see that the complement is greater than equal
to ��z� � z����z��� which is �� z�z�� The result now follows from axiom P��

Axiom P� insures that the probability functions satisfy the constraint of invariance under per�
mutations�

Hence� the structure constructed is a valid Lp�Structure�
Since ) is contained in %� it is obvious that � satis�es )� That is� �� � � for all � � ) as

claimed�

From the model existence theorem it is easy to prove completeness�

Theorem �Completeness	 ���� If % j� �� then % � ��

Proof� If % j� � then no interpretation satis�es f%���g� Hence� by the Existence Theorem� f%�
��g is inconsistent� Thus� by Theorem A��� % � ��

��



Figure Legends

Figure �� A Bayes net�
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