
Using Learnt Clauses in maxsat

Jessica Davies, Jeremy Cho, and Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada
{fbacchus,jkcho,jdavies}@cs.toronto.edu

Abstract. maxsat is an optimization version of SAT capable of express-
ing a variety of practical problems. maxsat solvers have been designed
to take advantage of many of the successful techniques of SAT solvers.
However, the most important technique of modern SAT solvers, clause
learning, has not been utilized since learnt clauses cannot be soundly
added to a maxsat theory. In this paper we present a new method that
allows SAT clause learning to be exploited in a maxsat solver without
losing soundness. We present techniques for learning clauses during a
branch and bound (B&B) maxsat search, a process that is more compli-
cated than standard clause learning. To exploit these learnt clauses we
develop a connection between them and bounds that can be used during
B&B. This connection involves formulating a hitting set problem and
finding bounds on its optimal solution. We present some new techniques
for generating useful hitting set bounds and also show how linear and
integer programs can be exploited for this purpose, opening the door for
a hybrid approach to solving maxsat.

1 Introduction

maxsat, in its most basic form, is the problem of finding a truth assignment
that satisfies the maximum number of clauses of a CNF theory. Partial-maxsat
is the extension in which some clauses are hard. Here the objective is to find a
truth assignment that satisfies all the hard clauses and a maximum number of
the other (soft) clauses. In weighted maxsat, clauses are assigned weights, and
the objective is to find a truth assignment that maximizes the sum of the weights
of the satisfied clauses. Weighted partial maxsat extends weighted maxsat by
adding hard clauses that must be satisfied.

maxsat plays a fundamental role for optimization problems, similar to the
role that SAT plays for satisfiability problems. Any optimization problem over
finite domain variables can be encoded in maxsat. Thus maxsat can encode any
finite domain max-csp problem [5] (where the aim is satisfy as many constraints
as possible), while the weighted versions of maxsat can encode most valued-
csps [17]. maxsat serves as a general modeling language for such problems.

maxsat also has the advantage that it possesses a different structure than the
corresponding max-csp and valued-csp formalisms. Each formalism can yield
algorithmic insights that can potentially be exploited in the other. See [9,6] for
an illustration of this type of cross-fertilization.

The literature on exact maxsat solvers is fairly extensive and can be cat-
egorized into two main approaches. The first approach solves the problem by

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 176–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Learnt Clauses in maxsat 177

solving a sequence of SAT problems, e.g., [13]. This approach can fully exploit
modern SAT solver technology including clause learning, but has a number of
drawbacks that we will discuss later. The second approach employs a depth-first
branch and bound search, e.g., [7]. In this line of research the key contribu-
tions consist of various techniques for computing good lower bounds during the
search. Most of these techniques can be understood as applying restricted forms
of maxsat-resolution [10].

First it should be noted that clauses inferred via standard resolution cannot
be soundly added to a maxsat theory. If Φ is a maxsat CNF theory, and c is a
clause inferred by resolution, then it is not sound to add c to Φ. In particular, the
new theory Φ ∪ {c} can have different solutions than the original. For example,
the truth assignment π = (x = true, y = false) is a solution to the maxsat
theory Φ = {(¬x, y), (x), (¬y)}: it falsifies only one clause. However, (y) can be
inferred from Φ, but π is not a solution to Φ∪{(y)}: π falsifies two clauses while
(x = true, y = true) falsifies only one.

In response to this, alternative rules of inference have been developed. In par-
ticular, the maxsat-resolution rule is an extension of ordinary resolution that is
sound and complete for maxsat [3,9]. However, maxsat-resolution can gener-
ate a large number of additional “compensation” clauses with each inference. In
fact, the maxsat-resolution of two clauses of length k and j can generate up to
k + j additional clauses. This makes it difficult to use maxsat-resolution during
search. Hence, previous work has concentrated on finding restricted cases where
maxsat-resolution type inferences can be more efficiently applied.

Furthermore, current solvers look for these restricted cases in the reduced
maxsat theory. That is, at each node of the B&B search tree, the maxsat theory
has been reduced by the prefix of assigned variables. Current B&B maxsat
solvers examine the reduced theory to determine if any restricted applications
of maxsat-resolution can be supported. For example, in the reduced theory
two originally long clauses might now be reduced to the unit clauses (x) and
(¬x). These two unit clauses can be maxsat-resolved to generate the empty
clause, thereby increasing the lower bound. However, in the original theory this
resolution step actually corresponds to maxsat-resolving the two original long
clauses, potentially generating many additional clauses which cannot be stored
efficiently. As a result, all of the inferences made must be undone on backtrack
and recomputed from scratch at future nodes in the search tree.

This is in stark contrast with SAT clause learning where clauses learnt in one
part of the search tree can be utilized anywhere else. In fact, it is this caching
and reuse of previous work that makes clause learning so effective.

In this paper we show how standard SAT clause learning can in fact be utilized
in any kind of maxsat problem (weighted and/or partial). This allows us to learn
clauses without having to generate large numbers of additional clauses. Hence we
can apply clause learning in many cases where an equivalent maxsat-resolution
would be impractical. Furthermore, clauses learnt in one part of the search tree
or during a preprocessing phase can be reused throughout the rest of the search
tree. As pointed out above, learnt clauses cannot be soundly added to a maxsat

178 J. Davies, J. Cho, and F. Bacchus

theory. So to use these learnt clauses soundly we exploit a known relationship
between conflicts and hitting sets [16]. This allows us to formulate a hitting set
problem from the learnt clauses whose minimal solution provides a lower bound
for the B&B search.

To exploit this connection we address two additional problems. First we de-
velop techniques for learning clauses that are more likely to increase the mini-
mal hitting set solution. Second, since computing a minimal hitting set is itself
an NP-Complete problem, we develop some tractable techniques for computing
lower bounds on the exact solution. We develop two heuristics for this purpose,
one of which improves on the heuristic given in [16]. We also can formulate the
minimal hitting set problem as an integer program and use linear programming
to provide a lower bound approximation. We show how this link to standard OR
techniques yields an interesting hybrid approach to the maxsat problem.

From our experimental results, we show that this novel approach to computing
lower bounds demonstrates potential, in particular it can often quickly prune the
search space. On several maxsat benchmarks, we show that enough inference
can be made to terminate search at the root, while other state-of-the-art solvers,
such as MiniMaxSat [7] require search. Our approach does not currently achieve
state-of-the-art performance, although we are pursuing a number of ideas aimed
at improving its performance. Furthermore, much recent research has focused
on ways of improving existing bounding techniques, e.g., by exploiting cyclic
structures [11]. Our approach offers a completely new way of producing improved
bounds through finding specialized ways of learning new clauses. Finally, we
believe that the techniques we present for computing bounds on minimal hitting
sets and our empirical results assessing the trade offs between these techniques
may also be of independent interest for other applications that rely on computing
hitting sets.

In the sequel we first provide some brief background, followed in Section 3 by
our results on the connection between solving maxsat and the weighted minimal
hitting set problem. Section 4 describes proposed methods of approximating the
min-weight hitting set, while in Section 5 we consider how to generate learnt
clauses to employ in our bounds. We present preliminary experimental results
in Section 6 that encourage future work in this direction, as discussed in the
conclusion.

2 Background

For simplicity we will formulate the maxsat problem in terms of computing
the minimal value of an objective function, as opposed to a truth assignment.
We have as input a set of propositional variables x1, . . . , xn and a set of clauses
c1, . . . , cm over these variables each with an associated weight wt(ci). Let Π be
the set of 2n truth assignments to the variables xi. For π ∈ Π the function π(c)
has value 1 if π falsifies the clause c and 0 if it satisfies it. The maxsat problem
is to compute the minimum sum of weights of the falsified clauses over all truth
assignments to the variables: minπ∈Π

(∑m
i=1 wt(ci)π(ci)

)
. Thus the weight of the

Using Learnt Clauses in maxsat 179

satisfied clauses is being maximized. Hard clauses are modeled as clauses c with
wt(c) = ∞ (or any sufficiently large number). In the case of unweighted maxsat,
we set wt(c) = 1 for all soft clauses c.

Solution methods: It is possible to approximate the optimal solution using
methods like local search. But here we are mainly interested in exact solution
methods, of which there are two main approaches taken in the literature.

In the first approach, e.g., [13], maxsat is solved by solving a sequence of
SAT problems. Each run of the SAT solver checks to see if the current theory is
UNSAT. If so, the theory is modified so that one (and only one) of the subset of
clauses that caused the UNSAT result can be “turned off.” This is accomplished
by adding new “turn-off” variables to the culprit clauses along with extra clauses
constraining the turn-off variables so that only one can be true. Then the SAT
solver is run again on the new problem. If the SAT solver returns SAT after
k such runs we know that k is the minimum number of clauses that must be
falsified when satisfying the remaining clauses.

Although this approach works well on some problems it quickly becomes in-
efficient when more and more clauses have to be turned off, resulting in SAT
problems which are larger and more difficult to solve. In particular, in the ith
run many more clauses have been added to handle the turn-off variables, and
the solver must search over many combinations of i clauses to turn off. Thus
the approach is less effective on highly constrained problems. A more serious
limitation however lies in its extension to weighted maxsat problems [1,14]. On
such problems we must step through all possible values the maxsat solution can
take, i.e., all distinct sums of clause weights. This can produce an explosion in
the number of separate SAT solving episodes required.

The second approach involves a depth-first B&B search, which we also use in
our work. Typically, a local search method is used to first compute an approx-
imate solution, whose weight is taken as an initial upper bound on the optimal
solution. During search, variables are assigned and any hard clauses (or clauses
whose weight exceeds the upper bound) are used to perform unit propagation. Af-
ter unit propagation various methods are used to compute a lower bound on the
weight of clauses that must be falsified below the current node. This lower bound
includes the weight of all clauses already falsified by the current assignment. In
addition, inference is performed on the not-yet falsified (or satisfied) clauses to
determine additions to the lower bound. For example, if two clauses have been re-
duced to units (x) and (¬x) then at every node below, one of these clauses will
be falsified. Hence, min(wt((x)),wt((¬x)) can be added to the lower bound. More
powerful inference methods are used to handle more complex cases [7,11]. How-
ever, as mentioned above, all of these inferences must be undone on backtrack.

3 Learnt Clauses—The Hitting Set Connection

We have already pointed out that learnt clauses cannot be soundly added to a
maxsat theory (except if these clauses are inferred solely from the hard clauses
of the theory). Nevertheless, they can be utilized in a maxsat solver.

180 J. Davies, J. Cho, and F. Bacchus

First consider resolution proofs from a CNF maxsat theory Φ. Each proof p
of a clause ck is a sequence of clauses c1, . . . , ck, where each ci is either an input
clause from Φ or the result of resolving two previous clauses in the sequence. For
any proof p let ic(p) be the set of input clauses used in p, i.e., p ∩ Φ. For any
set of proofs P let ic(P) be the set of sets of input clauses arising from these
proofs {ic(p)|p ∈ P}.

Initially we will be interested in refutations. These are proofs of the empty
clause, i.e., ck = (). Since resolution is sound, any truth assignment that satisfies
the input clauses of a refutation must also satisfy (). However, no truth assign-
ment can satisfy (), hence no truth assignment can satisfy all of these clauses.
That is, the input clauses of each refutation form a conflict set [16]. Since we
are considering conflicts detectable by a complete inference technique (resolu-
tion) we can prove a more general connection between conflicts and solutions to
maxsat than that given in [16].

For any maxsat CNF problem Φ let minval (Φ) be the solution of Φ, i.e., the
minimum achievable weight of falsified clauses; and let Rall (Φ) be the set of all
refutations that can be computed from Φ. A hitting set for any set of sets
of clauses S is a set of clauses H such that for each s ∈ S, H ∩ s �= ∅. The
weight of a hitting set H, val(H) is the sum of the weights of the clauses in H,
and we let minwtHS (S) denote the weight of a minimum weight hitting set of
S. Hence, minwtHS (ic(Rall (Φ))) is the weight of a minimum weight hitting set
of ic(Rall (Φ)).

Theorem 1. For any maxsat theory Φ, minval (Φ) = minwtHS (ic(Rall (Φ))).

Proof. Let H be a minimum weight hitting set of ic(Rall (Φ)).
We cannot prove the empty clause from Φ − H, otherwise there would be a

refutation r in Rall (Φ) such that ic(r) ⊆ (Φ − H). But then H would not hit
ic(r) and H would not be a hitting set of ic(Rall (Φ)). Thus we conclude that
minval(Φ) ≤ val(H). Say that minval(Φ) < val (H). Then there must exist a set
of input clauses H with val(H) < val(H) and such that Φ−H is satisfiable. But
since H is a minimum weight hitting set, H cannot be a hitting set of ic(Rall (Φ)).
Hence, there exists a refutation r ∈ Rall (Φ) such that H ∩ ic(r) = ∅. That is,
r is a refutation provable from Φ − H . This is a contradiction and we conclude
that minval(Φ) = val(H).
�
Theorem 1 says that the technique of finding hitting sets can solve the maxsat
problem: it is a complete method. However, as stated it is also quite impractical.
For one there are an exponential number of possible refutations of Φ.1 Consider
the case where instead of having access to Rall (Φ) we have an incomplete col-
lection of refutations R ⊂ Rall (Φ). In this case a minimum hitting set of ic(R)
provides a lower bound on minval(Φ).

Proposition 1. If R and R′ are two sets of proofs with R ⊂ R′, then
minwtHS (ic(R)) ≤ minwtHS (ic(R′)).
1 The NP-Hardness of computing a minimum hitting set is also a problem with the

direct application of Theorem 1. We address this issue in the next section.

Using Learnt Clauses in maxsat 181

This holds since every hitting set of ic(R′) must be a hitting set of ic(R). Thus
we have that minwtHS (ic(R)) ≤ minwtHS (ic(Rall (Φ))) = minval(Φ).

Now we consider how these ideas could be utilized inside of a B&B search. At
each node n of the search the original problem has been reduced by instantiating
some set of variables. In addition, by employing clause learning techniques (de-
scribed below) the search has been able to augment the input clauses Φ with an
additional set of learnt clauses L. For each � ∈ L the search has also computed
the set of input clauses ic(�) used in the proof of �. We note that if c is an input
clause (c ∈ Φ) then a proof of c is simply c itself. Thus for convenience for c ∈ Φ
we use ic(c) to denote the set {c}.

At node n we wish to determine if minval(Φ|n) (the input formula reduced
by the literals made true at node n) has a value that is so high that it pre-
cludes finding a better solution under n. Theorem 1 says that minval(Φ|n) =
minwtHS (ic(Rall (Φ|n))) and we can lower bound this value using any subset of
ic(Rall (Φ|n)). Unfortunately we do not know any non-empty subset. The search
has never visited n before, and thus has not derived any refutations from Φ|n.

Instead we will consider clauses that we know to be falsified at node n. Let
Πn be the set of all truth assignments (to the variables in Φ) that agree with the
assignments made at node n. Let minval(n) = minπ∈Πn

(∑m
i=1 wt(ci)π(ci)

)
; this

is the minimum weight of falsified clauses achievable by any truth assignment
that lies below node n. We can backtrack immediately from n if we know any
lower bound LB such that LB ≤ minval(n) and LB ≥ UB where UB is the
value of the current best known solution.

Let Pall (Φ, n) be the set of all proofs from Φ that derive a clause falsified by
the assignments made at node n. That is, p ∈ Pall (Φ, n) means that p derives,
from the clauses of Φ, a clause all of whose literals are falsified at node n.

Theorem 2. minval(n) = minwtHS (ic(Pall (Φ, n))).

This means that if we had access to all proofs of clauses falsified at node n,
we could find minval(n) by way of a minimum hitting set problem. We do not
have access to Pall (Φ, n), but as noted above for every clause c of Φ ∪ L that
has been falsified at n we know ic(c), the input clauses used in the proof of c.
Hence, FC = {ic(c) | c is falsified at n} ⊂ ic(Pall (Φ, n)) and Prop. 1 tells us
that minwtHS (FC) ≤ minval(n). By computing minwtHS (FC) the search can
use this value to potentially backtrack away from n.

Proof. The proof of this theorem is more complicated than the proof of Theo-
rem 1, so we provide only a sketch. First, let Φ|n be Φ reduced by the assignments
made at n, i.e., all satisfied clauses and falsified literals are removed from Φ. It
can be shown that minval(Φ|n) = minval(n) by observing that for every clause
of Φ falsified at n, Φ|n contains an empty clause of equal weight. Theorem 1
then shows that minwtHS (ic(Rall (Φ|n))) = minval(n). Now all that remains
to be done is to prove that minwtHS (ic(Rall (Φ|n))) = minwtHS (ic(Pall (Φ, n))).
First, we show that all proofs in Rall (Φ|n) can be converted to equivalent proofs
in Pall (Φ, n) by adding back all of the falsified literals to the clauses of the proof.
This shows that any hitting set of ic(Pall (Φ, n)) can generate a hitting set of

182 J. Davies, J. Cho, and F. Bacchus

ic(Rall (Φ|n)) of no greater weight, and thus that minwtHS (ic(Rall (Φ|n))) ≤
minwtHS (ic(Pall (Φ, n))). The other direction is more complex, but we use the
same argument as Theorem 1 to show that if minwtHS (ic(Rall (Φ|n))) <
minwtHS (ic(Pall (Φ, n))) there must be a hitting set H of ic(Rall (Φ|n)) which
when converted to a set of clauses of Φ (by adding back the falsified literals)
cannot be a hitting set of ic(Pall (Φ, n)). Hence, there is a proof p ∈ Pall (Φ, n) not
covered by H . With a more complex transformation, p can then be converted
into a refutation in Rall (Φ|n) by removing all satisfied clauses and falsified lit-
erals, and then fixing all of the now broken resolution steps. (For example, the
literal being resolved on might have been removed from one of the clauses, or
one of the clauses might have been satisfied). The conversion of p is not hit by
H contradicting that H exists.
�
In summary, the results of this section show that learnt clauses can be exploited
in maxsat to produce lower bounds. In particular, at any node n of the search
tree some set of clauses will be falsified. These could be either input or learnt
clauses. By keeping track of the input clauses used to derive each clause a hitting
set problem can be set up. The minimum weight hitting set provides a lower
bound on the best value that can be achieved below node n, minval(n), which
can be used by the B&B bounding procedure. Furthermore, it can be the case
that some learnt clauses are falsified at node n even though no input clause
is violated. Hence, clause learning can allow us to construct richer hitting set
problems that can yield better bounds.

Two problems remain. First we cannot necessarily compute a minimum weight
hitting set as this is an NP-Complete problem in itself. In the next section we
present some ways of computing lower bounds on the minimum weight hitting
set, which in turn act as lower bounds on minval(n). Second, we present some
ways that clauses can be learnt both prior to search and during search so as to
increase the effectiveness of the computed lower bounds.

4 Lower Bounding the Minimal Hitting Set

During clause learning we remember for each learnt clause the set of input clauses
used in its derivation. This increases the space required to store learnt clauses,
but does not impose additional computational overheads during search. In par-
ticular, we only need to access this derivation set when a clause has been falsified.

During search, we use standard watched literal techniques to detect when
clauses become false. The collection of falsified clauses at each node of the
search tree form a hitting set problem. Let FC represent this collection. For
each f ∈ FC let ic(f) be the set of input clauses used to derive it, and ic(FC) =⋃

f∈FC ic(f). As noted above, if f is an input clause, i.e., f ∈ Φ, we let ic(f) =
{f}. The hitting set problem is to select a minimum weight set of input clauses
that touches ic(f) for each f ∈ FC . Due to the difficulty of computing this, our
aim is to compute a lower bound on the weight of a minimal weight hitting set.

Using Learnt Clauses in maxsat 183

Simplification: Before trying to solve the problem we first apply two quite
effective simplification rules [20].
1. If f1, f2 ∈ FC with ic(f1) ⊆ ic(f2) remove f2 from FC . Any hitting set that

hits f1 will necessarily hit f2.
2. If wt(c1) ≤ wt(c2) and {f |c1 ∈ ic(f)} ⊇ {f |c2 ∈ ic(f)} remove c2 from all

sets ic(f), f ∈ FC . We can substitute c1 for c2 in any hitting set without
increasing the hitting set’s weight.

Note that these two rules define a propagation scheme. That is, one application
of these rules can enable additional applications. Simplification continues until
neither of these rules can be applied again.

In addition to these two rules, which are applicable for any hitting set, we can
also utilize an additional simplification rule specific to our problem.
3. Remove all input clauses c that are satisfied at the current node from ic(f),

f ∈ FC .
This last rule is justified by the semantics of our hitting sets. Each falsified clause
implies that at least one of the input clauses used to derive it must be falsified
by all truth assignments extending the current node. Thus, any clause that is
already satisfied is no longer a candidate for falsification.

One thing that is useful to notice is that simplification often generates a col-
lection of disjoint hitting set problems. For example, say that for falsified clause
f we have ic(f) = {c}, perhaps because simplification removed all other mem-
bers of ic(f). Rule 1 then implies that all other falsified clauses f ′ with c ∈ ic(f ′)
will be removed from the hitting set problem. That is, an isolated hitting set
problem consisting only of f = {c} will be created. These disjoint problems can
be solved independently and the answers added.

Heuristics: We have developed two heuristics for lower bounding the minimum
weight hitting set.

H1(LB)
1. LB = 0
2. while FC �= ∅
3. choose f ∈ FC
4. LB += minc∈ic(f) wt(c)
5. F = {f ′ ∈ FC |ic(f) ∩ ic(f ′) �= ∅}
6. FC = FC − F

This heuristic first chooses some falsified clause, f , and adds its minimum weight
input clause to the lower bound. Then it removes f and all clauses that share
an input clause with f from the set of falsified clauses. It repeats this loop until
no more falsified clauses remain.

The intuition behind this heuristic is simple: we can hit f by selecting its
min-weight input clause. But we could have selected any other input clause from
ic(f). Hence, the most we could have done is also hit all other falsified clauses
connected to f via a member of ic(f). The heuristic conservatively estimates
that we did in fact hit all of these clauses with f ’s min-weight clause. Note

184 J. Davies, J. Cho, and F. Bacchus

that the heuristic can yield different values dependent on which f is chosen.
In our implementation, we use different selection schemes for f in the weighted
and unweighted cases. For weighted, we always select the f with the minimum
weight input clause of maximum weight, while for unweighted, we select the f
whose set F in line 5 is of minimum cardinality. However, other natural selection
schemes also exist.

This heuristic inherently takes advantage of any disjoint sub-problems. In
particular, if the hitting set problem has been broken up into k disjoint sub-
problems, H1 will return an LB that is no worse than the sum of the weights of
the minimum weight input clause present in each subproblem.

For the second heuristic, for input clause c let nbrs(c) = {f |f ∈ FC ∧ c ∈
ic(f)} and deg(c) = |nbrs(c)|, that is the number of falsified clauses it hits.

H2(LB)
1. LB = 0
2. foreach disjoint subproblem FC P

3. lb = 0, n = |FCP |
4. while n > 0
5. c = c ∈ ic(FC P) that minimizes wt(c)/deg(c)
6. if deg(c) ≥ n OR unweighted clauses
7. lb += wt(c)
8. else lb += n × wt(c)/deg(c)
9. n -= deg(c)
10. remove c from ic(f) for all f ∈ FC P

11. LB += lb

This heuristic generalizes one given in [16]. First it takes advantage of the
possible disjointness of the hitting set problem that might arise after simpli-
fication, and second it handles the case of weighted input clauses. It operates
on each disjoint subproblem by selecting input clauses with lowest weight over
degree. These clauses hit the most sets on a minimum cost per set basis. We
select enough such minimum average cost input clauses until the sum of their
degrees equals or exceeds the total number of sets to hit. However, in the case
of weighted clauses, we are only allowed to count part of the weight of the last
clause selected (line 8).

Proposition 2. Both H1 and H2 return a lower bound on the weight of the
minimum weight hitting set.

This proposition is easy to see for H1 and for H2 in the unweighted case. The
weighted case requires a bit more insight, but ultimately it also is not too difficult.

These two heuristics are incomparable. That is, on some problems H1 provides
a better bound than H2 and vice versa on other problems.

For example, let FC = {f1, f2, f3}, ic(FC) = {i1, i2, i3} (all unweighted),
where nbrs(i1) = {f1, f2}, nbrs(i2) = {f1, f3}, nbrs(i3) = {f2, f3}. Then H1 can
only pick a single element from FC for a LB of 1 while H2 can pick any two
elements from ic(FC) for a LB of 2.

Using Learnt Clauses in maxsat 185

On the other hand, let FC = {f1, f2, f3, f4, f5, f6}, ic(FC) = {i1, i2, i3} (all
unweighted), where nbrs(i1) = {f1, f2, f3}, nbrs(i2) = {f3, f4, f5}, and nbrs(i3)
= {f5, f6}. Then H1 can pick {f1, f4, f6} for a LB of 3 while H2 is forced to pick
{i1, i2} for a LB of 2.

Unfortunately both heuristics can yield arbitrarily bad approximations.

Theorem 3. For hitting set instance S, let H1(S) and H2(S) be the lower bounds
computed by the heuristics and minwtHS (S) be the weight of the minimum weight
hitting set forS. Then for any ε > 0, there existsS,S′ such that H1(S)/minwtHS (S)
≤ ε and H2(S′)/minwtHS (S′) ≤ ε

4.1 Integer Programming Connection

Recall from Section 3 that the quality of the lower bound on the minimum hitting
set dictates how soon we can backtrack from a non-optimal partial assignment.
Furthermore, by recomputing the lower bound at each node during backtrack2,
it also impacts how far we can backtrack (as long as LB ≥ UB). In light of this
and Theorem 3, it may be desirable to use more powerful techniques to compute
the exact value of the minimum hitting set at strategic points during search.
One way to do this is to encode the hitting set instance as an integer program
and solve it using a Mixed Integer Program (MIP) solver, such as CPLEX. A
standard encoding [19] of a hitting set instance with FC = {f1, ..., fn}, ic(FC) =
{i1, ..., im}, where wk is the weight of ik, maps FC to constraints and ic(FC) to
boolean variables as follows:

minimize:
m∑

k=1

wk·xk where :

for 1 ≤ j ≤n
∑

ik∈ic(fj)

xk ≥ 1

for 1 ≤ k ≤m xk ∈ {0, 1}
Because Integer Programming is itself NP-complete, the backtracking gains of

an exact solution to the minimum hitting set problem may be outweighed by the
overhead required to compute it, particularly for large instances. As a result, it
can be more practical to instead solve the linear programming relaxation, whose
solution is a valid lower bound on the minimum hitting set. To balance the
trade off between the quality of the minimum hitting set approximation and the
computational cost required, we employed the following strategy: first heuristics
H1 and H2 are computed and their maximum used as initial lower bound LB.
If LB < UB but LB/UB ≥ α, for some tuned parameter α, then the linear
program is solved. Finally, if this is still insufficient to exceed UB and if the size
of the hitting set problem is less than some other tuned parameter β, the integer
program is solved.
2 Note that it may not be sufficient to simply reuse the lower bound that was computed

the first time the node was reached, as additional learnt clauses may have been added
to the hitting set instance since then.

186 J. Davies, J. Cho, and F. Bacchus

5 Learning Clauses

It remains to consider how to generate the learnt clauses; we consider two meth-
ods. The first is to perform a preprocessing step to learn clauses during a relaxed
DPLL search where soft as well as hard clauses are involved in learning [8]. A
drawback to this approach is that the learnts may not be relevant to the sub-
sequent B&B search. For one thing, all soft unit clauses are satisfied during
relaxed DPLL but may have to be violated to find the optimum. As observed by
Kroc et al., we found that some maxsat problems are too easy to refute even
for relaxed DPLL, and in many cases few or no learnts can be generated this
way. Therefore, we developed techniques to generate learnts during the B&B of
a maxsat solver.

Soft Unit Propagation: At every node of the B&B search, unit propagation is
applied over the hard (with respect to the current UB) clauses to soundly reduce
the theory under the current prefix. If a hard conflict is found, we learn a hard
clause and backtrack as normal to the asserting level. Otherwise, as in [7], we
initialize a phase of soft unit propagation (SUP) with all soft clauses that are unit
or falsified under the current prefix. Soft propagation involves unit propagating
soft clauses as well as hard, so any literals set during the SUP phase must be
undone before continuing search with another decision. However, if a clause is
falsified during SUP, this conflict can be analyzed using standard techniques to
produce a learnt with the desirable property of being falsified under the current
prefix, before SUP. Thus it may contribute to increasing the hitting set lower
bound at the current node. Therefore, the learnts produced are immediately
relevant to the search, in contrast to those we obtained from the preprocessing
step. The learnt clause, together with its set of input clauses, is saved upon
backtrack and can be use in future search whenever it is falsified, to contribute
to the hitting set lower bound. The soft learnts also participate in future SUP
phases, so that soft learnts can be learned from others, contributing to the power
of these clauses to prune the search.

SUP continues to propagate and learn until no more new falsified clauses are
found. Thus many soft learnts can be produced at each node of the search, and we
update the lower bound after SUP is finished. However, it could be beneficial to
limit the amount of SUP learning performed at every node, or update the lower
bound with new learnts as soon as we expect to be able to exceed the upper
bound. The trade off between the strength of lower bound we can produce and
time spent learning will be a focus of future investigation.

Turning off clauses: SUP learning, if implemented as described above, can
produce duplicate learnts. Note that in our context, a learnt is only considered
a duplicate of another if their sets of input clauses are also the same, since
otherwise each can contribute to the lower bound under different circumstances
depending on the structure of the hitting set problem. In order to prevent du-
plicate learnts from creating overhead, we prevent them from being learnt in the
first place. This is achieved by “turning off” for SUP, one of the input clauses
of each existing falsified learnt, for the duration of time it remains falsified. A

Using Learnt Clauses in maxsat 187

turned-off input clause can’t be used to derive any more learnts, until it is turned
back on. Of course, this policy may reject new learnts that aren’t actually du-
plicates of an existing one. This is undesirable since it may reduce the strength
of the lower bound. To limit the negative impact on heuristics H1 and H2, we
always choose to turn off the min-weight input clause, or the one with largest
degree. We also consider turning off input clauses only at decision levels greater
than k and relying instead on a general scheme of learnt database reduction to
limit the number of learnts.

Similarly, when an input clause c is falsified by the current prefix, we turn off
all of the learnts it has derived. This prevents us from learning clauses that we
know can’t currently contribute to the lower bound. To see this, note that any
learnt we avoid deriving would have had c in its set of input clauses. Therefore,
while c is falsified, it would be used by the hitting set heuristics to cover all such
learnts, so the weight of the hitting set would not be increased by their presence.

Related lower bounds: If no clauses are turned off for SUP, and the exact
minimum weight hitting set is calculated for the lower bound, this technique sub-
sumes existing unit-propagation based bounds in the maxsat literature [12,7,21].
If we turn off clauses for SUP, our lower bound will be at least as good as the
disjoint-inconsistent sub-formulas bound [12], since the turned off input clause
from one inconsistent sub-formula does not need to be used to refute the others.

6 Empirical Study

We implemented these ideas on top of the SAT solver Minisat [4], to investigate
how they perform in practice. We incorporated the variable ordering heuristics
used by MiniMaxSat, as well as the natural extension of probing (aka failed
literal detection) to our clause learning framework [7]. We also use the Dominat-
ing Unit Clause rule to simplify the theory at each node [15]. Our experiments
were conducted on a subset of 378 instances from the previous MaxSAT Eval-
uations [2]. The instances were selected by identifying benchmark families in
which MiniMaxSat is unable to solve some instances, where our B&B solver can
outperform MiniMaxSat on at least some problems. We then selected particu-
lar families in order to represent all types (maxsat, partial maxsat etc.) and
some from each category (random, crafted, industrial). All experiments were
conducted on a dual-core 2GHz AMD Opteron processor with 3GB of RAM,
and all experiments were run with a 1200 second timeout.

H1 vs. H2: Our first set of experiments investigates the performance of the two
hitting set approximation heuristics, H1 and H2, in the context of providing a
lower bound during B&B search. We ran the B&B search with both heuristics
enabled, and used the maximum of the two as the lower bound. We counted
the number of times each of the two heuristics provided different bounds, and
calculated the relative amount by which the winner was better. The results over
the 226 instances that required at least 100 decisions to solve, are summarized
in Table 1. The first column specifies the heuristic that was used, either H1

188 J. Davies, J. Cho, and F. Bacchus

Table 1. Comparison of the H1 and H2 lower bounds during search. The ‘Freq’ column
refers to the percentage of all lower bounds calculated for which the heuristic gave the
larger bound, averaged over all instances. The ‘Size’ column gives the average factor by
which the bound was larger. The other columns give the average number of decisions,
average runtime, and number of instances solved.

LB Heuristic Freq Size Decisions Time (s) Num Solved

H1 50 1.15 36280 49 115
H2 6 1.09 40115 50 115

max(H1,H2) – – 36192 49 117

Table 2. Comparison of the H1 and CPLEX LP lower bounds during search. The
average number of decisions and runtime (over instances both methods solved), and
the number of instances solved is shown.

LB Heuristic Decisions Time (s) Num Solved

CPLEX LP 25296 48 105
H1 35059 15 115

Table 3. Comparison of MiniMaxSat and our B&B solver using the CPLEX ILP
lower bound

Year Type Name Optimum MiniMaxSat Our MiniMaxSat Our
Decisions Decisions Time (s) Time (s)

2007 wpms 8.wcsp.log 2 1 0 0.05 0.05
2007 wpms norm-mps-v2-20-10-stein15 9 2191970 0 3.8 0.07
2007 wpms norm-mps-v2-20-10-stein27 18 – 0 >1200 0.59
2007 wpms norm-mps-v2-20-10-stein9 5 230 0 0.12 0.14
2008 pms norm-fir01 area delay 5 14 0 0.14 0.12
2008 pms norm-fir02 area partials 19 38 0 0.16 0.06
2008 pms norm-fir04 area partials 30 13 0 0.12 0.6
2008 wms frb10-6-1 50 755 0 0.27 0.23
2008 wms frb10-6-2 50 678 0 0.13 0.26
2008 wms frb10-6-3 50 1302 0 0.13 0.23
2008 wms frb10-6-4 50 580 0 0.29 0.3
2008 wms frb15-9-1 120 387470 0 1.37 3.76
2008 wms frb15-9-2 120 206845 0 2.29 4.6
2008 wms frb15-9-4 120 199365 0 2.24 5.77
2008 wms frb15-9-5 120 271024 0 1.27 5.59
2009 wpms warehouse0.wcsp 328 46 0 0.11 0.12

or H2 alone, or their maximum. The second column shows the percentage of all
lower bounds calculated for which the one heuristic gave a larger bound than the
other (averaged over all instances). Whenever one heuristic gave a strictly larger
bound than the other, we measured the relative difference (e.g. H1/H2 if H1 was
the larger); the third column reports this averaged over all instances. The average
number of decisions and average runtime are shown in columns four and five,
over the 112 instances that were solved by all three methods. The total number of
instances solved using each method is included in the last column. These results
encourage us to use both lower bounds and take the maximum, since they are
both cheap to calculate and can solve more problems when combined.
H1 vs. CPLEX LP: We also consider the trade off between using our H1 heuris-
tic, and solving the linear program for the hitting set problem using CPLEX.

Using Learnt Clauses in maxsat 189

We expected that the dynamic addition and removal of variables and constraints
from the CPLEX model would limit the efficiency of this approach, and the re-
sults confirm that the added strength of the LP lower bound comes with the
price of greater computational cost. We ran our B&B solver with the H1 lower
bound alone, and then with only the CPLEX LP lower bound. Ninety-seven in-
stances were solved by both methods, and the results are shown in Table 2. We
see that by using the LP lower bound, we make 28% fewer decisions on average.
We found that the reduction in decisions can sometimes pay off in reduced run-
time, for 37 instances. However in the majority of cases, the LP bound increases
the runtime by an average of about 30%. In general, the extra computational
cost does not pay off, since using the stronger LP bound solves 10 fewer prob-
lems. These results confirmed our expectations, but demonstrate that a hybrid
approach, using the stronger bounds at judicious points during search to exceed
the UB, is a well-justified direction for future work.

Solving without search: Finally, we present some results that show the promis-
ing potential of our framework to allow stronger yet practical inference. As men-
tioned at the beginning of this section, we implemented a probing phase at the
root of the B&B search. For each literal, we force it to true and reduce the
theory with this assignment using first hard unit propagation, followed by SUP.
If a clause is falsified, we learn a unit or empty clause (associated with a set of
input clauses) and move on to probe the next literal. On some instances, the set
of clauses we learn during probing is strong enough that the lower bound will
equal a tight upper bound provided by one run of ubcsat [18]. This occurs on 16
problems, presented in Table 3. Note that we only report the cases where Mini-
MaxSat couldn’t solve the instance without search. Here, we have used CPLEX
to solve the ILP model and generate the lower bound, since the size of the hitting
set problem is sufficiently small.

7 Conclusions

We introduced an innovative approach for maxsat solving, with potential for
practical impact based on generating bounds from unrestricted clause learning
for maxsat. Although it may always be necessary to use a restricted version
on real problems, we argue that this framework provides new insight into how
strong lower bounds can be made practical, for example, by being smart about
which soft clauses we learn, or by approximating the minimum hitting set well.
In addition to these contributions, we present two heuristics for the weighted
hitting set problem, and show that this approach can be used effectively in a
novel context. Based on our preliminary implementation, we have discovered
that the primary challenge in bringing this technique to the state-of-the-art in
practical performance, will be to develop methods to learn the best clauses to
prune the search tree. This is the topic of ongoing research.

Acknowledgment. This work was supported by the National Research Council
of Canada.

190 J. Davies, J. Cho, and F. Bacchus

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009)

2. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The maxsat evaluations (2007–2009)
3. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for max-SAT. In: Biere, A.,

Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg
(2006)

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

5. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence
(AI) 58(1-3), 21–70 (1992)

6. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-SAT as weighted
csp. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg
(2003)

7. Heras, F., Larrosa, J., Oliveras, A.: MinimaxSAT: An efficient weighted max-sat
solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)

8. Kroc, L., Sabharwal, A., Selman, B.: Relaxed dpll search for maxsat. In: Kullmann,
O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 447–452. Springer, Heidelberg (2009)

9. Larrosa, J., Heras, F.: Resolution in max-SAT and its relation to local consistency
in weighted csps. In: Proceedings of the International Joint Conference on Artifical
Intelligence (IJCAI). pp. 193–198 (2005)

10. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-SAT solving.
Artificial Intelligence (AI) 172(2-3), 204–233 (2008)

11. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures
in max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480.
Springer, Heidelberg (2009)

12. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-SAT. Journal of
Artificial Intelligence Research (JAIR) 30, 321–359 (2007)

13. Liffiton, M., Sakallah, K.: Generalizing core-guided max-SAT. In: Kullmann, O.
(ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009)

14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

15. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability.
Journal of Algorithms 36, 63–88 (2000)

16. Petit, T., Bessière, C., Régin, J.C.: A general conflict-set based framework for
partial constraint satisfaction. In: 5th Workshop on Soft Constraints (Soft 2003),
Kinsale, Ireland (2003)

17. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard
and easy problems. In: Proceedings of the International Joint Conference on Ar-
tifical Intelligence (IJCAI), pp. 631–639 (1995)

18. Tompkins, D., Hoos, H.: Ubcsat: An implementation and experimentation environ-
ment for sls algorithms for SAT and max-SAT. In: Hoos, H., Mitchell, D.G. (eds.)
SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

19. Vazirani, V.: Approximation algorithms. Springer, Heidelberg (2001)
20. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceed-

ings of Algorithms and Experiments (ALEX 1998), pp. 1–8 (1998)
21. Xing, Z., Zhang, W.: Maxsolver: An efficient exact algorithm for (weighted) max-

imum satisfiability. Artificial Intelligence (AI) 164, 47–80 (2005)

	Using Learnt Clauses in MAXSAT
	Introduction
	Background
	Learnt Clauses—The Hitting Set Connection
	Lower Bounding the Minimal Hitting Set
	Integer Programming Connection

	Learning Clauses
	Empirical Study
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

