
Precondition Control�

Fahiem Bacchus
Dept. Of Computer Science

University Of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

fbacchus@logos.uwaterloo.ca

Michael Ady
Winter City Software
Edmonton, Alberta
Canada, T5R 2M2

winter.city@v-wave.com

Abstract

Exploitingdomain specific information is a promis-
ing and perhaps essential means for improving the
performance of AI planning systems. A number of
important issues arise when investigating the use of
such information. Among the most important con-
cern the questions of how domain specific informa-
tion is to be represented and how planning algo-
rithms can be created or modified to take advantage
of such information. In this paper we explore the
simple mechanism of encoding such information
as extra operator preconditions. We examine what
is required of the operator description language to
make this feasible and provide some empirical re-
sults on the effectiveness of this approach. We find
that precondition control requires a very expressive
operator description language, but that when it can
be applied it can yield speedups that are orders of
magnitude better than other methods of encoding
domain specific information.

1 Introduction
Although much of the research in planning has concentrated
on domain independent planning algorithms and planning
systems, it is acknowledged that exploiting domain specific
information has a key role to play in achieving improved per-
formance. In fact most planning formalisms are sufficiently
general to be intractable in the worst case [ENS92], so it can
be argued that finding ways to exploit domain specific infor-
mation is essential if we ever hope to build planning systems
efficient enough to solve real problems.

There has been some work on utilizing domain specific
information in planning systems. A significant branch of
planning research has concentrated on HTN planners (e.g.,
[Wil88]). Such planners encode much more domain spe-
cific information that do classical planners (i.e., those based
on STRIPS or ADL operator representations). In particu-
lar, configuring an HTN planner for a particular domain in-
volves uncovering a plausible collection of task decompo-
sitions suitable for solving problems in that domain. The

�This research was supported by the Canadian Government
through their IRIS project and NSERC programs.

hierarchical structure of the task network embeds consider-
able domain specific knowledge that the planner can utilize.
Work on creating mechanisms for adding domain specific
knowledge to classical planners has also been pursued. The
PRODIGY [CBE�92] system is an end-means planner that in-
cludes mechanisms for encoding search control knowledge.
The emphasis there was on learning [Min88] and computing
[Etz93] control information automatically. This information
was expressed as a set of rules in a rule-based system that
is used to guide the non-deterministic choices made during
search.

More recently Bacchus and Kabanza [BK96] have pio-
neered an approach in which domain specific information is
encoded declaratively in a temporal logic. These logical ex-
pressions are then used to prune bad action sequences from
the search space of a forward chaining planner. In a recent
study [BK98] they have demonstrated that useful informa-
tion can be obtained in a range of domains, that their for-
malism can represent this information in a fairly natural way,
and that with this information exponential speedups can be
achieved over planning systems that do not exploit domain
specific information.1 Kautz and Selman [KS98] have also
recently explored using domain specific information to speed
up planning. In their approach the planning problem is en-
coded as a theory of propositional logic. The theory has the
property that any satisfying model can be easily translated
into a plan. They have explored encoding domain specific in-
formation with additional propositional formulas (hence like
Bacchus and Kabanza their representation of this information
is also declarative). By conjoining these additional formulas
to the base theory it is often possible to speed up the process
of finding a model. In their work they have reported speed
ups of up to a factor of 7 gained by adding domain specific
information (although they have not as yet obtained the ex-
ponential speedups reported by Bacchus and Kabanza). Fi-
nally, Srivastavan and Kambhampati [SK98] have presented
a scheme where domain specific knowledge, represented in
a declarative fashion, is used as input to an automated pro-
gramming system. This knowledge is used by the system to
construct a domain specific planner. These approaches share

1Specifically, planning problems that require exponential time
using the fastest domain independent planners can be solved in poly-
nomial time once appropriate domain specific information is pro-
vided.



some commonality in that they all exploit information that
helps the planner avoid considering some plans that are bound
to be flawed. This is accomplished by making explicit certain
implicit constraints on plans in the domain.

In this paper we explore another way of representing do-
main specific control knowledge: as extra preconditions in
the operators.2 Such preconditions can be used to stop the
planner from considering particular actions in circumstances
where we know that such actions are inappropriate. Encod-
ing control knowledge in this manner has a number of po-
tential advantages. First, it can make the knowledge easier
to understand, as one only needs to understand the basic op-
erator representation. Second, it can potentially be used by
any planning system; no modifications to the system’s algo-
rithms are needed. We will show that the first advantage can
be achieved, but that there are difficulties to be overcome in
achieving the second. In particular, we show that precondi-
tion control can be very effective when using a forward chain-
ing planner with a very expressive operator representation.

Certain types of control information are not so easily ex-
pressed as extra preconditions. So precondition control does
not seem to be as expressive as the temporal logic proposed
by Bacchus and Kabanza. This means that precondition con-
trol cannot, as yet, be utilized in as wide a range of different
domains. There are also difficulties that need to be addressed
before we can utilize such control with other types of plan-
ning algorithms. Nevertheless, despite these limitations, pre-
condition control possesses one very large advantage: when
it is applicable it can yield tremendous speedups over com-
peting approaches for representing domain specific control.

In this paper we concentrate on comparing the performance
of precondition control to the temporal logic approach de-
veloped by Bacchus and Kabanza. In their recent study
they have shown that their approach using temporal logic
yields speedups that are considerably superior to the other ap-
proaches for speeding up classical planners mentioned above,
and that in many cases their approach provides an exponen-
tial speedup over planners that are not provided with domain
specific information [BK98]. Hence, since precondition con-
trol (when it can be applied) can offer significant improve-
ments over the temporal logic approach, it seems to be a very
promising mechanism for moving classical AI planners closer
to the point where they can address realistic planning prob-
lems.

In the next section we illustrate how precondition control
can be applied, using the standard logistics domain as an ex-
ample. Then we present some empirical data showing the
speedups it can yield. Finally, we discuss the issues that must
be addressed before precondition control can be utilized in
other planning algorithms.

2 The Logistic Domain
The logistics domain is a standard test domain for planners
that utilize STRIPS operators. The domain is a simple trans-

2Preconditions in operators have previously been used for a num-
ber of different purposes, including control. Such a use of precondi-
tions occurs in the SIPE system [Wil88]. However, we have not seen
any previous attempt to quantify the effectiveness of this approach.

portation domain where we have trucks and planes. Trucks
can move to different locations within the same city and
planes can move between airports. To move an object it has
to be loaded into a vehicle, that vehicle has to be moved, and
the object unloaded. The operators in this domain are shown
in figure 1.

In our experiments we utilize Bacchus’s TLPLAN planning
system [Bac98]. This planner is a forward chaining planner
that has an extremely expressive representation. Operators
can be encoded using an extended version of Pednault’s ac-
tion description language, ADL [Ped89]. The system’s ex-
pressiveness is a key factor in being able to express domain
specific information as extra preconditions. We will intro-
duce some of the features of the TLPLAN system as we utilize
them.

TLPLAN allows one to define new predicates as abbrevia-
tions for (arbitrary) first order formulas. For example, we can
define the predicate vehicle that is true of either trucks or
airplanes:

(def-predicate (vehicle ?v)
(or (truck ?v) (airplane ?v)))

This predicate makes for concise operator descriptions.
The operators are specified by providing a name, e.g., load,
a precondition, and then a sequence of formulas that include
specifications of add and delete operations. The precondi-
tion starts with a sequence of variables (symbols commencing
with a ?) and ranges for these variables. For example, in the
load operator, ?obj and ?loc are allowed to range over
the set of pairs of constants that satisfy (at ?obj ?loc)
in the current world, ?v is allowed to range over all constants
that satisfy (at ?v ?loc), where ?loc has already been
bound by the previous range. The precondition terminates
with a first-order formula that must evaluate to true in the cur-
rent world. In this case the bindings for ?obj and ?v must
satisfy the conjunction (and (vehicle ?v) (object
?obj)). Every distinct set of bindings of the precondition
variables that satisfies the terminal formula (if there is one)
generates a particular action, i.e., an instance of the operator.
For each action the successor state under that action is com-
puted by evaluating each formula in the body of the operator
(with the precondition variables bound). These formulas can
include add and del clauses, which cause particular atomic
formulas to be added to and deleted from the state’s STRIPS
database.

Other planners have implemented ADL operators, e.g.,
UCPOP [PW92] and IPP [KNHD97]. However, these systems
do not allow disjunctive or existential preconditions. For ex-
ample, one cannot specify a single load operator in these
systems as this operator contains a disjunction in its precon-
dition (hidden in the vehicle predicate). Instead these sys-
tems must implement the logistics domain with two load op-
erators, one for trucks and another for airplanes.

A number of domain specific rules or constraints on plans
are immediately apparent in this domain.

1. Load and unload a vehicle prior to moving it.

2. Don’t move a vehicle to a irrelevant location.

3. Don’t load or unload objects from a vehicle unless we
need to.



(def-adl-operator (load ?obj ?v ?loc) (def-adl-operator (unload ?obj ?v ?loc)
(pre (?obj ?loc) (at ?obj ?loc) (pre (?obj ?v) (in ?obj ?v)

(?v) (at ?v ?loc) (?loc) (at ?v ?loc))
(and (vehicle ?v) (object ?obj))) (add (at ?obj ?loc))

(add (in ?obj ?v)) (del (in ?obj ?v)))
(del (at ?obj ?loc)))

(def-adl-operator (drive ?t ?from ?to) (def-adl-operator (fly ?p ?from ?to)
(pre (?t) (truck ?t) (pre (?p) (airplane ?p)

(?from) (at ?t ?from) (?from) (at ?p ?from)
(?city) (in-city ?from ?city) (?to) (airport ?to)
(?to) (in-city ?to ?city) (not (= ?from ?to)))
(not (= ?from ?to))) (add (at ?p ?to))

(add (at ?t ?to)) (del (at ?p ?from)))
(del (at ?t ?from)))

Figure 1: Operators for the Logistics World

Here we utilize the formalization of these constraints orig-
inally given by Bacchus and Kabanza [BK98]. Both
Kautz and Selman [KS98] and Srivastavan and Kambhampati
[SK98] have described similar types of control information
for this domain.

We start out with a collection of auxiliary predicates. Given
its current location, ?c-loc, an object, ?obj, is in the
wrong city if it has a goal location and that location is in a
different city.3

(def-predicate (wrong-city ?obj ?c-loc)
(exists (?g-loc) (goal (at ?obj ?g-loc))

(?city) (in-city ?c-loc ?city)
(not (in-city ?g-loc ?city))))

This predicate utilizes another feature of TLPLAN—its
ability to refer to properties that hold in the goal. This is
accomplished with the system’s “goal” modality. In particu-
lar, the existential allows ?g-loc to range over all constants
that satisfy the predicate (at ?obj ?g-loc) in the goal
state.4 Thus this variable will be bound to the object’s fi-
nal destination if there is one. If no destination has been
specified in the goal, the existential, and thus the predicate
wrong-city, will evaluate to false. After binding?g-loc
to the object’s final destination and ?city to the city it is
currently located in,5 we test if the object’s final destination
is in its current city.

We need to move an object by truck if it is in the wrong
city and not at an airport (in which case it needs to be moved
by truck to an airport); or if it is in the right city, it has a final
destination, and it is not currently at its final destination (in
which case it needs to be moved to its final destination by
truck).6
(def-predicate (move-by-truck ?obj ?c-loc)

(if-then-else
(wrong-city ?obj ?c-loc)

3Note that objects that do not have a specified final destination
are never in the wrong city.

4The goal modality can be used whenever the goal is specified as
a set of atomic facts to be achieved.

5Quantifiers in the TLPLAN system allow for nested variables.
In this case the existential variable ?city lies within the scope of
the existential variable ?g-loc.

6(if-then-else f1 f2 f3) is simply an abbreviation for
(and (implies f1 f2) (implies (not f1) f3)).

(not (airport ?c-loc))
(exists (?g-loc) (goal (at ?obj ?g-loc))

(not (= ?g-loc ?c-loc)))))

There is a similar predicate for airplanes. In this case we
only need to move an object by airplane if it is in the wrong
city.
(def-predicate (move-by-plane ?obj ?c-loc)
(wrong-city ?obj ?c-loc))

We need to unload an object from a truck if it is in the
wrong city and the truck is at the airport (in which case we
get it ready to load into an airplane), or if the truck is at the
object’s final destination.
(def-predicate (unload-from-truck ?obj ?c-loc)
(or
(goal (at ?obj ?c-loc))
(and (wrong-city ?obj ?c-loc)

(airport ?c-loc))))
The similar predicate for airplanes simply needs to deter-

mine if the object is in the right city.
(def-predicate (unload-from-plane ?obj ?c-loc)
(not (wrong-city ?obj ?c-loc)))

With these predicates in place it is easy to implement pre-
condition control in the logistics domain by augmenting the
operator preconditions. Figure 2 displays the new operator
preconditions with the additional precondition clauses high-
lighted. With these new preconditions we are only allowed
to load or unload an object if the object should be loaded or
unloaded from that type of vehicle at that location. The pre-
conditions use two implications, one for trucks and one for
planes, and the auxiliary predicates to enforce this condition.
The preconditions for moving a vehicle ensure that we do not
move the vehicle if there is an object at its current location
that needs to be loaded in the vehicle, or an object in the ve-
hicle that needs to be unloaded at the current location. Fur-
thermore, the end location of the vehicle must either be the
goal destination of the vehicle, or there must be an object that
needs to be picked up or dropped off at that end location.7

These preconditions realize the three constraints on logistics
plans mentioned above: we aren’t allowed to move a vehicle
until it is loaded and unloaded, we don’t move a vehicle to

7One could imagine a more complex precondition that did not
move the vehicle to its goal destination while there still existed ob-
jects that could be transported by the vehicle.



(def-adl-operator (load ?obj ?v ?loc) (def-adl-operator (unload ?obj ?v ?loc)
(pre (?obj ?loc) (at ?obj ?loc) (pre (?obj ?v) (in ?obj ?v)

(?v) (at ?v ?loc) (?loc) (at ?v ?loc)
(and (vehicle ?v) (object ?obj) (and (implies (truck ?v)

(implies (truck ?v) (unload-from-truck ?obj ?loc))
(move-by-truck ?obj ?loc)) (implies (airplane ?v))

(implies (airplane ?v) (unload-from-plane ?obj ?loc))))
(move-by-plane ?obj ?loc))))

(def-adl-operator (drive ?t ?from ?to) (def-adl-operator (fly ?p ?from ?to)
(pre (?t) (truck ?t) (pre (?p) (airplane ?p)

(?from) (at ?t ?from) (?from) (at ?p ?from)
(?city) (in-city ?from ?city) (?to) (airport ?to)
(?to) (in-city ?to ?city) (and (not (= ?from ?to))
(and (not (= ?from ?to)) (not (exists (?obj) (at ?obj ?from)

(not (exists (?obj) (at ?obj ?from) (move-by-plane ?obj ?from)))
(move-by-truck ?obj ?from))) (not (exists (?obj) (in ?obj ?p)

(not (exists (?obj) (in ?obj ?t) (unload-from-plane ?obj ?from)))
(unload-from-truck ?obj ?from))) (or (goal (at ?p ?from))

(or (goal (at ?t ?from)) (exists (?obj) (at ?obj ?to)
(exists (?obj) (at ?obj ?to) (move-by-plane ?obj ?to))

(move-by-truck ?obj ?to)) (exists (?obj) (in ?obj ?p)
(exists (?obj) (in ?obj ?t) (unload-from-plane ?obj ?to)))))

(unload-from-truck ?obj ?to)))))

Figure 2: Modified Preconditions for the Logistics World (changes in bold).

an irrelevant location, and we don’t load or unload an object
unless we need to.

3 Experimental Results
To test the effectiveness of precondition control we attempted
to solve the 30 test problems that were created for the AIPS-
98 planning competition [AIP98]. The planners in the com-
petition did not utilize domain specific control, and as a re-
sult found these test problems very difficult—they were only
able to solve between 3 and 5 problems out of the 30. Ta-
ble 1 shows the results we obtained. In the table the rows la-
beled “Pre” are the times obtained with precondition control,
and those labeled with “TL” indicate the times obtained with
the equivalent temporal logic control (measured in seconds of
CPU usage). We see that precondition control in this domain
gives tremendous speedups. For example, problem 27 ran al-
most 400 times longer using temporal logic control and was
still unable to find a solution in that time. It should be noted
that this is the first time (to our knowledge) that this suite of
problems has been solved. In contrast during the planning
competition, the fastest times reported were L1 in 0.8 sec.,
L2 in 4.3 sec., L5 in 2.4 sec., L7 in 788.9 sec., and L11 in 6.5
sec. No other problems were solved during the competition.8

This illustrates the effectiveness of providing domain specific
control information.

Another experiment we ran was one in the Blocks world.
Again we took the control information provided by Bacchus

8Our timings were obtained on a 400MHz Pentium II with 1GB
of RAM, while during the competition a 266MHz Pentium II with
128MB of RAM was used. Nevertheless, the hardware difference
cannot fully account for the difference in performance. It is possible,
however, that some of the other problems could have been solved in
the competition with more memory.

and Kabanza, converted it to precondition control, and then
compared the performance of precondition control with their
temporal logic control. Specifically, Bacchus and Kabanza
define the following “goodtower” predicate:

(def-predicate (goodtower ?x)
(and (clear ?x)

(goodtowerbelow ?x)))

(def-predicate (goodtowerbelow ?x)
(or
(and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))
(exists (?y) (on ?x ?y)
(and
(not (goal (ontable ?x)))
(not (goal (clear ?y)))
(forall (?z) (goal (on ?x ?z)) (= ?z ?y))
(forall (?z) (goal (on ?z ?y)) (= ?z ?x))
(goodtowerbelow ?y)))))

A block satisfies the predicate (goodtower ?x) if it is
on top of a tower, i.e., it is clear, and the tower below it does
not violate any goal conditions. The various tests for the vio-
lation of a goal condition in the tower below are given in the
definition of goodtowerbelow. If ?x is on the table, the
goal cannot require that it be on another block ?y. On the
other hand, if ?x is on another block ?y, then ?x should not
be required to be on the table, and nor should ?y be required
to be clear. Any block that is required to be below ?x should
be ?y, any block that is required to be on ?y should be ?x,
and finally the tower below ?y cannot violate any goal con-
ditions. The key idea behind goodtower is that any block
satisfying it need never be moved to achieve the goal—neither
it nor any block below it needs to be moved.

With this predicate we can implement precondition control



Prob # L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Pre 0.046 0.144 0.681 2.061 0.044 1.545 0.259 1.121 2.811 4.588
TL 0.376 1.761 15.924 44.825 0.267 69.849 4.622 79.186 177.876 138.873

Prob # L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
Pre 0.356 2.402 4.862 5.248 0.849 2.498 1.429 22.678 12.165 18.733
TL 4.278 236.382 890.176 653.132 19.875 142.494 75.488 3655.668 2306.783 2519.612

Prob # L21 L22 L23 L24 L25 L26 L27 L28 L29 L30
Pre 9.358 148.724 2.837 3.257 54.369 30.707 21.881 196.988 300.786 30.499
TL 1781.584 9589.805 100.939 582.485 2284.022 5108.930 8602.591 12548.064 15752.647 3256.335

Table 1: Search Control in Logistics World. Time to solve the problem in CPU seconds. Bold face entries indicate problem not
solved at end of this time.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

S
ec

on
ds

 C
P

U
 T

im
e

Number of Blocks

Temporal Control
Precondition Control

Figure 3: Temporal Logic Control vs. Precondition Control
in the Blocks world

by adding the following extra preconditions:

1. (pickup ?x) only if (exists (?y) (goal
(on ?x ?y)) (goodtower ?y)). That is, only
if there is a block ?y that ?x should be placed on, and
that block is in its final position.

2. (putdown ?x) only if (not (exists (?y)
(goal (on ?x ?y)) (goodtower ?y))).
That is, only when ?x’s final location is not ready. (Oth-
erwise we should use stack instead of putdown).

3. (stack ?x ?y) only if (and (goal (on ?x
?y)) (goodtower ?y)). That is, only if ?x is in-
tended to be put on ?y, and ?y is in its final position.

4. (unstack ?x ?y) only if (not (goodtower
?x)). That is, don’t move ?x if it is already in its final
position.

Figure 3 shows the relative performance in this domain of
the original temporal logic control and the new precondition
control. Each data point in the graph represents the average
CPU time required to solve a suite of 10 randomly generated
blocks world problems of that size. One hundred data points
were collected (representing 1000 tests) for each plot.9

9This data was generated on a 200MHz Pentium Pro with
128MB RAM.

Again we achieve a significant speedup using precondition
control. Precondition control solves the random blocks world
problems involving 100 blocks in an average of 11.7 sec.,
while the temporal logic control requires about 179.6 sec. In
Bacchus and Kabanza’s experiments [BK98] the fastest do-
main independent planners cannot solve any of these prob-
lems when their size becomes greater than 12. This once
again demonstrates the effectiveness of providing domain
specific control information.

Space precludes discussing further examples, but in our
experiments we have implemented precondition control for
some other test domains including the classic monkeys and
bananas domain, the towers of Hanoi, and the briefcase do-
main.

4 Applicability of Precondition Control
As pointed out in our introduction, expressing domain control
information by simply adding preconditions has a number of
potential advantages. As the previous section illustrates, in-
formation so expressed can be quite simple to understand, and
in our experiments we have found that precondition control is
applicable in quite a wide variety of planning domains.

In examining the range of control information employed
by Bacchus and Kabanza in [BK98] we have, however, found
that some control information expressible in their temporal
logic is not so easily expressed as extra preconditions. When
the control information tells us what not to do in the next
state it generally can be easily encoded as extra precondi-
tions. However, in some of their examples, the control knowl-
edge forces the planner to do something next. Telling the
planner what to do next in certain situations is more difficult
to express with operator preconditions. Preconditions seem
more naturally suited to prohibitingactions, not forcing them.
There are other more complex examples of this phenomenon
when one has control information that forces the planner to
achieve a set of conditions in a particular order. It remains
an open problem as to whether or not a systematic mecha-
nism can be developed for encoding a wider range of tempo-
ral logic control as precondition control. The advantage of
developing such a mechanism, as illustrated in the previous
section, is the increase in planning efficiency it maybe able to
provide.

Even without the ability to express all forms of temporal



logic control as precondition control, however, we have ob-
served that converting even part of the temporal logic control
into precondition control (yielding an amalgam of both types
of control) can generate useful performance improvements.

Besides capturing control information in a more under-
standable form, the other allure of precondition control is that
it could potentially be applied to any planning system. How-
ever, there are two difficulties that need to be addressed. First,
is the expressiveness we require in the operator descriptions.
In the examples above the logistics domain required includ-
ing disjunctive and existential conditions in the preconditions,
and the blocks world required a recursive precondition. As
noted above the other planners that have implemented ADL
operators have not allowed for this generality in operator pre-
conditions.

Nevertheless, it is possible to encode some of this informa-
tion by doing things like adding new primitive predicates to
the domain. By modifying the adds and deletes of the opera-
tors it is often possible to update such predicates so that they
faithfully represent, e.g., existential conditions. Similarly one
could represent information about the goal by adding a new
set of “goal” predicates to the initial state. It is an interest-
ing area for future work to develop ways of encoding richer
preconditions into such planners.

The second difficulty in utilizing precondition control in
other planning systems is that is not clear if extra precondi-
tions will help reduce the search space explored by such plan-
ners. In a forward chaining planner there is a clear correlation
between extra preconditions and a reduction in the number of
successors of the current state. That is, extra preconditions
cut down the branching factor in the forward direction. Par-
tial order planners, on the other hand, are more heavily influ-
enced by the backwards, or regressive, branching factor. So
it is not clear if extra preconditions will help them. The ques-
tion is more ambiguous for GraphPlan-style planners [BF97].
Such planners build up a reachability graph, so extra precon-
ditions may well serve to limit this graph and thus help in the
overall performance of the planner.

In future work we plan to investigate further the range of
applicability of precondition control. For now, however, we
have been able to demonstrate the form of such control infor-
mation, show how effective it can be, and point out the some
of the requirements it imposes on the operator representation.
The performance we obtain when precondition control is ap-
plicable suggests that the direction of implementing richer
operator representations, pioneered in classical planning by
the work on UCPOP [PW92] is worth further effort.

References

[AIP98] AIPS98. Artificial Intelligence Plan-
ning Systems 1998 planning competition.
http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-
results.html, 1998.

[Bac98] Fahiem Bacchus. Tlplan planning
system. Software available from
http://www.lpaig.uwaterloo.ca/˜fbacchus/tlplan.html,
1998.

[BF97] Avrim Blum and Merrick Furst. Fast planning
through planning graph analysis. Artificial Intelligence,
90:281–300, 1997.

[BK96] Fahiem Bacchus and Froduald Kabanza. Using tempo-
ral logic to control search in a forward chaining planner.
In M. Ghallab and A. Milani, editors, New Directions
in AI Planning, pages 141–153. ISO Press, Amsterdam,
1996.

[BK98] Fahiem Bacchus and Froduald Kabanza. Using
temporal logics to express search control knowl-
edge for planning. Under review, currently avail-
able at http://www.lpaig.uwaterloo.ca/˜fbacchus/on-
line.html, 1998.

[CBE�92] J.G. Carbonell, J. Blythe, O. Etzioni, Y. Gill, R. Joseph,
D. Khan, C. Knoblock, S. Minton, A. Pérez, S. Reilly,
M. Veloso, and X. Wang. Prodigy 4.0: The man-
ual and turorial. Technical Report CMU–CS–92–150,
School of Computer Science, Carnegie Mellon Univer-
sity, 1992.

[ENS92] K. Erol, D.S. Nau, and V.S. Subrahmanian. On the
complexity of domain-independent planning. In Pro-
ceedings of the AAAI National Conference, pages 381–
386, 1992.

[Etz93] Oren Etzioni. Acquiring search-control knowledge via
static analysis. Artificial Intelligence, 62(2):255–302,
1993.

[KNHD97] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopou-
los. Extending planning graphs to an ADL subset.
In European Conference on Planning, pages 273–285,
1997. (System available at http://www.informatik.uni-
freiburg.de/˜koehler/ipp.html).

[KS98] Henry Kautz and Bart Selman. The role of domain-
specific knowledge in the planning as satisfiability
framework. In Proceedings of the International Con-
ference on Artificial Intelligence Planning, pages 181–
189, 1998.

[Min88] Steve Minton. Learning Search Control Knowledge.
Kluwer Academic Publishers, 1988.

[Ped89] E. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proceed-
ings of the International Conference on Principles of
Knowledge Representation and Reasoning, pages 324–
332, 1989.

[PW92] J.S. Penberthy and D. Weld. UCPOP: A sound, com-
plete, partial order planner for adl. In Proceedings of
the International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 103–114,
1992.

[SK98] B. Srivastava and S. Kambhampati. Synthesizing cus-
tomized planners from specifications. Journal of Artifi-
cial Intelligence Research, 8:93–128, 1998.

[Wil88] David Wilkins. Practical Planning: Extending the
Classical AI Planning Paradigm. Morgan Kaufmann,
San Mateo, California, 1988.


