
Evaluating First Order Formulas—the foundation for a general Search Engine�

Fahiem Bacchus
Dept. Of Computer Science

University Of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

fbacchus@logos.uwaterloo.ca

Michael Ady
Winter City Software
Edmonton, Alberta
Canada, T5R 2M2

winter.city@v-wave.com

Abstract
Search and declarative representations are two of
the most important themes in AI research. Many
problems in AI require search for their solution,
and declarative representations of the knowledge
required to solve these problems offer many ad-
vantages. In this paper we show how these two
themes can be combined. In particular, we show
how a general search engine can be designed that
is based on the most familiar declarative represen-
tation: first order logic. The system can be used to
solve both search problems and optimization prob-
lems, e.g., job-shop scheduling, as well as prob-
lems traditionally viewed as being planning prob-
lems, e.g., simple logistics planning. The system
is based entirely on the idea of evaluating first-
order formulas against finite (or computable) mod-
els. We show that formula evaluation can be used to
perform arbitrary computations, to expand an im-
plicitly defined search space, to compute heuris-
tics, and even provide sophisticated control over the
search engine. The end result is a very cleanly de-
signed system that is well suited for experimental
exploration of a wide range of search problems.

1 Introduction
Many problems in AI can be viewed as search problems. That
is, we can solve the problem by searching some state space.
Generally, this space is very large and is represented only im-
plicitly. As we search, the implicit specification of the state
space is used to generate an expanded, or explicit, representa-
tion of various regions of the space. The success of search of-
ten revolves around methods that can solve the problem while
expanding as small a part of the state space as possible.

A search problem is specified by two components: a repre-
sentation of the states, and a specification of the legal transi-
tions between the states (the set of legal actions). Typically,
only the initial state is given explicitly. The entire space con-
sists of all states reachable from the initial state via some se-
quence of actions. During search the actions are utilized to
generate explicitly represented regions of the space.

�This research was supported by the Canadian Government
through their IRIS project and NSERC programs.

Many mechanisms can be used to represent the explicitly
generated states. These representations can be problem spe-
cific data structures. For example, in the game of checkers we
might use a two-dimensional array indexed by board position
to specify a state of the game. Once a data structure is cho-
sen the legal state transitions can then be specified by routines
that make appropriate modifications to this data structure. For
example, the legal moves in a checkers game can be specified
by routines that modify the array that represents the current
board configuration. In this manner the actions can be used
to generate explicit representations of various states reachable
from the initial state.

Problem specific data structures have the advantage that
they can be more efficient, but the disadvantage that they lack
flexibility. We have to design and implement a new data struc-
ture for every new search problem. There is, on the other
hand, a very general state representation: states can be rep-
resented as relational structures, i.e., finite first-order models.
The STRIPS databases used in classical planning are an in-
stance of such structures. A key feature of such structures is
that they support the efficient evaluation of first order formu-
las.1

In this paper we show how to take advantage of this fact,
utilizing the mechanism of evaluating first order formulas to
build a general search system. In this system search problems
are specified using relation structures to represent the states
and an extended form of ADL [Ped89] actions to represent
the transitions. We will demonstrate how a formula evalu-
ation mechanism can then be used to expand the implicitly
defined search space, to compute heuristics, and to provide
sophisticated control over the search engine. The system was
originally designed to address classical planning problems,
and its application in that area is described in [BK98]. That
paper describes how temporal logic formulas can be used to
control search in planning problems. In this paper, in con-
trast, we highlight the role of evaluating first order formulas,
show how the resulting system can be applied to search prob-
lems not typically addressed in the planning community, and

1Although STRIPS databases are the foundation of much of the
work in planning, these relational structures are not commonly used
when searching for a plan. For example, in partial-order planning
[Wel94] the state space explored consists of states that are partially
ordered plans, not STRIPS databases. State spaces consisting of re-
lational structures are used by forward chaining planners.



concentrate on showing how sophisticated control over the
search engine can be achieved using mechanisms unrelated
to the temporal logic formulas used in [BK98].

2 Evaluating First Order Formulas
In this section we briefly discuss the process of evaluating
first order formulas on finite relational structures. The details
of the algorithms are contained in [BK98].
Relational Structures. Relational structures are finite first
order models. One starts with a first order language L that
consists of a finite collection of predicate, function and con-
stant symbols. Taking the set of constant symbols to be the
domain of discourse, we can construct a relational structure (a
finite model) with a collection of tables, one for every pred-
icate and function symbol. In particular, for every arity k
predicate symbol P its table contains a set of length k tuples
of constants—this set specifies the complete set of instances
of P satisfied by the model. For every arity k function sym-
bol f its table provides a mapping from all length k tuples of
constants to the value of f in the model when applied to these
arguments.
Evaluating Formulas. Relational structures allow one to ef-
ficiently determine for every atomic formula, containing only
constants as terms, whether or not it is satisfied in that struc-
ture. It is easy to extend this so that we can evaluate whether
or not an arbitrary first order formula is satisfied by that struc-
ture.

Evaluation is performed recursively, while maintaining a
list of the current bindings of the variables contained in the
formula. At the bottom of the recursion lies the evaluation
of terms. Constants evaluate to themselves, while variables
evaluate to their current bindings. Terms involving the ap-
plication of a function are evaluated by first evaluating each
of the function’s arguments, then performing a lookup of the
function’s value on those arguments in the current state. Each
atomic predicate is evaluated by first evaluating the terms it
contains and then looking up that tuple in the predicate’s table
in the current state. If that tuple is present the atomic formula
evaluates to true, otherwise it evaluates to false.2

Other formulas are evaluated recursively by using their se-
mantics to decompose them into evaluating appropriate sets
of atomic formulas. To deal with quantification we utilize
bounded quantification. That is, for every quantified variable
we specify a range of constants over which it can take its val-
ues. To evaluate a quantified formula we successively bind
the quantified variable to the constants in its range, then we
recursively evaluate the body of the quantified formula.

There are two key features in the design of the evaluator
that allow us to utilize it as a rich programming language,
rather than solely as a formula evaluator. First the evaluator
employs short-circuiting. For example, if we have a univer-
sal quantifier and the body evaluates to false on one of the

2Thus we assume that the tables are complete; i.e., they contain
all positive instances of each predicate. This is of course required
if these tables are to be regarded as specifying a first order model.
In some domains the tables will always be complete, but in some
domains we may have to assume that the tables are complete even if
they are not necessarily so. This is the closed world assumption.

bindings we stop and return false as the evaluation of the en-
tire formula. Short-circuiting allows one to write and evaluate
recursive formulas and also to implement a full range of pro-
gram control flow. These features are illustrated in the exam-
ples that follow. The other feature is the provision of a range
of system defined pseudo-predicates. These predicates can
be evaluated as ordinary atomic formulas, but in addition to
returning a truth value they also generate various side-effects
when evaluated. By evaluating such predicates inside of for-
mulas we can provide sophisticated control over the system
by setting flags, invoking computations, performing I/O, etc.,
as side-effects.
Numbers and Definitions. Although a wide range of com-
putations can be expressed as queries that can be answered
using the state’s relational structure, a general search engine
also needs access to numeric computation.

We add to the evaluator the ability to compute a range
of numeric functions, e.g., addition, multiplication, modu-
lus, etc., and numeric predicates, e.g., greater than, less than,
equality, etc. One can view each relational structure as being
extended with tables for these numeric functions and predi-
cates. Of course, the actual implementation need not store
such tables, it can utilize the underlying hardware to com-
pute the denotation of these symbols on the fly. In addition,
we supply the evaluator with mechanisms to specify various
numeric ranges over which quantified variables can range.

We also permit definitions; i.e., predicate and function
symbols defined by first order formulas. Significant com-
putational and expressive power is gained by allowing these
definitions to be recursive.
Examples.
� Suppose the relational table for the predicate symbol
P is f�a� a�� �b� b�g, and for the function symbol f is
fa �� a� b �� ag. Then (P a (f b))will evaluate to true,
as (f b) has value a, and �a� a� is in the denotation for the
symbol P .
� We can define (above ?x ?y) to be the formula
(or (on ?x ?y)

(exists (?y1) (on ?y1 ?y) (above ?x ?y1)))

Above is the transitive closure of on. All quantified formu-
las have three components, a list of quantified variables, a
quantifier bound, and the body of the formula. The existen-
tial above allows ?y1 to range over all constants that have the
property (on ?y1 ?y), where ?y has already been bound.

If we try evaluating a formula like (above c d) the
evaluator first checks if (on c d) is true. Say that it is not
and that instead we have (on h d). Then in evaluating the
second disjunct the evaluator will find the binding h for ?y1
and will recursively evaluate (above c h). It will termi-
nate when the first conjunct is true or when there is no pos-
sible binding for ?y1. The short-circuiting of the evaluation
process is essential in ensuring that such recursive definitions
have their intended semantics.
� (prime ?x) can be defined to be the formula
(forall (?i) (isbetween ?i 2 (floor (sqrt ?x)))

(not (= 0 (mod ?x ?i))))

This is true of an integer iff that integer is a prime. It utilizes
the numeric quantifier range (isbetween ?i ?n ?m).
This provides a range for the variable ?i that runs from ?n



to ?m inclusive. In this case, from � to the floor of the square
root of ?x. The formula says that no integer in this range
divides ?x (has a modulus of zero with ?x). Thus (prime
33) evaluates to false while (prime 3) evaluates to true.
(forall (?i) (posint ?i)

(implies (prime ?i) (print ?i)))

will print all primes. The numeric quantifier range posint
ranges over all positive integers in ascending order, thus only
short-circuiting will terminate the computation. In this case,
the computation is infinite. If the current binding of ?i is
a prime (the antecedent of the implication is true) (print
?i) will be evaluated (the consequent of the implication).
This predicate always evaluates to true, and has the side effect
of printing out its evaluated arguments.
� Functions like (gcd ?a ?b) can be defined
(or (and (= ?b 0) (:= gcd ?a))

(:= gcd (gcd ?b (mod ?a ?b))))
This is Euclid’s algorithm. The assignment predicate, :=, al-
ways evaluates to true and has the side effect of assigning a
value to its first argument, a “variable”. We use the conven-
tion that an assignment to a function name in its definition
determines the value returned by the function. The function
gcd can be used inside of formulas just like any other func-
tion. To make specifying functions easier we also allow local
variables inside of function definitions. These local variables
can be assigned to, and such assignments can make evaluat-
ing the function more efficient.

3 Specifying State Transitions
To specify a search space we must also provide a means of
specifying transitions. Since the states in the search space are
being represented as relational structures we need a general
mechanism for specifying updates to a relational structure.
Fortunately, this work has already been done by Pednault in
his ADL language [Ped89]. ADL was specifically designed
for updating relational structures. What is interesting is that
with side-effects such updates can be easily implemented us-
ing the evaluator.

In particular, we add two new pseudo-predicates add and
del. def-adl-operator is used to declare a transition.
It takes two arguments, a precondition formula and a body
that consists of a sequence of formulas that may contain add
and del predicates. For example,

(def-adl-operator (act ?x ?y)
(pre (?x ?y) (Q ?x ?y)

(and (R ?x) (P ?y)))
(forall (?z) (Q ?x ?z)

(implies (R ?z) (add (P ?z)))))

defines the parameterized action act. The operator pre can
be read exactly like the universal quantifier forall. For
every distinct binding of ?x and ?y satisfying the precondi-
tion formula (i.e., ?x and ?y ranging over positive instances
of Q and satisfying (and (R ?x) (P ?y))) we have a
particular instance of the act action. Each instance of act
generates a successor state by first making a copy of the cur-
rent state and then evaluating every formula in the body.3 In

3These formulas can include recursively defined predicates, thus
defining recursive ADL actions. This goes beyond Pednault’s origi-
nal proposal.

this case there is only one formula in the body to be evalu-
ated. This formula is evaluated in the standard manner ex-
cept that any time an add or del predicate is evaluated that
predicate always evaluates to true and has the side effect of
adding or deleting the ground atomic formula that is its ar-
gument (in the newly created copy of the current state). In
this case ?z will range over all constants that satisfy (Q ?x
?z) (?x has already been bound in the precondition). For
each of these constants if it also has the property R, the action
will make it also satisfy P by adding that atomic fact to the
new state. add can also be used to update function values by
adding equality predicates. For example, (add (= (f a)
10)) will update the function f so that its value on a is 10.

4 Search

So far we have a general representation for states (the rela-
tional structure), a flexible mechanism for performing com-
putations and querying those states (the evaluator), and a
powerful mechanism for specifying transitions (that utilizes
the evaluator). To complete the search engine we need a
mechanism for specifying the particular search problem, and
for performing the search.

For simplicity we restrict ourselves to search problems that
involve finding a path from an initial state to some satisfac-
tory goal state. The initial state can be specified as a rela-
tional structure, and the system provides various mechanisms
to facilitate this. The goal can be specified as a list of ground
atomic facts and function values. Any state that satisfies all of
these facts and has all of these function values is a satisfying
goal state.

Since the goal is specified in this simple way we can aug-
ment the evaluator so that it can query the goal. In partic-
ular, the evaluator allows one to specify quantifier ranges
and atomic formulas inside of a “goal” modality. For ex-
ample, the formula (forall (?x) (goal (P ?x))
(and (Q ?x) (goal (R ?x)))), is true in the cur-
rent state if all objects specified to require property P in the
goal currently have property Q and are specified to require
property R in the goal. The examples below will show the
utility of being able to query the goal.

The search mechanism is particularly simple. The sys-
tem provides two basic search procedures, depth-first and
breadth-first with or without heuristic control. When heuris-
tics are used the depth-first search orders the children of the
current state by a computed heuristic value. Thus it explores
the most promising child first. Similarly, heuristic breadth-
first search will continually explore the node on the search
frontier with lowest heuristic value.

In addition there are a number of built in controls imple-
mented as pseudo-predicates. For example, one can specify a
depth-bound: the search engine will not expand any states
that are further away from the initial state than the depth
bound. One can also specify other bounds on the search, and
gather various statistics during search.

Surprisingly, with the aid of the evaluator a range of more
sophisticated search algorithms can be implemented using
these basic search procedures and the built in controls.



5 Examples
Lloyd’s Puzzle using Heuristic Control. Lloyd’s sliding
tile puzzle is a standard problem that can be solved by search.
To represent this puzzle using a first-order language we can
give a name to each of the positions (p1, . . . , p9, with p1
being the top left corner and p9 being the right bottom cor-
ner), and tiles (t1, . . . , t8), including the “empty-space”
or blank tile (B). Then we can use two binary predicates
at and nextto to specify the configuration of a particu-
lar state. (at ?t ?p) means that tile ?t is at position ?p,
and (nextto ?p1 ?p2) means that position ?p1 is next
to position?p2 in the sense that the blank can be moved from
position ?p1 to position ?p2 in a single action.4 Finally, for
convenience we also include two “type” predicates tile and
pos: tile is true of all the tiles and pos is true of all posi-
tions. Thus an initial state

t4 t1 t6
t2 t8
t7 t5 t3

is represented by the set of positive at instances f(t4,p1),
(t1,p2), (t6,p3), (t2,p4), (B,p5), (t8,p6),
(t7,p7), (t5,p3)g, along with the tables for the other
(state-invariant) predicates.

A goal state can be similarly represented by specifying the
denotation of the at predicate.

The set of transitions (moves into the blank position) can
be specified with the single action

(def-adl-operator (slide ?tile ?from ?to)
(pre (?to) (at B ?to)

(?from) (nextto ?to ?from)
(?tile) (at ?tile ?from))

(add (at B ?from) (at ?tile ?to))
(del (at B ?to) (at ?tile ?from)))

This operator simply locates the blank tile and for every
neighboring position it creates a new state where the tile in
that position has exchanged places with the blank tile. If,
e.g., the blank is in position p5 then there will be four dif-
ferent successor states (four distinct bindings of the variables
appearing in the precondition).5

For heuristic control we can define a function that when
evaluated on a state computes the Manhattan distance heuris-
tic. Since the positions are represented by symbolic constants
it is simplest to define an mh-dist ?p1 ?p2 function that
returns the Manhattan distance between any two positions.
The values of this function can be set in the initial state. For
example, we set (mh-dist p1 p9) to be 4. Now the fol-
lowing function can be defined that computes a value in every

4Every different state will have a different denotation for the
predicate at, but nextto is invariant across states. Our implemen-
tation does extensive structure sharing between states. Thus invari-
ant predicates, like nextto, are specified by a single table shared
by all the states.

5Note that each variable in the precondition is followed by a
specification of the set it is to range over. In some cases part of
that specification uses a previously bound variable. Thus, once we
have bound ?to to the blank’s position, we can only range ?from
over the neighboring positions.

state that is equal to the sum of the Manhattan distance of the
tiles from their final (goal) location.
(def-defined-function (total-mh-distance)
(local-vars ?v1)
(and
(:= ?v1 0)
(forall (?t ?p) (at ?t ?p)
(implies (not (= ?t B))
(forall (?pg1) (goal (at ?t ?pg1))
(:= ?v1 (+ ?v1 (mh-dist ?p ?pg1))))))

(:= total-mh-distance ?v1)))

This function uses a local (lambda-like) variable specified
by the (local-vars ?v1) declaration. ?v1 is a variable
that scopes the entire formula defining the function. To eval-
uate the function on a particular state we first initialize ?v1
to be 0, then iterating over all tiles and positions, if the tile
is not the blank tile, we find the intended goal position for
that tile. This is accomplished by using the goal modality to
query the goal. Then the local variable ?v1 is incremented
by the Manhattan distance between the tile’s current location
(the current binding of ?p) and its intended goal position (the
current binding of ?pg1). Once the universal has been eval-
uated ?v1 contains the sum of the Manhattan distances, and
that value can be returned as the function value.

We can then solve problems using this
heuristic by specifying (set-heuristic-fn
(total-mh-distance)). This instructs the system to
evaluate the given term in each state using the value of that
term as the state’s heuristic figure of merit. Heuristic depth-
first or best-first search can then be applied using this heuris-
tic. Furthermore, if we specify (set-heuristic-fn
(+ (plan-cost) (total-mh-distance))) and
use heuristic breadth-first search the system will perform an
A� search as now the term specifying the heuristic ranking
computes an admissible heuristic that takes into account the
cost of reaching the current state (returned by the built in
function (plan-cost).

Job Shop Scheduling. Job shop scheduling is a standard
operations research scheduling problem. Such problems in-
volve a collection of k jobs J�� � � � � Jk and m machines. Each
job, Ji contains an ordered sequence of activities a�i � � � � � a

�
i

(where � may depend on i). Each activity aji must be executed
on a specific machine and requires some quantity of time on
that machine. The machines can only execute one activity at
a time. The problem is to schedule the activities on the ma-
chines so as to complete all activities in as short a time as
possible. The only constraint on the schedule is that the ac-
tivities within each job must be executed in order. That is,
activity aji must be executed prior to activity a�i when j � �.

This problem is generally solved by search, and it can be
configured as a search problem in a number of different ways.
One simple configuration is for each state to represent a pre-
fix of a completed schedule—i.e., a schedule that determines
what to do for the first n time steps only.

The initial state contains a collection of facts specifying the
problem: the number of machines, jobs, activities in each job,
the duration and machine of each activity, the earliest start
time of each job, and earliest free time of each machine. In



our implementation there are two types of state transitions for
building up a schedule. First, for each machine in some fixed
order we pick the next activity to be scheduled on it. Once
we have chosen the next activity for each machine we then
fix the start and end times of those chosen activities that have
all of their predecessors scheduled. Every feasible schedule is
reachable by these transitions, and various admissible heuris-
tics can be computed in each state.

For example, consider a problem with two machines, M�

and M�, and two jobs, J� and J�, each containing two ac-
tivities, (a�, a�) and (b�, b�). Suppose that the durations and
machines of the activities are as follows: a� 10 units on M�,
a� 5 units on M�, b� 30 units on M� and b� 10 units on M�.
From the initial state there are two successor states generated
by choosing what to run next on M�: S� where a� is to be
run next on M� and S� where b� is to be run next on M�.
The predicate (before 1 1 2 2), which indicates that
job 1/activity 1 (a�) comes prior to job 2/activity 2 (b�), is
added to S� and (before 2 2 1 1) to S�. The before
predicates are used to keep track of the ordering constraints
imposed by the choices made. The predicate (is-before
?j1 ?a1 ?j2 ?a2) defined by the formula
(if-then-else (= ?j1 ?j2)
(< ?a1 ?a2)
(exists (?a)

(is-between ?a ?a1 (num-acts ?j1))
(exists (?j’ ?a’) (before ?j1 ?a ?j’ ?a’)
(is-before ?j’ ?a’ ?j2 ?a2))))

can then be used to determine if two activities are ordered.
(if-then-else f1 f2 f3) is simply an abbreviation
for (and (implies f1 f2) (implies (not f1)
f3)). The “then” clause utilizes the fact that all activities
within the same job are ordered. The “else” clause exam-
ines all activities, ?a, that lie before ?a1 within ?a1’s job6

and recursively determines if any activity known to come af-
ter ?a, (?j’/?a’), can be recursively shown to come before
(?j2/?a2).

Once the next activity for M� has been chosen we choose
the next activity for M�. For example, S� might have two
successors S� where a� runs next on M� and S� where b�
runs next on M�. However, state S� has a cycle. In S�, and
thus in S�, a� must come after b�. Hence, S� has the ordering
b� � b� � a� � a�. Since it also places a� before b� we
obtain a cycle. (not (is-before ...)) preconditions
are used in the actions to avoid generating cyclic states like
S�. So in fact S� will have a single successor state S�.

After the next activity has been chosen for both machines,
the next applicable transition involves scheduling all those ac-
tivities whose predecessors have been scheduled. In S�, b�
has been chosen next for M� and b� next for M�. However,
only b� can be scheduled, as b� must wait for b�. We can
start b� at time 0 and it will end at time 30. Hence, M� will
next be free at time 30. After this scheduling operation we
can choose a next job for M�. There is only one remaining
choice, a�. Then we can schedule b� which can run at the
maximum of the next free time of M�, 0, and the finish time
of b�, 30. Thus down this path b� starts at time 30 and ends
at time 40, M� is idle for 30 units, and is next free at time 40.

6num-acts is a function returning the total number of activities
in a job.

a� is chosen next forM�, and two final scheduling actions are
performed, first a� (from time 40 to 50) then b� (from time 50
to 55). The final schedule runs for 55 units.

As the choices are made for what activity to run next, we
can compute a low estimate of the time to complete the sched-
ule. For example, in state S� the ordering commitments have
generated the chain b� � b� � a� � a�, thus the sched-
ule in any state that is a successor of S� must take at least
�� � �� � �� � � 	 �� units. A recursive function can be
defined that checks all ordering chains computing the max-
imum earliest completion time of the schedule. This value
can then be used as a heuristic during search (we first explore
states with lower earliest completion time). In particular, this
heuristic allows us to avoid expanding S� as we already know
it will yield a poor schedule.

6 Advanced Search Algorithms
The evaluator allows us to specify domains and domain
heuristics using a clean declarative representation. However,
in many cases a search problem can only be solved by modi-
fying the search algorithm. In this section we will show how
the evaluator can also be used to build up sophisticated search
algorithms from the basic algorithms and the built in search
controls outlined in Section 4. The simplest example is the
following formula, which defines iterative deepening search.
(def-defined-predicate (id)
(local-vars ?dpt)
(and
(set-search-strategy "depth-first")
(:= ?dpt 1)
(exists (?i) (pos-int ?i)
(or (and (set-search-depth-limit ?dpt)

(plan))
(implies (> (search-max-depth) ?dpt)

(and (:= ?dpt (+ 1 ?dpt))
(false)))))))

All system commands are encoded as pseudo-predicates so
that they can be evaluated by the formula evaluator. The
evaluation causes some side effect (some computation is per-
formed, some flag is set, etc.), and true or false is returned (or
a value when the command is a pseudo-function) dependent
on the outcome of the command. In the id search formula the
and first sets the base search strategy to be depth-first, sets
the depth-bound variable ?dpt to be 1, and then evaluates
the existential.

The existential tests its body with ?i bound to every posi-
tive integer, until the body evaluates to true. This corresponds
to a while loop (in which the test is negated). The body of the
existential is a disjunct. The first disjunct is evaluated. This
results in setting the search depth limit to the current value
of ?dpt, then since this pseudo-predicate always evaluates
to true, the search engine is invoked by evaluating the pred-
icate (plan).7 (plan) returns true only if it succeeds in
solving the problem. If it does return true, the disjunction
succeeds, the existential is short-circuited and the evaluation
of (id) terminates with the value true. Otherwise, (if, e.g.,
no plan is found at this depth) the second disjunct is evalu-
ated. If a node at a depth greater than the current depth bound

7The name plan is used as the system was originally designed
to be a planning system.



was encountered during search8 the depth bound will be in-
cremented and then the formula will fail ((false) always
evaluates to false). The body of the existential will then be
evaluated again with ?i, and more importantly ?dpt, incre-
mented. If the current depth bound encompasses the entire
search space the second disjunct will succeed and again the
evaluation of (id) will be terminated.

In a similar manner IDA� [Kor85] search
can be defined by using the command
(set-search-heuristic-limit) (which stops
the search engine from expanding any state with heuristic
value greater than this limit) and incrementing the heuristic
limit to expand increasing parts of the search space.

To illustrate the effectiveness of this method of implement-
ing IDA� search we solved the 2 sliding tile problems that
have the longest optimal solutions. These problems were
taken from [Rei93], and they both require 31 moves to be
solved optimally. With breadth first search, using a heuristic
that in each state evaluates to the Manhattan distance heuris-
tic plus the cost of getting to that state (thus we are doing A�

search), each problem requires 94 seconds to solve.9 When
using IDA� (with the same heuristic) they took only 32 sec-
onds each.

In the job shop domain we experimented with a hard ���
�� benchmark problem (given in [BL94]). Heuristic Breadth-
first and IDA� search are ineffective as the problem is too
hard for the simple heuristic outlined in Section 5. However,
the job shop domain has the property that every path in the
search tree terminates with a feasible schedule. Thus we can
employ depth-first branch and bound (DFBB). The following
formula implements this strategy.

(def-defined-predicate (dfbb)
(local-vars ?lb)
(and
(set-search-strategy "depth-best-first")
(set-search-heuristic-limit *none*)
(forall (?i) (pos-int ?i)
(and

(plan)
(select-final-world)
(current (:= ?lb (heuristic-fn)))
(set-search-heuristic-limit (- ?lb 1))))))

Basically, the strategy solves the problem using heuristically
guided depth-first search. On finding a solution it selects the
final state (world) as the current state and then evaluates the
heuristic function in that state. In a state where the schedule is
complete the heuristic evaluates to the cost of the schedule. It
then resets the heuristic bound to one less than this cost. This
will force the next search to backtrack until it finds a schedule
cheaper than the previous one. If no schedule is found the uni-
versal is short-circuited, and the evaluation of (dfbb) termi-
nates. In trying dfbb on the benchmark problem, schedules
of length 1297 (in 19.0 sec.), 1272 (19.1 sec.), 1248 (21.6
sec.), 1230 (19.8 sec.), 1223 (19.8 sec.), 1216 (30.7 sec), 1207

8(search-max-depth) returns the depth of the deepest
node encountered during search. Such nodes may be beyond the
current depth bound and thus might not be expanded during search.

9All timings were performed on a 200MHz Pentium Pro PC run-
ning Windows NT.

(207.2 sec.), and then 1203 (81.3 sec.) were found. The prob-
lem is know to have an optimal solution of length 930, so the
final schedule found is within 29% of the optimal. Instead of
incrementally decreasing the heuristic bound, it is also pos-
sible to do a binary search on the optimal heuristic bound.
Such a strategy can also be implemented with a formula, and
it finds a schedule of length 1178 (in 968.9 sec.). The times
and schedules we obtained are competitive with the applica-
tion of constraint logic programming to solve this problem as
reported in [BL94].

7 Conclusions
We have described a search system that is based on the idea
of evaluating first-order formulas over finite models. We have
applied the system to a range of search problems, of which
we have only mentioned two prototypical problems. Putting
a formula evaluator at the core of the system yields consider-
able flexibility in modeling domains and in customizing the
search procedure.

There has not been sufficient space to compare our ap-
proach with logic programming, which also attempts to make
direct use of logic. Briefly, however, there are two key dif-
ferences. First, by evaluating formulas over finite models we
gain access to the complete first-order language: we are not
restricted to Horn clauses. And second, the system we de-
scribe is designed much more specifically to be a system for
solving problems requiring search. As a result we are able
to provide a user with much more control over the search en-
gine. In comparison, in logic programming languages the un-
derlying search procedure (usually SLD resolution) is fixed
and cannot be configured by the user. Instead the user has to
program their own search procedure.

References
[BK98] Fahiem Bacchus and Froduald Kabanza. Using

temporal logics to express search control knowledge
for planning. Under review, currently available
at http://www.lpaig.uwaterloo.ca/˜fbacchus/on-
line.html, 1998.

[BL94] Silvia Breitinger and Hendirck C. R. Lock. Us-
ing constraint logic programming for industrial
scheduling problems. In C. Beierle and L. Plümer,
editors, Logic Programming: Formal Methods and
Practical Applications. Elsevier, 1994.

[Kor85] R. E. Korf. Depth-first iterative-deeping: An opti-
mal admissible tree search. Artificial Intelligence,
27:97–109, 1985.

[Ped89] E. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Pro-
ceedings of the International Conference on Princi-
ples of Knowledge Representation and Reasoning,
pages 324–332, 1989.

[Rei93] A. Reinefeld. Complete solution of the eight-puzzle
and the benefit of node ordering in ida�. In IJCAI,
pages 248–253, 1993.

[Wel94] Daniel S. Weld. An introduction to least commit-
ment planning. AI Magazine, 15(4):27–61, 1994.


