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Abstract

Probabilistic independence has proved to be a
fundamental tool that can dramatically simplify
the task of eliciting, representing, and computing
with probabilities. We advance the position that
notions of utility independence can serve similar
functions when reasoning about preferences and
utilities during decision making.
In this paper we first summarize existing results
and definitions concerning various independence
concepts that can be applied to utility functions.
We then review the results of our previous work
in the area.

1 Introduction

Clearly, many subfields of A.I. are concerned with decision
making. And yet until fairly recently the insights from deci-
sion theory—in particular the formal apparatus of probabil-
ity, utility, and the expected-utility paradigm—have played
a rather small role in such work.

Planning research provides a good example. In place of
utility as a means of specifying desirable outcomes, tradi-
tional planning has concentrated on the more specialized
notion of goals. Goals are typically “all or nothing” con-
ditions. In the simplest cases, states where all of the goals
are satisfied effectively have positive utility, while all other
states, including states where only a subset of the goals
are satisfied, have zero utility. Hence, the right decision
is always to execute actions that achieve all of the goals
specified, which is exactly the kind of plan that traditional
planning algorithms search for.

We can view the traditional notion of goals and generating
plans (i.e., making decisions about actions) as a very simple
form of qualitative decision theory: it employs a qualitative
abstraction of numeric utilities and avoids explicit utility
maximization. With this abstraction we do not need to
(and indeed, cannot) reason about tradeoffs between goals.

�This is a position paper, constructed largely around a survey
of results from two earlier papers of ours [BG95,BG96]. The
extensive excepts from these papers are used with permission.

Although limited in many respects, the notion of goals is
a useful one and interesting applications can be effectively
modeled this way.

Goals in planning are intended to provide an interface mech-
anism with some system capable of acting on our behalf.
We model the capabilities of the system by specifying the
actions it can perform, and then specify what we want the
system to do by giving it goals. A planner, which automates
this particular form of qualitative decision theory, serves to
translate our goals into instructions that the system can un-
derstand, e.g., a specific sequence of actions. Thus, goals
provide a simplified mechanism for controlling a possibly
complex system.

We can view any decision theory, qualitative or quantitative,
in this way. One purpose of such theories is to provide
a mechanism for separating the specification of what we
want—via goals, preferences, utility assignments, etc.—
from the specification of what needs to be done to best
achieve our desires. The aim, of course, is to generate a
specification of what needs to be done automatically, based
on the preferences and desires we specify.

From this point of view a useful decision theory must in-
clude a convenient language for specifying desires. Two
particular areas of concern are the quantity and the “natu-
ralness” of the information required. Furthermore, once one
has specified utilities or preferences somehow, there is then
the question of whether there is a feasible computational
approach to solving the so expressed decision problem.

Goals, as utilized in planning research, are limited. In gen-
eral, we may want to control a system by specifying our
desires in more flexible ways. We may have graded de-
sires, or desires that conflict or otherwise interact with each
other. In such cases we need a decision theory that is capa-
ble of reasoning about tradeoffs between various specified
goals. With respect to expressive power, traditional deci-
sion theory, which uses numeric utilities and the principle
of maximum expected utility (MEU), provides the standard.

However, it is well known that there are several episte-
mological and computational difficulties involved in using
MEU. In particular, it is often extremely difficult or even
impossible to obtain the probability and utility functions
required. People tend to express their beliefs, goals, and



preferences in different, generally qualitative, terms and
have trouble translating these into numerical distributions
and utility functions. Even when it is possible to obtain
them, it might not be practical to use numeric probabilities
and utilities directly. For instance, if there are n indepen-
dent Boolean propositions the state space may have size �n,
so that an explicit listing of probabilities or utilities quickly
becomes unmanageable. Furthermore, such a listing might
obscure valuable structure or heuristic information that is
apparent in a more “natural” specification. For example,
we might lose the ability to quickly recognize when domi-
nance arguments render detailed utility calculations redun-
dant. These difficulties have been one of the motivations
for interest in qualitative theories of probability and util-
ity (i.e., preference), e.g., [von72, Bou94, Pea93, TP94a,
TP94b, DW91, DW94, DSW91].

In the following sections we will discuss two recent pa-
pers of ours [BG95, BG96], which have the common theme
of trying to apply various independence concepts (from
the field of multi-attribute utility theory) to decision mak-
ing. We have two motivations for pursuing this approach.
Our primary motivation is the analogy with effective prob-
ability modeling. Probability modeling faces very similar
concerns to those mentioned above, and the notion of prob-
abilistic independence, e.g., as manifested in the theory
of Bayesian networks [Pea88, SP90], has proved to be of
great importance in addressing these concerns. Hence it
seems reasonable that notions of utility independence may
prove to be similarly useful. This motivation is not new,
e.g., Doyle and Wellman [DW92] have previously put for-
ward arguments for the relevance of utility independence in
ensuring modular specifications, i.e., in reducing the quan-
tity and increasing the naturalness of the information re-
quired. Our secondary motivation comes from fact that the
field of multi-attribute utility theory contains many inter-
esting results ([KR76] is an excellent reference). So far
as we are aware, the relevance of these results for artifi-
cial intelligence is for the most part an unexplored topic
(although there are certainly exceptions; in particular see
[DW91, DSW91, DW94, DW92]).

It should be understood that this paper contains no new
technical results; its sole purpose is to bring to the attention
of the reader some of the key ideas of utility independence,
and to summarize some of the earlier results we have been
able to obtain [BG95, BG96]. In Section 2, we present
some of the key notions of utility independence. This sec-
tion is largely excerpted from [BG95], and is presented in
fair detail as it serves as essential background for our own
results, and hopefully new results by the inspired reader.
In Section 3, we summarize some of the results we have
obtained on graphical models for utility functions. These
results originally appeared in [BG95]. Graphical models
have proved to be very useful for reasoning about prob-
ability, and we hope that future work can make this true
for utilities as well. In Section 4, we discuss our approach
for moving utility theory beyond simple attributes so that
preferences and independencies can be asserted of logical
formulas. The ability to deal with logical formulas in a
theory of preferences would allow for an easier integration

of knowledge of preferences with other types of knowl-
edge. The approach we discuss was originally presented in
[BG96]. Finally, we present some conclusions and possible
directions for future work in Section 5.

2 Independence

In many domains of interest we are concerned with a state
space that can be represented as a product space over some
collection of attributes. Such spaces fit well with the use
of propositional logics: each primitive proposition can be
viewed as a binary-valued attribute and the points in the
product space become truth assignments.

The size of such a state space grows exponentially with
the number of attributes. If each point in the state space
is explicitly assigned an individual utility value, we would
encounter significant difficulties in eliciting and manipulat-
ing all of these values. But one can hope that, in natural
problems, the utilityassignments will exhibit structure. The
field of multi-attribute utility theory [KR76] has studied a
number of independence concepts for preference and util-
ity. Independence allows us to structure the utility function
so as to reduce the number of independent parameters we
must specify, and can often simplify the computation of
expected utility (the essential step in solving the standard
decision problem).

There are many distinct notions of independence in multi-
attribute utility theory, several of which we summarize here.
First we introduce some notation.

We assume that V � fv�� � � � � vng is a fixed set of n vari-
ables. Each variable v has a domain dv of two or more
elements. We will generally use lower case letters to de-
note variables and upper case letters to denote sets of vari-
ables. Where necessary, Greek letters will denote values
for particular variables.

The set of states S consists of the set of points in the product
space

Qn

i�� dvi. Each s � S is thus a vector ofn values, one
value for every variable. Clearly the size ofS is exponential
in the number of variables.

If X � V then f�X� stands for some real valued function
all of whose arguments are in X, i.e.,

f�X� �
Y
v�X

dv �� IR�

The general form of a utility function is u�V �, which can
thus require exponentially many independent utility assess-
ments.

A utility function u induces a preference ordering �u on
probability distributions over S as follows:

p� �u p� iff
X
s�S

p��s�u�s� �
X
s�S

p��s�u�s��

where p� and p� are two distributions over S. That is, we
prefer p� to p� if p� induces greater expected utility. Thus
utility serves to characterize not only the agent’s values but
also its attitudes towards risk: it ranks probabilisticgambles



between various outcomes. In the decision theory literature,
probability distributions are often called lotteries, and we
often say that u induces a preference ordering over lotteries
on S

In the development of decision theory, it is natural to take
the preference relation as primitive. Any relation satisfy-
ing fairly weak rationality conditions (which we don’t re-
peat here, but see, e.g., [Sav54, Fis82, Fre88]) corresponds
to some utility function exactly as above. (Furthermore,
the utility function characterizing a preference relation is
unique, up to affine transformations.) This exact corre-
spondence between preference and utility is one of the fun-
damental theorems of decision theory. In the following,
whenever we talk about a preference over V we mean a
preference over lotteries over S �

Q
v�V dv satisfying the

standard rationality postulates.

The first definition of independence we consider is utility
independence. Intuitively, a set of attributes X is utility
independent of everything else, if when we hold every-
thing else fixed (i.e., the values of attributes V �X), the
induced preference structure over X does not depend on
the particular values that V�X are fixed to. Given utility
independence we can assert preferences over (lotteries on)
X that hold ceteris paribus—i.e., all else being equal.

Definition 2.1 : Consider preference � over V , X � V ,
Y � V �X. Let �� be any particular element of

Q
v�Y dv.

That is, �� is a particular assignment of values to the vari-
ables in Y . Every probability distribution p over

Q
v�X dv

corresponds to a distributionp� on S �
Q

v�V dv such that
p�’s marginal on X is p and p�’s marginal on Y gives prob-
ability 1 to ��. We define the conditional preference over X
given ��, ��� , to be the preference ordering such that

p ��� q iff p� � q��

where p and q are any two distributions over
Q

v�X dv.

Definition 2.2: The set of attributesX is utility independent
of V�X when conditional preferences for lotteries on X
do not depend on the particular value given to V �X. That
is, �

	�� �� �
Y

v�V�X

dv

�
p �� q iff p ��� q�

where p and q are any two distributions over
Q

v�X dv.

Utility independence fails, for instance, if one has a pref-
erence reversal between two mixtures of the attributes X,
when some attribute in V �X is changed. Judgments of
utility independence would appear to be fairly natural and
common; see [KR76] for a very extensive discussion. They
are, at heart, judgments about relevance and people seem
to be fairly good at this in general.

Example 2.3: Say that there are only two attributes health,
with values H and H (healthy and not healthy), and wealth
with values W and W (wealthy and not wealthy). If
the agent’s utility function u is defined as u�HW � � �,
u�HW � � �, u�HW � � �, and u�HW � � 	, then it can

be seen that for the agent health is utility independent of
wealth and wealth is utility independent of health. Intu-
itively, no matter what the agent’s wealth is fixed to, it will
always prefer gambles that yieldH with higher probability.
That is, the agent’s preference for being healthy is the same
no matter if the agent is wealthy or not. The same can be
said about its attitude towards being wealthy.

Utility independence is known to have several strong impli-
cations. We list a few, using [KR76] as our source. First,
utility independence is equivalent to the existence of a utility
function with a special functional form:

Proposition 2.4: X is utility independent of its complement
in a preference structure � if and only if � corresponds to
some utility function of the form:

u��V � � f�V �X� 
 g�V �X�h�X�

where g is positive.�

Thus we must assess three functions, but each has fewer
than jV j arguments. This may mean that there are far fewer
independent numbers to learn and to store. Most of the
interest in utility independence in standard decision theory
concerns the case of mutual utility independence where
every subset of variables is independent of its complement:

Proposition 2.5 : Every subset of variables is independent
of its complement in� if and only if there exists n functions
fi�vi� (i.e., each fi depends on a single variable), such that
either

u��X� �
nY
i��

fi�vi� 
 c

for some constant c, or

u��X� �
nX
i��

fi�vi���

This is an extremely strong conclusion, allowing enormous
simplification. The preconditionof the theorem might seem
to require O��n� utility independence conditions, but since
utility independence satisfies various closure properties we
do not need this many. There are in fact several sets of n
independencies that suffice; see [KR76]. However, the n
assertions that each attribute individually is independent of
the rest are not sufficient. In this case, the result is weaker:

Proposition 2.6: If every variable is utility independent of
the rest there is a function fi�vi� for each variable, such
that u��V � is a multilinear combination of the f i’s.

Thus we must assess n functions as well as (potentially
exponentially many) constants to capture the interactions

�It is also clearly possible to arrange f and g so that h�X� �
u��X� ��� where �� is an arbitrary fixed assignment to V�X .
The function u��X� ��� is sometimes called a conditional utility
function.

�It is more usual to express the fi in terms of conditional utility
functions and multiplicative constants. This representation is easy
to derive, or see [KR76].



among the fi’s. This may still represent a net gain. We con-
jecture that this case might be worth studying in the context
of artificial intelligence applications, and in particular for
giving a better decision-theoretic account of “goals”. (This
is because it seems generally reasonable to suppose that any
single “goal” will be utility independent of everything else.)

A much stronger form of independence is additive indepen-
dence. This can be defined in several ways, but the most
useful for us is:

Definition 2.7: LetZ��…, Zk be a partition of V . Z�� � � � �
Zk is additively independent (for �) if, for any probability
distributions p� and p� that have the same marginals on Zi
for all i, p� and p� are indifferent under �, i.e., p� � p�
and p� � p�.

In other words, one’s preference only depends on the
marginal probabilities of the given sets of variables, and
not on any correlation between them.

Example 2.8: Consider the utility function given in Exam-
ple 2.3 involving health and wealth. As the previous exam-
ple pointed out, health was utility independent of wealth.
However health is not additively independent of wealth.
Consider the two probability functions p� and p�, where
p��HW � � p��HW � � p��HW � � p��HW � � ���, and
p��HW � � p��HW � � 0, p��HW � � p��HW � � ���.
We have p��H� � p��H� � ��� and p��W � � p��W � �
���. That is, p� and p� have identical marginals over health
and wealth. Yet the expected utility under p� is 2, while
the expected utility under p� is ���. This shows that there
exists two distributionswith the same marginals that are not
indifferent under the given utility function. That is, health
and wealth are not additively independent.

Intuitively, the agent prefers being both healthy and wealthy
more than might be suggested by considering the two at-
tributes separately. It thus displays a preference for proba-
bilitydistributions in which health and wealth are positively
correlated.

Proposition 2.9 : Z�� � � � � Zk are additively independent
for � iff u� can be written as

u��V � �
kX
i��

f�Zi�

for some functions fi.

Naturally, the most interesting case is where all variables are
additively independent separately, so that we only need to
find one single-argument function for each variable. In the
rest of the paper, we will be interested in additive indepen-
dence for a partitionofV into two parts, V � X
Y , unless
we say otherwise. It would seem reasonable that these are
easier to reason with than independence assertions about
arbitrary partitions.

Conditional versions of both additive and utility indepen-
dence can be defined. The definitions require that the spec-
ified independence hold whenever some subset of variables
are held fixed. For instance,

Definition 2.10 : X and Y are conditionally additively
independent (CA-independent) given Z (X�Y� Z disjoint,
X 
 Y 
 Z � V ) iff, for any fixed value �� of Z, X and
Y are additively independent in the conditional preference
structure over X 
 Y given ��.

In this case, we write CAI �X�Z� Y �.

Proposition 2.11 : X and Y are additively independent
given Z iffu� can be written in the formf�X�Z�
f�Z� Y �.

3 Graphical Models

All of the propositions presented in the previous section
were to demonstrate that a utility function satisfying vari-
ous independence criteria can be decomposed into simpler
and more modular functional forms. Thus independence
allows us to reduce the problem of specifying a utility func-
tion over a large collection of attributes into a collection of
smaller problems (i.e., specifying functions that encode our
preferences over smaller sets of attributes.)

Representing and reasoning about a utility function’s in-
dependencies then becomes an important subtask. If we
can more naturally represent independencies and compute
new independencies from old, then perhaps we could pro-
vide useful new tools for understanding and utilizing the
structural properties of our utilities and preferences.

It is important to note that although we have defined the
concepts of utility independence using quantitative utility
functions, they are not limited to the quantitative case. For
example, in some previous works the approach taken has
been to replace numeric utility and probability functions by
qualitative analogs. For instance, [Pea93] suggests using
probabilities of the form �k for natural numbers k and � a
small positive number, and utilities of the form ������k.
By considering the limit � � 	 (i.e., where probabilities
are “very small”, utilities are “very large”, and all we care
about are order-of-magnitude distinctions) one can hope to
simplify the reasoning process. There are many interesting
variants of this basic idea, including the use of qualitative
probabilities alone (such as �-rankings [Pea93]) or quali-
tatively ranked utilities alone [TP94a]. The above notions
of utility independence can be applied mutatis mutandis to
qualitative utility functions so defined, and as in the purely
numeric case they continue to provide a useful means of
specifying additional structure.

For reasoning about probabilities, graphical models which
capture probabilistic independencies have proved to be a
very useful tool. These models provide useful aids to in-
tuition when constructing probabilistic models and can be
used to directly support efficient techniques for comput-
ing probabilities. Inspired by this we explored in [BG95]
the possibility of constructing graphical models for utility
independencies.

Our results are preliminary. In particular, we are not yet
able to suggest computational mechanisms that can directly
utilize the models we arrived at. Nevertheless, we were
able to demonstrate that non-trivial graphical models for



certain notions of utility independence do exist. We hope
that future work can uncover additional models that can
be usefully applied to help us deal with preferences and
utilities.

Perhaps the major result of [BG95] was:

Theorem 3.1: The set of CA-dependencies generated by
any utility function has a perfect map.

A prefect map is a graph in which the vertices represent
the variables over which the utility function is defined,
and in which vertex separation corresponds exactly to CA-
independence. That is, we can separate the set of vertices
X from the set of vertices Y by removing from the graph
the set of vertices Z if and only if we have CAI �X�Z� Y �
in the utility function.

From this result and Proposition 2.11 it can be shown that
we can read off a functional form for the utility function
directly from its perfect map. In particular, we have

Theorem 3.2: G � �V�E� is a CA-independence map for
a utility function u (i.e., all independencies suggested by
vertex separation in the graph hold of u) if and only ifu has
an additive decomposition over the set of maximal cliques
of G.

One of the reasons why this result is interesting is that
the functional form generated by CA-independencies is
precisely the form that has often been assumed to hold
of a utility function in work on computing MEU, e.g.,
[JJD94, DDP88, ST90]. Nevertheless, we concede that
it remains far from clear to us whether CA-independence is
the best or most natural independence notion to use. Ad-
ditional graphical models that can capture and reason with
other forms of utility independencies are needed. Such
work may eventually lead to models that could have a di-
rect impact on the computational issues of decision making.

4 Preferences over Formulas

Section 2 defined all of the notions of independence in
a rather simple context, involving product spaces of at-
tributes. Standard multi-attribute utility theory might con-
sider a space described by several attributes including, for
example, health and wealth. The standard theory can make
sense of the assertion that, for instance, one’s health is util-
ity independent of the set of all other attributes (including
wealth). But the standard formulation would have prob-
lems saying 1) one’s health is utility independent of wealth
simpliciter, or 2) that the logical sentence health � wealth
is independent of everything else, or 3) coping with logical
constraints, such that the lowest level of wealth is incom-
patible with the highest level of health.

Most existing research in qualitative decision theory has
concerned itself with assertions about logical formulas. For
instance, both [Bou94] and [TP94a] give semantics to the
assertions of the form “if � is known then 	 is preferred to
	”, where 	 and � are propositional logic formulas. The
related area of deontic logic also supposes that one should

reason about preference and obligation in a logical setting.

There are a number of good reasons to want to deal with log-
ical formulas when reasoning about preferences, especially
when doing qualitative reasoning. Preferences can some-
times be more naturally expressed using logical formulas;
the more fine-grained alternative (i.e., dealing just with the
individual attributes) can become clumsy, and in a certain
sense is not as expressive. But perhaps most important is
that we want to integrate our knowledge of preferences with
the rest of our knowledge, much of which will be in some
logical form.

The key issue we face when dealing with preferences over
formulas is assigning semantics to such assertions. When
dealing with a propositional language the atomic semantic
entities are individual truth assignments, and it is natural to
want to provide semantics to preference assertions in terms
of preferences over these atomic entities. However, a for-
mula corresponds to a set of truth assignments (i.e., those
truth assignments for which the formula is true). For in-
stance, when we assert that 	 is preferred to 	, we must
find a way of mapping this assertion about sets of truth
assignments to some assertion(s) about individual truth as-
signments.

Consider the case of two propositions p� and p�. The
assertion that p� is preferred top� says that, in some sense,
the set of states fp� � p�� p� � p�g is preferred to the set
fp��p��p��p�g. What, if anything does it say about
preferences between individual states likep��p� andp��
p�? A number of approaches have been taken to translate
preference assertions over formulas into preferences over
states. Both Doyle, Shoham, and Wellman [DSW91], and
Tan and Pearl [TP94b] treat such assertions as specifying
an implicit ceteris paribus condition. Roughly speaking,
when considering the assertion that 	 is preferred to 	,
they first partition the state space into sets: Each set contains
all states in which the propositional variables not appearing
in	 take on some fixed truth values. (In the above example,
where 	 is p�, the sets would be fp� � p��p� � p�g and
fp� � p��p� � p�g, because p� does not appear in 	.)
Intuitively, within each such set, we may say that “all else
is equal”. They then interpret “	 is preferred to 	” as
asserting that, in each set, all those states where 	 holds
are preferred to any state where 	 holds. (In the example,
p� � p� would be preferred to p� � p�, and p� � p�
preferred to p� � p�, but there is no preference induced
between p� � p� and p� � p�.) Thus, the assertion is
restricted to preferences between collections of states, but
among these states the preference is universal.

In a sense the reliance of these works on a “universal” in-
terpretation of preference forces them to tie preference as-
sertion over formulas to implicit ceteris paribus conditions.
To interpret “	 is preferred to	” as meaning that all states
satisfying 	 are preferred to all states satisfying 	 is im-
possibly strong. The implicit ceteris paribus condition has
the advantage of tempering such assertions by restricting
the sets of states over which the universal preference holds.

Nevertheless, even with such tempering this approach re-
mains problematic. One of the problems is that it becomes



very difficult to override preferences given more specific
information. One cannot easily say, for instance, that 	 is
preferred to 	 and at the same time that, conditioned on
some other information �, we prefer 	 to 	. However,
the pattern in which a general preference is overridden by
its reverse in more specific situations occurs frequently.
For example, there is a preference for not having surgery
over having surgery, yet in the circumstance where surgery
would improve one’s long term health this preference might
be reversed. Thomason and Horty [TH96] provide some
additional criticisms of these semantics for preference.

Our approach is different. It builds on Jeffrey’s proposal in
[Jef65], which we refer to as conditional expected utility,
to define the semantics of preference assertions over for-
mulas. Conditional expected utility is defined if one has a
probability function Pr over the underlying space S. Then
the conditional expected utility over any subset T � S can
be defined as

U �T � �

P
t�T Pr�t�u�t�

Pr�T �
(1)

where we use U to denote the aggregate utility function.
Using U we then say that 	 is preferred to 	 if the collec-
tion of states satisfying 	 has greater conditional expected
utility than the collection of states satisfying 	.

In general, if 	 and � are arbitrary formulas, then we write
	 � � to assert that U �	� � U���, where we identify a
formula with the set of states satisfying it. Conditional
preferences are also easy to interpret: 	� � 	� given �
means that U �	� � �� 
 U �	� � ��. It is easy to see this
semantics is compatible with statements involving overrid-
den preferences. For instance, the two statements 	 � �
and � � � � 	 � � can be consistently asserted together.

This notion of preference is very natural, but by itself is
rather weak (in a sense, it is a direct opposite to the idea
of “universal” semantics for preference). But we can build
on it, by providing a simply yet general mechanism where
by a variety of utility independence assertions about for-
mulas can be stated. These assertions can be (but need
not be) stated completely independently of assertions about
preference.

We will not present the details here, but the basic intuition
is as follows. Given an independence assertion, we first
imagine a new smaller space in which, intuitively, the truth
or falsity of each formula mentioned in the assertion is a
new attribute. For instance, to assert that 	� is utility in-
dependent of f	�� 	�g, one of the points in the constructed
space might be �	� � true� 	� � false� 	� � true�. Obvi-
ously, such a point also corresponds to a certain set of states
in the original space (in this case the set of all states where
	� and	� are indeed true, and	� false). So we can now use
conditional expected utility in induce a utility function over
the new space. The point of this is that, since the formulas
we are interested are just attributes in the new space, we
are able to apply the standard independence notions from
Section 2 directly.

Of course, we are interested in what an assertion in the
constructed space says about the underlying set of states,

since it is these we really care about. As we discuss in
[BG96], each such assertion has the effect of imposing a
collection of algebraic constraints on the original utilityand
probability functions.

In this way, we have the freedom to make arbitrary inde-
pendence statements about arbitrary logical formulas. This
is in contrast to the earlier proposals we discussed, where
the implicit use of ceteris paribus (a form of independence)
is invoked in a fairly rigid fashion. In particular, these
proposal depend on the syntax (in particular, the choice of
primitive propositions) to determine how ceteris paribus is
interpreted; [DW91] call this the problem of framing.

It may seem strange to bring probabilities into the interpre-
tation of statements concerning utility independence, but
in fact it makes sense philosophically. As we noted in
Section 2, utility independence can be used to assert prefer-
ences over a subset of the primitive propositions that hold
given that all of the other propositions remain fixed. But
when dealing with formulas the condition that “everything
else be the same” except for the formula of interest (	 say)
is unrealistic. It makes more sense to think of everything
else being as similar as possible given that 	 changes truth
value. This phrasing makes the similarity to counterfactual
and conditional logic clear (see for instance [Lew73]). In
counterfactual logic, for instance, one is interested in what
would happen if some assertion were to be true even though
it is known to be false. There is general agreement that the
appropriate semantics for counterfactuals and conditionals
should not consider all the states in which 	 is true, but
only the most “normal” such states. So we should not be
surprised if a formalization of utility independence over for-
mulas should also need a notion of how plausible particular
states are. And this is precisely the role of probabilities—to
tell us how likely or unlikely we consider various states to
be.�

Standard independence definitions defined over the prim-
itive propositions do not appear to be invoking anything
other than utilities or preference. However, this is some-
what misleading because information about the similarity
of states is hidden in the choice of attributes or framing
[DW91]. [DW94] discuss this further, and also argue that
making sense of ceteris paribus requires more structure
than just the utilities (unlike us, however, they do not sug-
gest probabilistic semantics). [DSW91] also speculates
upon the connection to counterfactual logics, but does not
develop the suggestion.

Our proposal allows one to state rich independence asser-
tions in a uniform context with preference assertions about
arbitrary logical formulas. Thus one can develop a theory
of sound rules of inference. Here is a very simple exam-
ple of a deduction enabled by independence considerations,
but which is invalid in general (i.e., it is not always true if

�It might seem that we are exaggerating the connection to
counterfactual logic, because semantics for counterfactual logics
generally do not use probabilities. However, it is easy to show
that standard counterfactual semantics are largely equivalent to
certain well-known theories of qualitative probabilities (such as
the �-calculus [Pea93]).



we adopt the semantics of standard decision theory with-
out making the independence assertion). The results gives
one case in which we can conclude exclusive preferences
(i.e., the desirability of having one goal or condition but not
the other), from a specified non-exclusive preference.

Proposition 4.1 : If 	 � �, f	� �g is additively indepen-
dent, and � is less probable 	 (i.e., Pr��� � Pr�	�), then
	 � � � 	 � �.

Other examples are provided in [BG96]. However, the re-
sulting logic remains quite weak. The truth seems to be
that there are rather few “logical” laws governing prefer-
ence which have strong and general intuitive support. (But
having said this, we note that the situation is far worse if
one seeks logical laws that do not include independence
assertions as premises). This makes it difficult to develop a
usefully rich logic for qualitative decision making.

Nevertheless, we believe that this approach, of using var-
ious utility concepts to bolster somewhat the very weak
basic “logic” of preferences, to be a valuable one. An im-
portant direction for future research along these lines is to
develop mechanisms for increasing the inferential power of
the theory.

5 Conclusions and Future Work

Our main conclusion is that there still much work to be
done before a useful theory of preferences and utility can
be developed. Representing and reasoning with utility in-
dependencies is a promising tool that can help us in this
task. As our work has shown, utility independence notions
have structure that can be naturally represented and rea-
soned with. Knowledge about independence can ease the
problems of elicitation, and strengthen the inferences that
can be made from a collection of preference assertions. It is
also plausible that knowledge of independence can be uti-
lized to speed up expected-utility computations (although
demonstrating this is mostly future work).

For the future, we also feel that more work is particularly
required in the following areas:

� Mechanisms, graphical or otherwise, for represent-
ing and reasoning withutility independence assertions.
Such mechanisms eventually need to be tied into mech-
anisms for reasoning about utilities and preferences in
general.

� Methods for expanding the range of useful inferences
that can be generated from a collection of preference
statements.

For the second point, we can offer two possible directions.
First, rather than trying to find a logic concerned solely with
assertions of preference or desirability, the best approach
might be to consider a theory that can deal in an inte-
grated fashion with all the diverse sources of qualitative or
semi-qualitative information one might have—probabilistic
independence, logics of likelihood, extreme probabilities,

logics of preference and obligation, extreme utilities, inde-
pendence assertions about utility and preference, and more.
Even quantitative information should be considered (so long
as one is not asked for all of the numbers). Our conjecture
is that together all these sources of information may enable
quite sophisticated reasoning, even though this appears not
be the case if one considers any one or two of them alone.

Second, an orthogonal approach is to use non-monotonic
reasoning. Non-monotonic reasoning has been suggested
before, and has been utilized in [Bou94, TP94a, TP94b]. In
these papers, a rather weak underlying theory is augmented
with some form of non-monotonic reasoning. For example,
[TP94a] are able to draw stronger conclusions by looking at
what follows in preferred models that minimize the distinc-
tions between the utilities of states. [Lou90] gives a general
discussion and defense of the idea of non-monotonically
reasoning about utilities. It is quite feasible that non-
monotonicity can be combined with independence asser-
tions to allow us to weaken the non-monotonic assumption
used (and thus lessen the unintended consequences) without
loosing some of the more useful inferences.
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