
APS 105
Spring Term, 2005

Lecture Notes

1 Introduction

1.1 Instructor

• John Carter
I am a lecturer

teaching
writing
no research

• education
undergraduate — math
graduate — computer science

• experience
many years teaching high school
ECE since 1999

1.2 How to find me

• refer them to information sheet

• what to do if office hours are not suitable

• encourage them to use me as a resource

1.3 Lectures

• refer them to handout for times and locations

• lectures will stay close to text but not conform exactly

• lectures will be posted on course website at the end of each week
lectures are not posted in advance

explain why

1.4 Tutorials

• one per week

• run by TA’s

• TA’s will have material to present but questions are welcome

1.5 Labs

• a two-hour period is assigned each week

• TA’s will be available for help in the labs during those time slots

• not necessary that they go to the lab

• it is necessary that they submit the labs on time
probably no exceptions — unless system goes down, building on fire, etc.

• can do labs from home by connecting to ECF
if they have not done so before, they should try to get connected now

1

1.6 Evaluation

• quizzes — 10%
total of 10 quizzes
given in tutorials
not in first week, last week, or week of midterm test
best 8 count — each one worth 1.25%
administered in tutorials
questions in quiz will be based on lectures of previous week

(or previous two weeks if no quiz in previous week)
questions will be similar to those in text

possibly identical!

• labs — 15%
a total of eight
all of them will count
they must run on ecf — no exceptions
we use an automarker that is very picky about form of output

try not to upset the automarker
half of the marks on labs are for performance, half for style
I will explain what is required for style as we proceed

• midterm test — 25%
around end of February
details shortly

• final exam — 50%
summative
emphasis on latter half of course

• problems with labs, quizzes, test
what to do if you miss something

form available on course website
what to do if you are unhappy with your mark on a piece of work

form available on course website
what to do if you need special consideration

form available on course website

1.7 Text

• fabulous!

• we will be following the text fairly closely

• has a few (small) errors
see link on course website

Errors in Text at left side of page
if any new errors found, send me a note

1.8 Getting help

• refer them to handout — discuss briefly

• encourage them to form study groups
have them learn the name, phone number, and email address of a neighbour

give them time for this

• contrary to what they may have heard, (most of us) care about our students
we are available and eager to help
take advantage of tutorials, office hours

2

• other support
counselling and learning skills services offers

help with academic skills
personal counselling
website: www.calss.utoronto.ca

• encourage them to get help quickly if they are in any kind of trouble

• for those having difficulty
don’t let things get out of control

get help fast

• ask questions in class
don’t worry about looking foolish — nobody here is stupid

• if you see something on the board that is confusing, ask
I do make mistakes — I appreciate having them corrected

• if questions are slowing things down too much I may ask you to see me later

• whatever works (and does not involve cheating)

1.9 Academic integrity

• infractions are treated very seriously

• you may get away with cheating but, if you don’t, very bad things can happen to you

• consequences can be very severe — far worse than a poor mark

• see Engineering Calendar pp 164–172 for details of consequences

1.10 In-class rules

• no talking to fellow students
why? — creates an aural fog

• try to be on time
I will (normally) start on time
late arrivals are distracting

• early departures
if you are going to have to leave early

please inform me ahead of time
please sit in a location that minimizes disturbance

• food and drink

• cellphones and other noisemakers

1.11 Using the course website

• URL in handout
you will need your student number to log in

• please give your ecf e-mail address on course web site
if you usually use something else, simply create a .forward file on ECF
contents of file are address(es) to which you want mail forwarded
a copy of all mail to ECF will be sent to your usual address

3

1.12 Overview of APS 105

• title is “Computer Fundamentals”
not simply computer programming

• also looks at some aspects of
computer organization (very little)
how information can be stored in a computer
the concept of an algorithm — a recipe for solving a problem

algorithms for important tasks like searching and sorting
how we can compare algorithms — why is one “better” than another

• for some, there will very little here that is new
these people may wish to forego lectures — no problem
just make sure you do labs, write tests and quizzes

• for others, the amount of material and the speed may appear to be overwhelming
we will be asking you to do lots of programming
labs are only worth 15% but

the experience is important
rarely does anybody fail who completed all the labs

• in addition to the lab problems, try to do as many other problems as possible
this will not be easy given the limited time available but . . .

1.13 Java

• appears to be a winner for various reasons
“object oriented” — more later
Internet aware and friendly
easier to produce reliable programs in Java than in many other languages

• I think that we will be using JDK 1.4 on ECF

• can obtain it free from Sun Microsystems
see Section 1.3 in text
might be a good idea to get it now before too many other demands on your time

• if you want to develop programs at home and you have Windows
there are instructions to help you get started on the course website
see General Handouts: Getting Started in Java

• final version of any program must work on ECF
no exceptions!
really!

4

2 Getting Started

2.1 Computer systems

• Two primary divisions

• hardware
physical objects that comprise a computer

keyboard
video display
mouse
disks
etc.

• software
sets of instructions, called programs

used to tell the computer what tasks to perform

2.2 A closer look at hardware

• all systems consist of three basic components
memory
processor
I/O (input/output)

• tied together physically and logically

• chat a bit about each component

• memory
chalkboard analogy — “short term memory”
organized into numbered cells — called addresses
usually one byte/cell

a byte is 8 bits — explain
a bit is capable of being in one of two states
usually denoted by zero or one
name comes from: binary digits

a byte is 8 bits — 256 possible states — why?
memory may contain millions of bytes

• processor
sometimes called central processing unit (CPU) or microprocessor
the “brains” of the computer
does computations

discuss registers, accumulators very briefly
registers are like displays of very simple calculators

separate registers for integer and floating point arithmetic
integer arithmetic is faster

makes very simple decisions
e.g. is the contents of a register > 0?

uses a “clock” to synchronize operations
one very simple operation in one tick of clock

density and clock speeds rising rapidly

• I/O
allow machine to interact with outside world
when we write, we are sending data from memory to an output device
when we read, we are bringing data from an input device to memory

5

• auxiliary storage devices
hard drives, CD drives, tapes
sometimes classified as I/O devices

• How the CPU executes a program
can fetch data from a location in memory
can store data in a cell in memory
memory can contain both data and instructions
instructions are stored sequentially

2.3 Operating systems

• a large program that starts running as soon as the machine is turned on

• acts as the interface between the user and the machine

• allocates resources

• allows users to request the use of a compiler, a word processor, etc.

• when a program stops running, control passes back to operating system

2.4 UNIX

• underlying OS on PC’s is DOS

• underlying OS for us is UNIX

• we will be using a command line interface to UNIX
to those familiar with DOS, this is not much different

e.g. copy a file: DOS: copy — UNIX: cp
list files in current directory: DOS: dir — UNIX: ls

• often have a GUI on top of operating system (or as top layer of operating system)
Microsoft Windows
X windows

• Lab 0 will get you started with UNIX

2.5 Using High level languages

• different computers, with different chips, have different instruction sets
e.g. e2 on one machine might mean “add” while on another it might mean “compare”

• a high level language is one that is more or less the same for all machines
e.g. FORTRAN, COBOL, Pascal, Turing, BASIC, LISP, C, etc.

• for each computer on which we want to run a program, we need a compiler
a program that translates the high level language into the language of the computer
produces machine code (object code) from source code

• two steps
compile program
run (or execute) program

6

2.6 Using Java

• Java’s claim to fame is that it is completely machine independent — even for graphics
“Write once, run anywhere.”

• Java compiler translates program into machine code (called byte code)
resulting code could run on the appropriate machine

but there is no real machine that will run the code!
the machine code is that of an imaginary machine

• to actually run the program on a particular machine, an interpreter must be written
each real machine has its own Java interpreter — called the JVM
interpreter translates from byte code one instruction at a time
versions of the JVM are available for most machines — free from Sun

• can be slow — about 1/3 speed of compiled C code
people are working on making this faster

• what is the advantage of such a scheme?
write a program
compile it into byte code
distribute byte code over a network
don’t worry about destination machine

7

3 Creating Programs

3.1 Getting started with Java

• A first program
traditionally, writing Hello, world

• // This program prints: Hello, world

class Hello
{
public static void main (String[] args)
{

System.out.println("Hello, world");
}

}

• develop this slowly, with lots of explanation (as shown in the following notes)

3.2 Analyzing the features of the first program

• comments
note alternative forms

• class Hello
always have programs within a class

• main method
programs may contain many methods — working together
ours only has one
it must be called main
the first (header) line must be as shown

to be explained later — for now, just write it as shown

• System.out
sends output to standard system output device — the screen
println vs. print — examples to show difference

• use of {}
to indicate start–end of class
to indicate start–end of method within class

• whitespace and use of indentation

• Java is case sensitive — explain

• use of + for printing very long strings

• escape sequences
how do we print "?

use \" — an escape sequence
explain

to print \, use \\

3.3 The programming cycle

• Step 1 Edit
use a text editor, not a word processor

why?
examples

gedit in labs

8

notepad under Windows
vi, emacs, pico under UNIX

if the program class is Hello,
save the program (source code) in the file Hello.java

• Step 2: Compile
run the Java compiler by typing

javac Hello.java
compiler translates the source code into Java bytecode
compiler automatically saves bytecode in the file Hello.class

• Step 3: Run
run the java interpreter (JVM) for your machine by typing java Hello

(without .class)
if all goes well, the interpreter should run or execute your program

• Step 4, 5, 6, . . .Debug
many opportunities for introducing many kinds of errors

syntax errors (compile-time errors)
to be explained shortly

javac will catch any syntax errors
only creates the file Hello.class when no syntax errors exist

3.4 Classifying errors

• syntax errors
“grammar” errors
give examples in English and in Java

• in natural languages, we can also have semantic errors
semantics of a statement is the meaning attached to it
a statement in a natural language may be ambiguous

e.g. “Time flies like an arrow.”
if all is well, computer languages should not have ambiguities

hence semantic errors should not occur
(but, occasionally, they have done so)

• run-time errors
e.g. an attempt to divide by zero

an attempt to read a value from a file when none exists

• logical errors
program compiles and runs but does not do what the programmer intended

• help with errors
sections at end of most chapters discusses techniques for

avoiding errors
eliminating errors (debugging)

9

4 Primitive Types and Identifiers

4.1 Basic storage ideas

• recall bits: capable of being in one of two states
bytes: 8 bits — 28 = 256 possible states

• we store data of various kinds as patterns of bits
the same pattern of bits might represent a variety of things

e.g. a number, some text, part of a picture, part of a song

• in writing a program, we may, for example, need an integer
we can then ask Java to reserve space in memory for an integer
whatever pattern of bits is stored at that location will be interpreted as an integer value

• on another occasion, the same bit pattern could be interpreted as a colour
we get whatever interpretation we request

• spend some time on this
try to make sure that they understand the concept

4.2 Integer types

• examples of integers

• Java has four sizes of integers: byte, short, int, long
prefers int — explain

• use of l or L for long constants

• summary (from text — Page 17)

Type Size (in bits) Range Approximate Range

byte 8 −27 to 27 − 1 ±100
short 16 −215 to 215 − 1 ±30 000
int 32 −231 to 231 − 1 ±2 000 000 000
long 64 −263 to 263 − 1 ±9 × 1018

4.3 Floating point types

• examples of floating point constants as normal decimals

• examples — include use of e or E notatione
similar to scientific notation

• floating point values are stored as two parts
digits (mantissa) and exponent are stored separately
not whole story — values are stored in binary rather than decimal form
we don’t need to know the whole story

• Java has two forms of floating point numbers
float and double

Java prefers double — explain

• use of f or F for float constants

• summary (from text — Page 19)

10

Type Size (in bits) Precision Approximate Range

float 32 at least 6 ±3.4 × 1038

1 for sign decimal digits
8 for exponent
23 for mantissa

double 64 at least 15 ±1.8 × 10308

1 for sign decimal digits
11 for exponent
52 for mantissa

4.4 Characters

• examples
’A’ ’$’ ’\\’ ’\n’ ’"’ ’\’’

• strings vs. characters

• need enough bits to store all the characters we might want
Java doesn’t fool around — uses 16 bits — Unicode

why?
216 possible characters
no details necessary — see Appendix C if you are curious

4.5 Boolean values

• true/false

• one bit

4.6 Identifiers

• purpose — to give names to items

• rules
any number of characters
upper or lower case letters plus digits plus _ and $
first character cannot be a digit

• some identifiers reserved by the language — called reserved words:
e.g. int, double, main, static, if, do

see text — p 23

• conventions (not rules)
lower case for variables
use of lower-upper

e.g. valueAtStart
use of underscore as in value_at_start — I won’t use this
class identifiers conventionally written as upper-lower

e.g. Hello
upper case for constants as in PI

• be sensible about identifiers
not too short
not too long

• be careful to avoid confusion
0 and O
1, l, and I

11

5 Using Variables

5.1 Declaring variables

• general form:
<type> <identifier list>;

• examples

int age; // in years
float mass; // in kg - to nearest g
double a,b,c; // sides of a triangle
char sexCode; // M or F

• what does a declaration do?
explain
no initialization (explain term) can be expected

5.2 Assigning values to variables

• meaning of an assignment statement — contrast with equality

• can be done as soon as the variable is declared
e.g. int i = 0;

• or at any time after that
e.g. int i; . . .i = 3;

• conversions and casts
widening and narrowing conversions
see table in text (p. 28) for full list of widening conversions
use of a cast
floating point to integer — lose fraction
be careful — e.g. byte b = (byte) 200;

compiler will accept this but . . .
can never convert to a char without a cast
cannot involve boolean in a conversion

5.3 Strings

later

5.4 Printing values of variables

• floats printed with up to 8 digits

• doubles printed with up to 16 digits

• integer and char values printed in just the right amount of space

• boolean values printed as the words true/false

• concatenation
recall use of + in printing long string constants
concatenation of variables and string constants

12

5.5 Reading values using In

• discuss concept of “input”
from where?
to where?

• Java does not provide the simplest input scheme known

• to solve this problem, a class In has been created to make reading values easier

• to read a double into the variable x, use
x = In.getDouble();

• to read an integer into the variable i, use
i = In.getInt();

• similar for char, String, float:
getChar(), getString(), getFloat()

• on ECF, can gain access to In by copying In.java from the file
/share/copy/aps105/In.java
use cp command, as discussed in Lab 0

• In.java is also available on the course website
along with Out.java — discussed in Appendix A

• once you have a copy, compile it (using javac In.java) to get In.class

5.6 Interactive programs

• briefly

• use of prompts

5.7 Constants

• literal constants

• defined constants
how?

use of final attribute
why?

clarity
ease of revision
avoidance of errors

• identifiers of constants
use of upper case letters

• discuss concept of magic numbers
note consequences of using them on assignments

13

6 Mathematics

6.1 Basic arithmetic operations

• four basic operators
+ - * / ()
usual precedence rules
do not use square or brace brackets for math

• use of / with integers and floating point values

• one more operator: %
explain and do a few examples with %

• if types of operands are mixed, wider type is contagious
do some examples

• can use casts (although not usually necessary)
casts have precedence higher than other operators
e.g. (int) 0.8 * 2.5 gives 0.0

• division by zero (including %)
integer values

an exception is thrown
explain briefly — no details

floating point values
Infinity, -Infinity NaN

6.2 Assigning expressions to variables

• note sequence: evaluation and then assignment
look at

i = 5;
i = i + 1;

• multiple assignments
applied from right to left

• other assignment operators
briefly
examples

int i = 3, j = 5;
i += j;
i *= j + 2;

6.3 Increment and decrement operators

later

6.4 Printing expressions

later

6.5 Math methods

• we can find square roots, sines, ...

• to do so, we can use built-in methods in class Math
part of Java’s Application Programming Interface — API
like mathematical functions
they, generally, have double arguments and return double values

14

• some have various versions
e.g. one for handling integers, another for floating point values

we say that such methods are overloaded
like + operator

details in text

• a partial list

Method Value Returned
Math.sqrt(x)

√
x

Math.pow(x,y) xy

Math.log(x) ln x
Math.exp(x) ex

Math.abs(x) |x| (int OK here)
Math.floor(x) largest integer ≤ x (as a double)
Math.ceil(x) smallest integer ≥ x (as a double)
Math.sin(x) sin x (in radians)
Math.cos(x) cos x
Math.atan(x) arctan x

• also two constants:
Math.PI — π
Math.E — e

6.6 Math.round

• converts to nearest integer

• double converted to long
float converted to int

• show how to round to something other than the nearest integer

6.7 Math.random

later

6.8 Arithmetic with char values

later

15

7 Other Topics from Chapters 1 and 2

7.1 String variables

• purpose
storing strings
like those we have seen

• compare strings vs. characters

• declaring strings
type is String (note upper case)
String is a class that defines characteristics of string objects
same as declaring primitive types

no value in location after declaration

7.2 Assigning values to string variables

• String is a reference type

• look at an example
String s = "Sample";

• action is very different from that with primitive types
draw diagram

• note action on assignment
Java creates a new string object and sets our variable to refer to it

• explain a reference
value stored in the variable is a memory reference — the address of the object

• changing assignments
draw diagram to show effect — old string is garbage
strings are immutable

7.3 Increment and decrement operators

• briefly
examples of both prefix and postfix forms

• don’t combine with other operators
(or read Section 2.3 very carefully before doing so)
perhaps one example

i = 3;
j = 5;
k = ++i * j--;

7.4 Printing expressions

• simply put the value or expression inside the parentheses
no double quotes

• explanation
expression is evaluated
result is converted to a string
string of characters is sent to output device

16

• can concatenate strings with expressions
we say that + is overloaded
e.g. System.out.println("Result is " + 3 * 5);

System.out.println("Result is " + 3 + 5);
System.out.println("Result is " + (3 + 5));

• refer them to Section 2.2, Example 2 in text

7.5 Math.random

• method returns a random double value in the interval [0, 1)

• show (step by step) how to obtain an integer from 1 to 4

7.6 Arithmetic with char values

• brief look at concept of storing char values in 2 bytes
e.g. ’¿’ is stored as 0000 0000 1011 1111

this bit pattern can be considered as a base 2 integer
explain briefly

then find value of ’¿’ as an integer
27 + 25 + 24 + 23 + 22 + 21 + 20 = 128 + 32 + 16 + 8 + 4 + 2 + 1 = 191

they do not need to know details, for now

• we can get numerical values from text — Appendix C
from there, we can find that value of ’¿’ is 191

• if we write, in a Java program
int i = ’¿’;
System.out.println(i);
program will print 191

• don’t need to know numerical values

• should know
A – Z, a – z, 0 – 9 are each sequential
can move through the alphabet using arithmetic

• be careful!

char row = ’A’
row++; // sets row to ’B’
row = row + 1; // error explain
row = (char)row + 1; // error explain
row = (char)(row + 1); // OK explain

17

8 Control Structures for Choosing Alternatives

8.1 Introduction

• flexibility of programs is produced by their ability to take different actions
when faced with different conditions

• Java has a variety of decision-making statements
which is best depends on situation

8.2 if statements for choosing between two alternatives

• start with an example — printing square roots
print square roots of negative numbers with i
e.g.

√
−4 = 2i

if (x < 0)
System.out.println(Math.sqrt(-x) + "i");

else
System.out.println(Math.sqrt(x));

• general form

if (<expression>)
<statement>

else
<statement>

• note
indentation
parentheses
semi-colons

8.3 if statements without else clauses

• for choosing to perform an action only if some condition is true

• if (<expression>)
<statement>

• do an example

/* make result positive */
if (result < 0)
result *= -1;

8.4 Blocks

• use of {..} to create a block

• do an example

if (result < 0)
{
result *= -1;
System.out.println("Negative result made positive");

}

• note indentation style — and alternatives

18

8.5 A common error

• be careful not to write things like the following:

if (result < 0);
result *= -1;

• the ; following the condition is interpreted as a statement
an empty statement

• fragment of code is parsed by compiler as:

if (result < 0)
;

result *= -1;

• thus, any value of result will have its sign reversed
probably not what we wanted

8.6 Boolean valued expressions

• in if statements we had:
if (<expression>) ...

• what are rules for forming <expression>?
generally, <expression> must be a boolean-valued expression

i.e. value must be either true or false

8.7 Relational expressions

• usually in if statements, we are dealing with relational expressions
examples of simple relational expressions

x < 0
height > width

• concept of a relational expression having a value
true or false

• list of relational operators
< <= > >= == !=

no spaces between tokens
emphasize difference between x = 0 and x == 0

• can mix types in relational expressions
e.g. can compare an int to a double

• can mix arithmetic operators and relational operators
arithmetic operators have higher precedence
give an example

8.8 Some other possible boolean-valued expressions

• constants
true or false — silly but possible

• variables
must be of type boolean
more later

19

9 Control Structures for Making Decisions (cont.)

9.1 Comparing characters

• Unicode encoding determines order

• blank is very low — lower than any printable character

• usually we will be dealing with digits and letters
’0’ < ’1’ < ... < ’9’
’A’ < ’B’ < ... < ’Z’
’a’ < ’b’ < ... < ’z’

• note that ’0’ == 0 is false
explain

• other characters are scattered around
see Appendix C for details

9.2 Comparing strings

• shouldn’t use relational operators
show meaning of s1 == s2 with diagrams

• use of equals method from String class
note form: s1.equals(s2)

not: String.equals(s1,s2)
method returns a boolean value

• use of compareTo
explain ordering informally

• use of the form
s1.compareTo(s2) <op> 0

9.3 Boolean operators

• ! (not) && (and) || (or)

• formal definitions via truth tables

• order of evaluation
precedence: !, &&, ||
left to right for same operator

9.4 Properties of boolean expressions

• lazy evaluation
<e1> && <e2>

here <e2> is not examined if <e1> is false
<e1> || <e2>

here <e2> is not examined if <e1> is true

• why is lazy evaluation useful?
an example — testing if x/y < 10

must guard against the possibility that y = 0

• De Morgan’s laws
(!p) && (!q) ≡ !(p || q)
(!p) || (!q) ≡ !(p && q)

lots of time explaining these

20

10 Control Structures for Making Decisions (cont.)

10.1 Lab 2

• spend a bit of time explaining the idea of a loop

10.2 Nested if statements

• develop an example
determining which of a, b, c is largest
discuss strategy first

10.3 Dangling else problem

• perhaps just do this briefly
refer them to text for details

• if there is time, show two pieces of code

if (p) if (p)
/* p true */ /* ??? */
if (q) if (q)

/* ??? */ /* ??? */
else else

/* ??? */ /* ??? */

• get them to fill in truth values in comments

• once they see the problem, look at ways to solve it

10.4 Indentation style with many nesting levels

• if ()
<statement>

else if ()
<statement>

else if ()
<statement>

.

.
else
<statement>

10.5 switch statements

• discuss briefly

• not required for this course

• if interested, see Section 3.5

10.6 Conditional operator

• discuss briefly
do an example

• again, not required for this course

• more details in text — p 644

21

11 Control Structures for Repetition

11.1 General ideas

• two kinds of repetitive actions (loops)
counted and conditional

• examples — from cooking
stir for 300 strokes
stir as long as there are lumps

11.2 while statements

• general form:
while (<expression>)

<statement>

• effect — explain slowly and carefully — compare to if

• an example — develop slowly
a loop to read integers until zero is read and print the sum of values

sum = 0;
n = In.getInt();
while (n != 0)
{

sum = sum + n;
n = In.getInt();

}
System.out.println("The sum is " + sum);

• note initialization before loop to make condition meaningful first time

• note also that
<expression> must be meaningful before we enter the loop
<expression> must be true if we are to perform the body of the loop the first time
something in loop must make <expression> false if we do not want an infinite loop
value of <expression> after exiting loop must be false

11.3 do statements

• recall processing of an indeterminate number of students
as well as “while there are students, keep processing”,
we can also have “keep processing as long as there are students”

• note difference — in second case, we must process at least one student

• for first loop, Java has
while (<expression>)

<statement>

• for second loop, Java has
do

<statement>
while (<expression>);

• almost like while but now
<expression> is not evaluated until we reach the end of the loop

• an example:
a loop to force a user to enter a number from one to ten

22

do
{
System.out.println("Give a number from one to ten");
n = In.getInt();

}
while (n < 1 || n > 10); // this is what we DON’T want

• note
use of semi-colon at end
use of parentheses
loop must be executed at least once (unlike while)

11.4 for statements

• recall:

<exp1>;
while (<exp2>)
{
<statement>
<exp3>;

}

• this can be written more concisely as:

for (<exp1>;<exp2>;<exp3>)
<statement>

• an example: printing a table of squares from one to ten
for (n = 1; n <= 10; n++)

System.out.println(n + " squared is " + n*n);

• we can write this in form
for (int n = 1; n <= 10; n++)

System.out.println(n + " squared is " + n*n);

• in the second case, n is only defined in the for statement
if we tried to print it outside the for, we would get an error
explain, informally, idea of scope of a variable

23

12 Repetition (cont.)

12.1 Variations on for loops

• recall general form:
for (<exp1>; <exp2>; <exp3>)

<statement>

<exp1> is executed once, at beginning
<exp2> is boolean, must be true for <statement> to be executed
<exp3> is executed after <statement>

• very flexible

• first and/or third expressions can be empty:
an example

int n = 1;
.
.
for (; n <= 10; n++)

System.out.println(...);

another example

n = 1;
for(;n <= 10;)
{

System.out.println(...);
n++;

}

• expressions can be complex:
for (n = 1; n < 11; System.out.println(...),n++)

;

• note
semi-colon on next line (for visibility)
use of comma expressions

(only valid in first and third part of for statement headers)

• another example:
for (m = 1, n = 10; m < n; System.out.println(m*n),m++,n--)

;

show output

• recommendations:
normally,

keep things simple
use while or do with conditional loops
use for with counted loops

12.2 Loops that combine counting and conditional elements

• explain general idea
e.g. process 100 items (or quit if done before that)

• note that for is often used for partially conditional loops
probably the best solution

• e.g. perform an action MAX times, unless something special happens

24

boolean done = false;
.
.
for (int i = 1; i <= MAX && !done; i++)
{
.
.
if (..)

done = true; // something special happened
}

12.3 Nesting loops

• just as we can nest if statements inside other if statements,
we can nest loop statements inside other loop statements

• develop an example — nesting a for inside another for
print a triangular pattern containing n rows of numbers from 1 to n
e.g. if n is 5, print
1
12
123
1234
12345

• develop code to print a triangle of stars like the following
****... *
.
.

**
*

• develop code to print a triangle of stars like the following
*

**

.

.
*...****

• here is one possible solution to the last problem

for (int row = 1; row <= n; row++)
{
for (int col = 1; col <= n; col++)

if (row + col <= n)
System.out.print(" ");

else
System.out.print("*");

System.out.println();
}

25

13 Methods

13.1 Introduction

• as problems get larger, they get much harder to solve

• modularity is a useful response to this
explain modularity

e.g. input/processing/output

• why is it a good idea?
allows us to think about one part of a large problem (more or less) in isolation
many people can work on various parts of the problem
some parts may be identical (or at least very similar) so . . .
modules from other programs might be useful — “plug them in”
structure is lost if segments are too large
may be easy to test each small module

this may give some hope that the entire package may work

13.2 Method basics

• in Java, the basic modular unit is the method

• many pre-defined methods are available in virtually all programming languages
we have, for example, in Java, already seen

math methods available in the class Math
input methods available in the class In

• methods can be divided into two types
queries that evaluate something and return that value to the user

e.g. given a value, find its square root
x = Math.sqrt(y);

commands that carry out some process and then simply quit when done
e.g. print something

System.out.println("Hello, world");

• some languages differentiate between two types
use terms like

function for query
procedure, subroutine for command

not Java — both types called methods

13.3 Mechanics of method usage

• when we use a method, we say that we are invoking or calling the method

• as an example, consider the statement:
discriminant = Math.sqrt(b*b - 4*a*c);

• what happens when this statement is executed?
processing of calling block is suspended
value of b2 − 4ac is computed

the value of this expression is passed as input to the method
method is executed
the value computed by the method is returned to the point of the call
control is passed back to the calling block

the value can then be assigned, printed, compared to another value, etc.

26

13.4 Defining methods

• we are not restricted to using pre-defined methods — we can define our own

• e.g. a definition of n! — n factorial
recall (or introduce) mathematical definition
develop the following:

public static int factorial (int n)
{
int result = 1;
for (int i = 1; i <= n; i++)

result *= i; // explain
return result;

}

• explain header in detail
public static — as usual (with main method)
int — type of value returned by the method
int n — a variable used for values passed from calling block to method

• explain the statement
return result;
must be at least one of these in a method that returns a value

• since factorial computes an int result,
we can use the function wherever an int would be valid
e.g. System.out.println(factorial(5));

value = factorial(2*n); // value, n both type int
if (factorial(j) > max) ...

13.5 Program organization

• where do we put the definition of a method?
for now, anywhere within the class that we are using
as an example, consider a program that calculates values of

(
n
r

)

may have to explain meaning of this — lead up to program below

class Sample
{
public static int factorial(int n)
{

int result = 1;
for (int i = 1; i <= n; i++)

result *= i;
return result;

}

public static void main (String[] args)
{

int m, n, value;
System.out.println("Give values of n and r")
// valid input assumed
n = In.getInt();
r = In.getInt();
value = factorial(n)/(factorial(r)*factorial(n-r));
System.out.println(n + " choose " + r + " is " + value);

}
}

27

14 Methods (cont.)

14.1 Use of return

• definitions of queries (methods that return a value) must contain a statement of the form
return <expression>;

• multiple return statements can appear in method definitions
this is often seen as bad style
why? explain — compare to break
we will usually follow this style rule — occasional exceptions

14.2 Methods that do not return a value

• for commands, type of method is void (same as it is in main method)

• can simply write return; at point at which we wish to return to calling point

• can omit return entirely — it will happen when last } is encountered (as in main)

• perhaps, as an example, develop

public static void skipLines (int n)
{
for (int i = 1; i <= n; i++)

System.out.println();
return; // can be omitted

}

• to call this, we could write
skipLines(3); (not x = skipLines(3);)

14.3 Parameters

• used to communicate with methods
e.g. suppose we have a method with the header:

public static int fun (int n)
when we write result = fun(4);
then, at the time of the call, the variable n in the header automatically gets the value 4
the variable n is an example of a parameter

• terminology
parameters and arguments
sometimes formal parameters and actual parameters

• parameters are known throughout the method but not outside
since they are not known outside the method,

their identifiers can be used outside — for other variables

• call by value
at time of call, value of argument is computed
this value is passed to the method automatically

be sure that they understand these ideas (passing and automatic)
there are other ways to establish correspondence between arguments and parameters

e.g. C, Turing, Pascal have such mechanisms
Java, however, always uses call by value

keep pushing this idea

28

• develop the following example of parameter passing
in main

int n = 7;
result = fun(n);

in method fun
public static int fun (int n)
{

n = n/2;
return n;

}

trace values of both variables

• automatic correspondence
if more than one parameter, correspondence is determined by order
types of actual and formal parameters need not match exactly

they only need to be assignment compatible
as an example, suppose we were to write a method to determine powers of numbers

the header of such a method might have the form
public static double power(double x, int n)

to call such a method, we might write
value = power(1.5,2);

could also write
value = power(15,2);

it would, however, be invalid to write
value = power(15,2.0);

14.4 Method overloading

• briefly

• use an example
public static int squareSum (int a, int b)
public static double squareSum (double a, double b)
public static int squareSum (int a, int b, int c)

• discuss results of various calls:
squareSum(3,4)
squareSum(3,5,2)
squareSum(1.5,2.5)
squareSum(1.5,4)

14.5 Methods without parameters

• no problem — simply omit parameters in header

• resulting header has form
public static <type> <identifier> ()

called by expression of the form
<identifier>()

like System.out.println()
must have ()

29

15 Methods (cont.)

15.1 Methods that return boolean values

• briefly
identifiers are normally of the form is<Something>

e.g. isPerfectSquare
a method to return true iff an int is a perfect square

• to use such a method, we might write
if (isPerfectSquare(n))

• easier for somebody reading our program to understand what we are doing

• develop definition of method
public static boolean isPerfectSquare (int n)
{
if ((int)Math.sqrt(n)*(int)Math.sqrt(n) == n)

return true;
else

return false;
}

• note use of multiple return statements in method

• could replace this with something like
public static boolean isPerfectSquare (int n)
{
boolean result = false;
if ((int)Math.sqrt(n)*(int)Math.sqrt(n) == n)

result = true;
return result;

}

• a more concise solution:
public static boolean isPerfectSquare (int n)
{
return (int)Math.sqrt(n)*(int)Math.sqrt(n) == n;

}

• spend some time explaining this

15.2 Scope

• scope of an identifier is the range in which it is recognized

• recall from previous work that, in a statement like
for (int i = 1; ... ; ...)
the variable i is only known inside the for
i.e. the scope of i is the for

• the scope of a parameter is its entire method

• the scope of any variable declared within a method
starts at the point of declaration
ends at the end of the block in which the variable was declared

a block starts with { and ends with }

• give examples of variables declared within sub-blocks of methods

• note that we can re-use identifiers if we are out of their scope
use examples to illustrate this

30

15.3 Putting the pieces together

• recall idea of using methods to produce modularity
think about the problem as consisting of smaller pieces

• explain strategy of top-down design briefly
decomposing a problem into a set of smaller problems

• to begin to solve a large problem
we might try to describe the process using pseudo-code

explain briefly

• perhaps think of each of smaller pieces as being made up of even smaller ones

• continue this process until we have nice, easy to contemplate pieces
write these as methods, then combine them

• explain Goldbach’s Conjecture briefly

• start top-down design for solution to problem of testing conjecture

• refer them to Section 5.7 in the text for details

31

16 Objects

16.1 General introduction

• objects are “things” that can have data and functionality

• e.g. cars, people

• our objects will be considerably simpler

16.2 Defining a class

• use the example of complex numbers to develop ideas

• recall that a complex number has the form
z = a + ib, a ∈ R, b ∈ R

a is the real part of z
b is the imaginary part of z (although it is a real number)

• start with a very basic version of the Complex class

class Complex
{
public double re;
public double im;

}

• instance fields
cf. variables

why instance?
because every object (every instance of the class) will have these fields

why public?
same as methods

• note that the field declarations are not contained in a method

• this simply defines what a Complex object should look like
it does not create such an object
think of it as a “blueprint” for an object of type Complex

sometimes described as a “template”
it is the type of the objects that we shall create
draw a diagram

re

im

Complex

16.3 Creating objects

• now we can create objects of this type by writing, in main, say
(emphasize that we have two different classes in separate files)

Complex z;
z = new Complex();

• this creates an object — an instance of the class Complex
draw a diagram

32

0.0

0.0

re

im

Complex

z

-

• variable z — a reference to an object — an instance of the class
same phenomenon that we have already seen with String objects

• note that the fields are initialized to zero
this is generally true

numeric fields initialized to zero
char fields initialized to all zeros
boolean fields initialized to false
String (and other object) fields initialized to null

explain null briefly

• multiple instances
we can create as many objects of type Complex as we wish

• to create two Complex objects, we could write

Complex z1 = new Complex();
Complex z2 = new Complex();

• draw diagrams

16.4 Assignments with objects

• having created a Complex object, we can assign values to the real and imaginary parts

• develop an example

class TestComplex
{
public static void main (String [] args)
{

Complex z1 = new Complex();
Complex z2 = new Complex();
z1.re = -3.0;
z1.im = 4.0;
z2.re = 2.4;
z2.im = 1.0;

etc.

}
}

• add to diagrams

• show effect if we write
Complex z3;
z3 = z1;

33

17 Objects and Methods

17.1 Instance methods

• objects can have both data and functionality
to achieve functionality, we add methods to our class definitions

• for our example, the Complex class might include a method to find the modulus

• recall that, if z = a + ib, then the modulus is defined by |z| =
√

a2 + b2

• we can include this method by extending our Complex class as follows:

class Complex
{
double re;
double im;

public double modulus()
{

return Math.sqrt(re*re + im*im);
}

}

• note that
there is no static in the header
there is no named parameter to the method

• to call this method, we could write, in the main method, say
double size = z1.modulus();

to assign size the value 5.0

• what is happening here?
we have an instance method with an implicit argument — the object z1
spend lots of time explaining this

• note that we must still have () even though there is no explicit parameter

17.2 this

• inside modulus, the implicit Complex argument has no name
if we really need a name for this object, Java lets us use “this”

• using this, we could have written the definition of modulus with the statement
return Math.sqrt(this.re*this.re + this.im*this.im);
no need here to write this so we did not do so

• we can also use this in calls to instance methods
as an example suppose we want to write a method to classify complex numbers

large if |z| > 1
small if |z| ≤ 1

• to do this we could write

public String size ()
{
if (this.modulus() > 1)

return "large";
else if (this.modulus() < 1)

return "small";
else

return "just right";
}

34

• we might call this method by writing
System.out.println(z1.size());

• here, again, the use of this is optional

17.3 Parameters to instance methods

• we can have parameters with our instance methods
they operate in the same way as they did with our previous methods

• e.g. modify previous size method to compare to a value other than one

public String size (double standard)
{
if (modulus() > standard) // implies this.modulus()

return "large";
else if (modulus() < standard)

return "small";
else

return "just right";
}

• we might call this method by writing
System.out.println(z1.size(3));

• parameters can be of any type — including objects

17.4 Methods returning objects

• we can have methods that return object references

• as an example, consider a method to find and return the sum of two complex numbers

• show form of call to this method
Complex z3 = z1.plus(z2);

• then develop a definition of the method

public Complex plus (Complex other)
{
Complex sum = new Complex();
sum.re = re + other.re;
sum.im = im + other.im;
return sum;

}

• another example, showing another application of this
a method that returns a reference to the larger of two Complex objects

public Complex larger (Complex other)
{
if (modulus() > other.modulus())

return this;
else

return other;
}

35

18 Methods (cont.) and Constructors

18.1 Lab 3

• extend deadline to Monday

• discuss approach to problems

• look at some aspects of Part 2 — sin x

18.2 Altering objects in methods

• recall concept of call by value
consequence — cannot change argument value

• with objects, we again pass value — now value of reference
consequence — we can change the contents (fields) of an object
draw diagrams

• an example

public void scale (double factor)
{
re *= factor;
im *= factor;

}

• now suppose that z1 refers to an object representing −2 + 3i
draw a diagram

if we then make the call z1.scale(2);
show what happens using diagrams

• take lots of time

18.3 Constructors

• note that when we created a complex number, we wrote
Complex z = new Complex();

• here Complex() looks like a method call
it is, in fact, exactly that

• the method is supplied by Java — not necessary for us to write it
called a constructor method

• it is the method that constructs a new Complex object

• we could have written it if we wanted to
it would look like this

• public Complex ()
{
re = 0.0;
im = 0.0;

}

• note that
name of the constructor method is the same as the name of the class
no return type is specified
implicitly, constructor returns an object — the current object (this)
no return statement in constructor

36

19 Constructors (cont.), Class Fields, and toString Methods

19.1 Customized constructor methods

• recall work of last day on default constructors

• be sure that they understand that this is supplied to them by Java

• sometimes we want to be able to do more than this with our constructors

• as an example, to create Complex objects initialized to any value (not just 0 + 0i)
we would want to create such objects with a call like

Complex z = new Complex(3.0,-4.0);

• to do so, we could write the following constructor

public Complex (double r, double i)
{
re = r;
im = i;

}

• note that if we had called the parameters re and im, we would have a problem
what would re = re; mean?

• could solve this by writing
this.re = re;
or, as we did, by choosing different identifiers for parameters

• as another example, we can define a constructor to create new, distinct objects identical to
other objects

public Complex (Complex z)
{
re = z.re; // or this.re = z.re;
im = z.im; // or this.im = z.im;

}

• then, if we have a Complex object z1, we could write
Complex z2 = new Complex(z1);

to form z2, with values identical to z1
would z1 == z2 be true in this case?

• note difference between
Complex z2 = new Complex(z1);
Complex z4 = z3;

19.2 Replacing default constructors

• if we create our own constructor, we lose the “free” one
if we still want to have the effect of the default, we must write it
if we do write such a constructor, that is fine
it could have the form

public Complex()
{
re = 1.0;
im = 1.0;

}

37

19.3 Working with multiple constructors

• no confusion between constructors — different signatures

• in our example, we can now write
Complex z1 = new Complex();
or Complex z2 = new Complex(0.4,2.1);
or Complex z3 = new Complex(z2);
first calls one constructor, second and third call others

19.4 Class fields

• recall that every object we create has its own copies of all instance fields
sometimes we only want one copy of a field for the whole class
these are called class fields

to create such a field, we use the modifier static

• e.g. a variable in Complex that counts the number of complex objects created

class Complex
{
public static int numComplex = 0;
public double re;
public double im;

etc.
}

• then have constructors update the count

public Complex (double r, double i)
{
re = r;
im = i;
numComplex++;

}

• then, in main method
System.out.println(Complex.numComplex);
would print current number of complex number objects we had created

• note differences in usage
class field: <class>.<identifier>
instance field: <object>.<identifier>

• Class fields and the final modifier
a frequent use of class fields is with values that represent constants
for these, we add the final modifier

e.g. in the Math class, Java has
public static final double PI = 3.141592659...;
public static final double E = 2.7182818...;

we can create such fields for our own classes
e.g. public static final int SIZE = 100;

19.5 toString methods

• print/println converts arguments to strings
for primitive types, no problem

• for objects, not quite so simple
Java has a method called toString that converts objects to strings

38

• problem is that this general method for objects is not usually very useful
it simply prints the class identifier and the address of the object

• as an example, if we had written
Complex z1 = new Complex(-4,3);
then System.out.println(z1);

might print Complex@4A236C

• to get something more useful, we can override the default with our own toString method
one for each class whose values we want to print

• e.g. for Complex class, with fields re and im,
we might want to print <value of re> + <value of im>i

• to do so, we can, in the Complex class, make the following definition

public toString ()
{
return "" + re + " + " + im + "i";

}

39

20 equals Methods, Visibility, and Object Summary

20.1 equals methods

• recall use of equals methods for strings

• objects of any class have a default equals method
not very useful — acts like ==

• we usually replace default with our own version

• might simply check if all fields are equal
appropriate for Complex class

• develop equals method for Complex class
include (and explain) check that explicit object parameter is not null

public boolean equals (Complex c)
{
return c != null && re == c.re && im == c.im;

}

• might be more complex
perhaps check that double fields are within 1% of each other

20.2 Visibility modifiers — hiding information

• the modifier public means that a field or method is visible everywhere — in any class
we may want some methods or fields to be invisible (and unavailable) outside the class
to do so, we can declare them to be private

• why make something private?
don’t want another class to be able to alter it
should only be used here — allows us to encapsulate

• accessor and mutator methods
if we make a field private, how can we gain access to it from outside the class?

use methods that are public

• why?
permit controlled access only — users cannot mess things up

• give examples of accessor methods for Complex class
getRe, getIm

• we may want to allow controlled alteration of fields from outside
for this we use mutator methods
use the example of a Circle class to illustrate utility of mutator methods

• chat about default visibility
if no visibility modifier used then result is package visibility
we haven’t seen packages yet
for us, a package is all classes in the current working directory

• don’t give full rules — too messy — not needed for this course

Accessible to: public protected package private
Same class yes yes yes yes
Class in same package yes yes yes no
Subclass in different package yes yes no no
Non-subclass in different package yes no no no

40

20.3 Comparison of class/instance fields/methods

• brief discussion

• give an example of use of both kinds of method to add complex numbers

• make sure they understand differences

20.4 Summary

• what have we achieved with our creation of a Complex class?
we can now operate with complex numbers without worrying about details

e.g. add, subtract, multiply, etc.

• this is a commonly seen feature
hide details — user can focus on interactions between objects

• look briefly at some aspects of Fraction class in text

• refer them to Section 6.8 in text
note examples — no details of fraction arithmetic

41

21 Arrays

21.1 Introduction

• idea of a group name for a collection of items of the same type (any type)

• e.g. marks on assignments

Asst 1 2 6
Mark 85 92 73

• math analogy: x1, x2, . . . , xn

• terminology:
index (rather than subscript) (plural: indices)
component or element

21.2 Creating arrays in Java

• index starts at 0 — no choice

• e.g. an array to store 6 marks would have components called
marks[0], marks[1], ... , marks[5]

• to create an array for our six marks, we could write
int[] marks;
marks = new int[6];

• this is just like the creation of any other object
the first line tells the compiler what kind of object marks will be — an int array
the second line asks the compiler to actually create an instance of such an array

and to have marks refer to it

• after second line, we have, pictorially

marks

0 0 0 0 0 0

0 1 2 3 4 5

-

the variable marks stores the address in memory of the first cell of the array

• we could, and usually do, combine declaration and initialization
int[] marks = new int[6];

21.3 Automatic initialization

• just as fields of an object are automatically initialized when object is constructed
elements of arrays are also automatically initialized when array is created

• same initialization values we saw for object fields
0 for integers
0.0 for floating point values
0000 0000 0000 0000 for char
false for boolean
null for objects

42

21.4 References to arrays

• suppose we have written int marks = new int[6];

• if we now were to write
int[] myMarks = marks;
we would not get a new array

only get myMarks referencing the same array as marks
i.e. we would copy the address in marks to the variable myMarks

• if we want myMarks to refer to a different array, we could write
int[] myMarks = new int[6];

21.5 Initialization of arrays

• can initialize arrays in declarations (as we did for previous types)

• e.g. int[] list = {5,7,10};

• this avoids the use of new

21.6 Operating with arrays

• suppose we have an array declared by:
double[] list = new double[MAX];

• don’t need to know MAX
can (and usually do) use the field list.length

• setting the elements of an array to one

for (i = 0; i < list.length; i++)
list[i] = 1.0;

• note: i < list is preferable to i <= list.length - 1

• summing the components of an array

sum = 0;
for (i = 0; i < list.length; i++)
sum += marks[i];

• reversing the elements of an array
develop the following slowly

for (bottom = 0, top = list.length - 1; bottom < top; bottom++, top--)
{
temp = list[bottom];
list[bottom] = list[top];
list[top] = temp;

}

43

22 Multi-Dimensional Arrays

22.1 Two-dimensional arrays

• concept
it is often useful to be able to store data in a tabular form

• we can easily create such a structure in Java
int[][] table;
table = new int[3][4];

• can think of this as 3 rows, 4 columns

• really what we have here is an array of 3 items, each of which is an array of 4 ints

• draw diagrams of a table and three rows of four cells

• note identifiers
table
table[i]
table[i][j]

be sure that they are clear on uses and differences

22.2 Initialization

• int[][] table = {
{4,5,7},
{2,3,8}

};

• note: semi-colon, commas
inner braces can be omitted but not a great idea

22.3 Non-rectangular 2-D arrays

• it is possible to have, for example,,

int[][] raggedArray = {
{2,3,5},
{4,7},
{1},
{9,3,4,5,2}

};

• can use length field on any 2D arrays

• for the array above,
raggedArray.length is 4 (# of rows)
raggedArray[1].length is 2 (# of items in row 1)

22.4 Examples

• determine the result of the following code

int i, j;
int[][] table = new int[4][4];
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)

table[i][j] = i - j;

• print a table using nested for statements
use various orderings of rows/cols

44

• for (int i = 0; i < a.length; i++)
{
for (int j = 0; j < a[i].length; j++)

System.out.println(a[i][j]);
System.out.println();

}

etc.

22.5 Higher dimensional arrays

• no problem

• think of 2D as a table with rows and cols
3D — book containing pages of tables
4D — a set of books of pages of tables
etc.

• few details — see text

22.6 Arrays of objects

• suppose we want to set up an array of 100 complex numbers

• we could start by writing, in main, say

public static final int MAX = 100;
Complex[] list = new Complex[MAX];

• this would give an array of 100 references — each one initialized to null
draw a diagram to illustrate this

• to make each of these actually point to an object of type Complex, we could write

for (int i = 0; i < MAX; i++)
list[i] = new Complex();

• all the resulting Complex objects would be initialized to represent 0 + 0i
draw a diagram to illustrate this

• if we wanted to give the 5th element the value 2 + 7i, we could write

list[4].re = 2;
list[4].im = 7;

45

23 Strings

23.1 Review of strings

• so far, we have seen String constants (literals)
e.g. "Hello, world"

• we have also seen String variables
creating

TTab String s1 = "Hello";
can also use long form

TTab String s1 = new String("Hello");
explain difference

• strings are immutable objects
e.g. "Hello" cannot be changed

however, s1 can be changed

• for example, we were to write
s1 = "hello";

then s1 would now refer to the new string "hello"
the old string "Hello" would not be alterd

• if we write
s2 = s1;

then this causes s2 to refer to the same string to which s1 is currently referring

23.2 Earlier string methods

• boolean equals (String s)
return true iff implicit string and parameter are identical

• int compareTo (String other)
returns < 0 if implicit String precedes explicit parameter
returns 0 if implicit String is identical to explicit parameter
returns > 0 if implicit String followss explicit parameter

• look at some examples using compareTo
"cat".compareTo("cast") returns > 0
"CAT".compareTo("cat") returns < 0

23.3 New methods from the String class

• int length ()
if we have

String s = "Sample";
then s.length() returns the value 6, the number of characters in s

• cf. arrays: list.length
with arrays, length is an instance field
with strings, length is an instance method

• char charAt (int position)
returns the character at the given position in a string
for same string as in previous example,

c = s.charAt(3);
assigns c the value ’p’
(because we start counting from zero, as we do with arrays)

similarly,
s.charAt(0) would return ’S’

46

• int indexOf (char c)
returns index of leftmost occurrence of c in in its implicit object
returns −1 if no such occurrence

indexOf method is overloaded
second form has header

int indexOf (char c, int i)
this form starts looking at index i

e.g. if we have String t = "Toronto";
then t.indexOf(’o’,2) returns 3

• do an example — counting all occurrences of a character c in a string s
soluion using charAt
solution using indexOf

• String substring (int start, int pastEnd)
String substring (int start)

returns a string that is a substring of the argument
first form returns a string beginning at start and up to (but not including) pastEnd
e.g. s.substring(1,4) returns "amp"

note that pastEnd − start gives length of substring
second form goes to end of string

• an example — printing all the words in a String, one per line
assume that:

there is exactly one blank separating words,
there are no leading or trailing blanks,
there is no punctuation

• leave this with them for now

47

24 Strings (cont.)

24.1 Midterm test

• return tests

• chat briefly about marks

24.2 Problem from last day

• recall problem of printing words of a string one word/line

• develop solution slowly, with backtracking
many possibilities — here is one

s = s + " ";
int start = 0;
int pastEnd = s.indexOf(’ ’);
while (start < s.length())
{
System.out.println(s.substring(start,pastEnd));
start = pastEnd + 1;
pastEnd = s.indexOf(’ ’,pastEnd + 1);

}

24.3 String methods (cont.)

• String trim ()
returns a string with all whitespace removed from beginning and end of its string
whitespace consists of blanks, tabs, and newlines
e.g. String s = " Sample ";

s1.trim() returns "Sample"

• String toLowerCase ()
this method returns a lower case version of its string
e.g. s.toLowerCase() returns "sample"

• String toUpperCase ()
returns an upper case version
e.g. s.toUpperCase() returns "SAMPLE"

• boolean equalsIgnoreCase (String s)
returns true iff implicit string and explicit parameter are equal (if case is ignored)

24.4 Arrays of strings

• no new problems
show how to create an array of strings
use long way

String[] names = new String[3];
show diagram of result of this

names[0] = "Anna";
names[1] = "Ben";
names[2] = "Chloe";

show diagram

• then use short way — declaring and initializing at the same time
e.g. String[] toppings = {"pepperoni", "mushrooms", "cheese"};

show diagram

48

• discuss command line arguments briefly
relate them to header of main method

refer them to the text for more details
note that command line arguments will not be on exam

49

25 Strings (cont.)

25.1 Strings from things

• we can obtain a string representation of anything

• for an object, we can use the object’s toString method

• for primitive types, we can use the method valueOf
a class method in the String class

• method is overloaded so that we can pass any primitive type as argument

• examples
String.valueOf(-27) returns "-27"
String.valueOf(’$’) returns "$"

25.2 Chaining of methods

• suppose that we have
String s = "Sample";
it is valid to use expressions like s.toUpperCase().indexOf(’A’)

in this case, this will return the value 1

• explain

• note that this does not change string referred to by s

25.3 A common error with strings

• suppose we want to change the string s whose value is currently "Sample" to "Simple"

• we could try writing
s.substring(1,2) = "i";

• show why this fails

• show correct way to do this
s = s.substring(0,1) + "i" + s.substring(2);

25.4 Strings as parameters

• no problem
can pass any data type as a parameter

• in passing an array or a String, the action is similar to that for any other reference type
we pass the value of the reference to the object

• as an example, suppose we want a method to attach asterisks to each end of a string
try writing code

public static void addStars (String s)
{

s = "*" + s + "*";
}

• show why this fails and show correct version

50

25.5 Arrays and the swapping problem

• (this material should have been done with arrays)

• recall attempt to swap elements

public static void swap (double x, double y)
{
double temp;
temp = x;
x = y;
y = temp;

}

• trace this in attempting to exchange two elements of array list using the call
swap(list[i],list[j]);

• be sure that they understand why this doesn’t work

• attempt #2

public static void swap (double[] a, int i, int j)
{
double temp;
temp = a[i];
a[i] = a[j];
a[j] = temp;

}

• again, make sure that they understand why this does work

25.6 The StringTokenizer class

• mention briefly

• details in text — §9.4

• note that they are not responsible for this

51

26 Searching

26.1 Intro to searching

• problem
given a list of values, each of which has a key (usually unique)
we want to search for an item with a particular key

• in practice, we will usually be dealing with objects in which one field is the key
for our purposes, we will simply search an array of values, called list for item

• after searching for an item, we may want to do a variety of things with it
alter it
print it
delete it
etc.

• to make the methods that we create as flexible as possible,
we will simply have them return the index in the list of the item
return an impossible index value (-1) if we fail to find the item

26.2 Sequential search (linear search)

• explain algorithm

• develop basic Java version

int seqSearch (double item, double[] list)
{
int location = -1;
for (int i = 0; i < list.length; i++)

if (list[i] == item)
location = i;

return location;
}

• how can we improve this?

• develop improved version

public static int seqSearch (double item, double[] list)
{
int location = -1;
boolean found = false;
for (int i = 0;i < list.size && !found; i++)

if (item == list[i])
{

location = i;
found = true;

}
return location;

}

• also look at and discuss shorter version

public static int seqSearch double item, double[] list)
{
for (int i = 0; i < list.length; i++)

if (item == list[i])
return i;

return -1;
}

52

26.3 Binary search

• if a list is sorted, we can take advantage of this in our searching

• lead up to idea of binary search
each time we can eliminate half the remaining items

in fact, more than half — can eliminate middle item as well as one half

• do an example
part 1 — item in list
part 2 — item not in list

• how do we stop the search?
if successful, no problem
if we fail, how do we know?

bottom and top pointers close in on each other
once we get down to one, if we fail there, pointers cross over

26.4 Implementation of binary search

• recall ideas from last day

• develop code

public static int binSearch (double item, double[] list)
{
int low = 0;
int high = list.length - 1;
int location = -1;
boolean found = false;

while (low <= high && !found)
{

middle = (low + high)/2;
if (item == list[middle])
{

location = middle;
found = true;

}
else if (item < list[middle])

high = middle - 1;
else

low = middle + 1;
}
return location;

}

53

27 Sorting

27.1 Introduction to sorting

• chat briefly about variety of sorting techniques
fairly vague discussion

• we will be examining four or five sorting algorithms
they only need to know how to implement the first
for others, they should understand the algorithms

not required to code them

27.2 Selection sort

• discuss idea and give an example

• develop code for selection sort slowly
start with code for one pass

then wrap this in an outer loop

public static void selectSort (double list[])
{
int top, largeLoc, i, temp;
for (top = list.size - 1; top > 0; top--)
{

// find largest from 0 to top
largeLoc = 0;
for (i = 1; i <= top; i++)

if (list[i] > list[largeLoc])
largeLoc = i;

// put largest at top
temp = list[top];
list[top] = list[largeLoc];
list[largeLoc] = temp;

}
}

• note possible variation
could start by putting smallest in first location
seen in some texts

• sort is easily adapted to finding top ten, bottom three, etc.

27.3 Insertion sort

• discuss algorithm informally and give an example

• do not give code — it is in text if they are interested (§10.3)

• point out tricky bit
insert when we find a smaller value or when we get to front of list

• note that it may take a lot of work to implement algorithm if list gets long

27.4 Bubble sort

• analogy of children ordering themselves by height in a line
if each child is happy with immediate neighbours, entire line is ordered

• discuss algorithm and give an example

54

• do not give code — again, it is in text if they want it (§10.5)

• note problem with small values taking many passes to get to final location
cocktail shaker sort helps to some extent

discuss it briefly

• generally, bubble sort is very slow — don’t use it

27.5 Shellsort

• a clever use of repeated insertion sorts

• much faster than any of the other sorts we have seen

• not on our course — in text for those interested (§10.6)

55

28 Recursion

28.1 Introduction to recursion

• recursion in expression evaluation — BEDMAS
try to get them to see the recursive aspect of the algorithm

• essential features of any recursive process
process is defined in terms of a “simpler” version of itself
must be some simple case that stops the recursion

a base case or simple case

28.2 Recursion in everyday processes

• consider problem of walking across room
one step at a time

• old way of thinking: a loop
keep taking steps until we reach the wall

• new way of thinking
to WALK ACROSS A ROOM

if we are at the far wall
we are done // simple case

else
take one step
WALK ACROSS THE REST OF THE ROOM

28.3 Recursively defined functions

• defining and evaluating a term

• consider an example something like

f(n) =

{
2f(n − 1) + 1 n > 0
3 n = 0

analogy with phoning and putting people on hold

• note inefficiency of recursion with functions
recursive statement of function definition may be very simple
recursive implementation is very inefficient

recursion should not be used for this purpose

• as we shall see later, there are situations that
have the simplicity of recursion
are still efficient

28.4 Implementing recursion in Java

• computing values of

f(n) =

{
2f(n − 1) + 1 n > 0
3 n = 0

• develop following method
assuming valid argument values

56

public static int f (int n)
{
int value;
if (n == 0)

value = 3;
else

value = 2*f(n-1) + 1;
return value;

}

28.5 Another example n!

• recall non-recursive definition
suggest computation using a loop

• show how to form recursive definition — with base of 0! = 1

• develop following code

public static int factorial (int n)
{
int value;
if (n < 0)
{

System.out.println("Invalid argument to factorial - 0 returned");
value = 0;

}
else if (n == 0)

value = 1;
else

value = n * factorial(n-1);
return value;

}

• note that we could also write the definition as:

public static int factorial (int n)
{
if (n < 0)
{

System.out.println("Invalid argument to factorial - 0 returned");
return 0;

}
if (n == 0)

return 1;
return n * factorial(n-1);

}

• chat briefly about merits of each form

28.6 Binary search revisited

• recall non-recursive form of algorithm

• in recursive form, think of each copy of the method working on part of the problem

• new header: public static int binSearch (String[] list, String item, int low, int high)

• leave problem of developing rest of code to next class

57

29 Recursion (cont.)

29.1 Recursive form of binary search

• recall header of last day — complete code

public static int binSearch (String[] list, String item, int low, int high)
{
int location;
if (high < low) // failure - item not in list

location = -1;
else
{

int middle = (low + high)/2;
if (item.compareTo(list[middle]) == 0) // success

location = middle;
else if (item.compareTo(list[middle]) < 0) // try bottom half

location = binSearch(item,list,low,middle-1);
else // try top half

location = binSearch(item,list,middle+1,high);
}
return location;

}

• note that it is a nuisance to use this method
first call might take the form

position = binSearch(names,name,0,names.length-1);

• we can eliminate this problem by breaking solution into two parts:
an initially called method to get things started
a recursive helper method to take over after the initial call

• method called by user has form
public static int binSearch (String[] list, String item)
{
return binSearch(item,list,0,list.length-1);

}

• most of the work is done by the helper method

• usually make recursive helper method private
in this way, the user does not need to worry about specifying bounds (required by recursion)

29.2 Towers of Hanoi

• show problem with something visual (mixing bowls work well)

• develop algorithm and then show code

public static void moveTower (int height,int start,int finish)
{
if (height == 1)

System.out.println(start + " ---> " + finish);
else
{

int other = 6 - (start + finish); // explain!
moveTower(height-1,start,other);
System.out.println(start + " ---> " + finish);
moveTower(height-1,other,finish);

}
}

58

• look at timing briefly
universe is to end when monks finish their task

show that one move per second gives about 5.8× 1011 a
compare to time since big bang — about 1.4 × 1010 a

• note that algorithm is exponential — such algorithms are totally impractical

29.3 Printing patterns recursively

• e.g. printing a row of stars

public static void printRow (int n)
{
if (n < 1)

System.out.println();
else
{

System.out.print(’*’);
printRow(n-1);

}
}

• e.g. printing a triangle of stars of the form

**
*

• develop method to print this
note that base case (n == 0) requires that we do nothing

public static void printTriangle(int n)
{
if (n > 0)
{

printRow(n);
printTriangle(n-1)

}
}

• perhaps also look at problem of printing an inverted triangle

*
**

• show how we can adapt previous method

59

30 Recursion (cont.)

30.1 Quicksort

• discuss algorithm and illustrate it with cards
do not develop the following code

private void quickSort (double[] list, int low, int high)
{
double pivot = list[low];
int left = low;
int right = high;

if (low < high)
{

while (left < right)
{

while (list[right] >= pivot && left < right)
right--;

list[left] = list[right];

while (list[left] <= pivot && left < right)
left++;

list[right] = list[left];
}
list[left] = pivot; // or right - they are equal

quickSort(list,low,left-1);
quickSort(list,right+1,high);

}
}

• do, however, show header that would be required for recursive calls

• make recursive form of method a helper method
with extra parameters for bounds

• user calls the following method

public static void quickSort (double[] list)
{
quickSort(list,0,list.length - 1);

}

• helper method then works recursively, calling itself as necessary

30.2 Euclid’s algorithm for gcd’s

• a classic example of recursion

• develop basis of algorithm with class
to find gcd(m, n)

let gcd be g
then m = ga, n = gb
g will also be a factor of m − n = ga − gb

• do an example: gcd(20, 8)

60

• formalize algorithm

gcd(m, n) =

m if m = n

gcd(n, m) if m < n

gcd(n, m − n) if m > n

• show how rules are applied to determination of gcd(8, 20)

• develop code

public static int gcd(int n)
{
if (m == n)

return m;
if (m < n)

return gcd(n,m);
return gcd(n,m-n);

}

• see text (p. 435) for a more efficient version of gcd

30.3 Recursion with strings

• can think of a string as a character followed by a string
(or a character preceded by a string)
(or two characters enclosing a string)

• by thinking in these ways, we can develop recursive algorithms

• as an example, consider the problem of reversing a string

• outline an algorithm for this

• refer them to text (p 447) for details

30.4 Backtracking

• very brief outline of concept

• refer them to text (§11.6) for details and examples

30.5 Determining powers efficiently

• if there is time, examine problem of determining xn efficiently

• start by looking at problem of minimizing number of multiplications to find xn

e.g. x8, x20, . . .

• try to get them to see that

xn =

(
x

n
2
)2 if n is even(

x
n−1

2

)2

× x if n is odd

• then develop Java code

public static double power (double x, int n)
{
if (x == 0)

if (n == 0)
return NaN;

else

61

return 0.0;
if (n < 0)

return 1.0/power(x,-n);
if (n == 0)

return 1.0;
double temp;
if (n % 2 == 0)
{

// n is an even positive value
temp = power(x,n/2);
return temp * temp; // spend some time explaining this

}
else
{

// n is an odd positive value
temp = power(x,(n-1)/2)
return x * temp * temp;

}
}

62

31 ADT’s and Linear Lists

31.1 ADT’s

• often it is useful to separate the problems of
what we want to do
how we are going to do it

• to look at the first part, we can use ADT’s

• define ADT informally
a collection of data and abstract methods to manipulate the data

• an example: the BigFraction class

• the specification of the BigFraction class as an ADT was in the handout
operations were addition, subtraction, etc.

• from a user’s point of view, BigFraction objects and operations are part of Java

31.2 Separating ADT’s and implementations

• allows us, when using the ADT, to treat it in a natural way
add two fractions, etc.
don’t worry about how it is done
we are simply working with fractions

• gives us flexibility
if we decide that an implementation is flawed, we can replace it
need not change anything else

• think of the ADT as a contract between the developer and the user
the user only needs to know what external behaviour to expect
this is described by the ADT
developer can then proceed in any way that is compatible with the contract

31.3 The linear list ADT

• an example
we could define an ADT for lists of integers

structure
a finite sequence of nodes
since a sequence, order is implied
a node is an undefined term — some collection of data

possible operations
start a new, empty list
insert a new item into the list
delete an item with a given value
search for an item in the list
print the list
etc.

• to implement such an ADT, we could use
individual cells
arrays
other structures — as we shall see shortly

63

31.4 Introduction to linked lists

• we have seen that we can create linear lists using arrays

• a problem with such an implementation
insertions and deletions require a great deal of data movement

• a solution to this is to use linked allocation

• draw a diagram showing a linked list of nodes

• show insertion, deletion pictorially

31.5 Implementation of linked lists

• suppose that the items to be stored in the list are integers

• each node of the list will contain two fields
info — an information field
link — a reference to the next node

• we can create a class to define these objects

class Node
{
int info;
Node link;

}

• note — no public/private modifier — more soon

• to create nodes that contain initial values, we could add a constructor

class Node
{
int info;
Node link;

Node (int item, Node next)
{

info = item;
link = next;

}
}

31.6 Adding nodes to a linked list

• suppose that we want to create such a list

• we could write, in our main method, for example,
Node first = new Node(7,null);
to give us a new element containing 7 in its info field

• illustrate result

• if we want to build a list. we could do so by writing
first.link = new Node(4,null);

• show diagram

• we could continue with
first.link.link = new Node(8,null);

64

• show new diagram

• again
first.link.link.link = new Node(2,null);

• add this diagram

• this, clearly, gets silly

• we need some other solution

31.7 Avoiding excessive link references

• one solution to this problem:
try to build the list at the head, rather than at the tail

• develop an example — with lots of diagrams

• start with
Node second = new Node(8,null);

• then add a node in front of this
second = new Node(5,second);
lots of time explaining this

• then add a third node
second = new Node(2,second);

65

32 Linked Lists (cont.)

32.1 Introduce a List class

• last day, we talked about a Node class

• we do not, however, want a user to be aware of the implementation
could be an array, could be a linked list

• the user should deal with a List class
public methods there should be only thing user sees

• last day we saw that the beginning of a linked list was a reference to the first node
we put this reference into a List class

call it head — refers to the beginning or head of the list

• we can now start to define a List class

class List
{
private Node head;

}

• show diagram of a list
a List object with head referring to first Node object

• perhaps add constructors

class List
{
private Node head;

public List ()
{

head = null;
}

public List (int item)
{

head = new Node(item,null);
}

}

• show results of executing (in main) the statements
List list1 = new List();
List list2 = new List(4);

32.2 Integrating the List and Node classes

• we want a user to see only the interface methods, not the list structure
this presents a visibility problem for the Node class

• if we make fields of Node class private,
they cannot be seen from outside the Node class
so how can they be seen from within the List class?

• if we make them public,
everybody can see (and alter) them

• Java’s solution is to allow us to create inner classes
in our case, the class Node is defined within the class List
fields and methods of inner class can only be seen from enclosing class

66

• result is:

class List
{
private Node head;

class Node
{

int info;
Node link;

Node(int i, Node l)
{

info = i;
link = l;

}
} // end of inner class

// constructors and methods of List class
.
.
.

}

32.3 Moving along a linked list

• we cannot always avoid the problem of looking along the list

• as an example, suppose we have created a linked list
with an arbitrary number of nodes

• show diagram

• suppose we want a method that prints the items in the list

• develop the following (carefully and slowly)

public void printList ()
{
Node current = head;
while (current != null)
{

System.out.println(current.info);
current = current.link;

}
}

32.4 Insertion into the tail of a linked list

• we can adapt this traversal technique to many situations

• as an example, a method to insert a new node as the last node of a list

• develop the following:

public void insertAtTail (int item)
{
if (head == null)

head = new Node(item,null);
else
{

67

Node temp = head;
while (temp.link != null)

temp = temp.link;
temp.link = new Node(item,null);

}
}

• note that we control the loop using current.link != null
before we used current != null
why the change?

68

33 Practice with Linked Lists

33.1 Deletion from front of a list

• draw diagrams: before and after

• develop code

public void deleteFirst ()
{
if (head != null)

head = head.link;
}

33.2 Deletion from rear of a list

• draw diagrams

• spend lots of time showing that traversal must stop at second last node

• note that there are now two special cases
empty list
list with a single node

• develop code

public void deleteLast ()
{
if (head != null)

if (head.link == null)
head = null;

else
{

Node temp = head;
while (temp.link.link != null)
temp = temp.link;

temp.link = null;
}

}

33.3 Searching for an element in a list

a method to determine whether or not an item is in a list

• public boolean contains (int item)
{
Node current = head;
boolean found = false;
while (current != null && !found)

if (current.info == item)
found = true;

else
current = current.link;

return found;
}

69

33.4 Insertion into an ordered list

• draw diagrams: before and after

• show need to look ahead in comparisons
could use temp.link.link approach as in tail deletion

• as an alternative, use two references that traverse the list in tandem current and previous

• draw diagrams showing previous and current on either side of gap
easy to change links once we have this situation

• sketch process
note that lists with zero nodes or one node may be special cases

• refer them to code in text, more or less like the following
public void insert (int item)
{
Node current, previous;
boolean found = false;

current = head;
while (!found && current != null)

if (item < current.info)
found = true;

else
{

previous = current;
current = current.link;

}

Node newNode = new Node(item,current);
if (current == head)

head = newNode;
else

previous.link = newNode;
}

33.5 Deletion of all occurrences of an item from a list

• if there is time, develop the following

• public void deleteAll (int item)
{
while (head != null && head.info == item)

head = head.link;
if (head != null)
{

Node current = head.link;
Node previous = head;
while (current != null)
{

if (current.info == item)
previous.link = current.link;

else
previous = current;

current = current.link;
}

}
}

70

34 Stacks

34.1 Informal introduction

• a linear list in which all insertions/deletions take place at one end (the top)

• analogy with dishes in a cafeteria

• also called a LIFO (last in — first out) list
also called a push-down store

• already encountered in discussion of recursion
calls to friends pile up
when we return from a call, we return to the last copy in the list

• also can be seen in many other contexts
e.g. Back function in a web browser

34.2 The ADT stack

• a linear list with the following operations:

• new create a new, empty stack

• push(item) insert a new item onto the top of the stack

• pop() remove the item at the top of the stack and return it
if stack is empty, signal in some way

• peek() return value of item at top — don’t remove it

• isEmpty() return true/false if stack is empty/non-empty

34.3 Implementing a stack with an array

• intuitively, it should not be hard

• for implementation details, see text pp.332–334

34.4 Implementing a stack with a linked list

• again, suppose that each node is to store an integer
nodes could be defined in the usual way — as an inner class

• show some of the following to implement the ADT stack

class Stack
{
private Node top;

public Stack ()
{

top = null;
}

class Node
{

int info;
Node link;

Node (int i, Node n)
{

71

info = i;
link = n;

}
}

public void push (int i)
{

Node temp = new Node(i,top);
top = temp;

}

public int pop ()
{

if (top == null)
throw new RuntimeException("Stack underflow");

else
{

int i = top.info;
top = top.link;
return i;

}
}

public int peek ()
{

if (top == null)
throw new RuntimeException("...");

else
return top.info;

}

public boolean isEmpty ()
{

return top == null;
}

}

34.5 Introduction to queues

• a linear list with
all insertions made at one end (the rear)
all deletions made at the other end (the front)

• also called a FIFO list

• term is used in English for a line of people at a bus, a bank, etc.

• a democratic regime — item waiting longest is served next

• an example — a LAN with a single printer
requests for printing come at unpredictable times
if server is free, request is processed
if busy, put request in a queue (the print queue)

34.6 The ADT queue

• a finite sequence of items (first at front, last at rear)
with the following operations:

72

• new create a new, empty queue

• enqueue(item) add a new item at the rear of the stack

• dequeue remove the item at the front of the queue and return it
if queue is empty, signal in some way

• peek return value of item at front of the queue
leave queue unchanged

• isEmpty return true/false if queue is empty/non-empty

34.7 Implementation using arrays

• chat very briefly about this
they are not responsible for this implementation

• note problems — not too much detail

• problems can be solved
often a useful representation

34.8 Implementation using linked lists

• similar to Stack class but now we need two references:
to front and rear

• show how a queue could be represented using a linked list

• where should we put front and rear?
convince them that front is at head of list, rear is at tail

each node is “looking back” in the queue

• empty queue?
either front or rear set to null

• then create a class Queue with some methods:

class Queue
{
private Node front, rear;

public Queue ()
{

front = rear = null;
}

class Node
{

int info;
Node link;

Node (int i, Node n)
{

info = i;
link = n;

}
}

public void enqueue (int item)
{

73

Node temp = new Node(item, null);
if (rear != null)

rear = rear.link = temp;
else

rear = front = temp;
}

public int dequeue ()
{

if (rear == null)
throw new RuntimeException("...");

else
{

int temp = front.item;
if (front.link == null)
rear = null;

front = front.link;
}

}

etc.

}

34.9 Applying queues

• if there is time, show how to implement quicksort using queues
no recursion

• recall idea behind quicksort

• recursion helped us because we did not have to keep track of all the sub-intervals
we can use queues and do the bookkeeping ourselves

• an example: 15 10 18 6 23 20 9 4 27 24 16 7
carry this through three partitions

• then develop algorithm:
enqueue boundaries of original unsorted list

while queue is not empty
dequeue boundaries of an unsorted list
partition it (placing one item in its final position)
enqueue both sub-lists (if they contain more than one item)

• develop code for method

public static void quickSort (int[] list)
{
// Create a queue, initialized with original array’s bounds
Queue bounds = new Queue();
bounds.enqueue(0);
bounds.enqueue(list.length-1);

// loop while there are still unsorted sub-lists
while (!bounds.isEmpty())
{

// Get bounds of unsorted sub-list
int left = bounds.dequeue();
int right = bounds.dequeue();

74

// Partition it (method not shown)
int mid = partition(list,left,right);

// Save bounds of non-trivial sub-lists after partitioning
if (left < mid-1)
{

bounds.enqueue(left);
bounds.enqueue(mid-1);

}
if (mid+1 < right)
{

bounds.enqueue(mid+1);
bounds.enqueue(right);

}
}

}

75

35 Linked lists and Recursion

35.1 Recursive structure of a linked list

• we can think of a linked list as being composed of two parts
the first node — the head
the other nodes — the tail

• show them a diagram

List

head
Node

3info

link

Node

9info

link

Node

2info

link

- - - p p p
The tail

• thinking in this way, we can develop recursive algorithms to process a list
take care of the head
process the tail recursively

• simple case?
the empty list

35.2 Printing a linked list recursively

• as a first try, consider

public void printList ()
{
if (head != null)
{

System.out.println(head.info);
head.link.printList();

}
}

• we could then call this by writing

List myList = new List();
.
.

myList.printList();

• analyze this, with diagrams, to show them what is wrong with it
myList of type List, head.link of type Node

• then show, slowly and carefully, how to fix it using inner classes

• in the List class
a method to

check if list is/is not empty
call the recursive method if there is something to print

public void printList ()
{
if (head != null)

head.printList();
}

76

• in the Node class
a recursive helper method to print a non-empty list

void printList ()
{
System.out.println(info);
if (link != null)

link.printList();
}

35.3 Insertion into an ordered list

• develop, slowly and carefully

• in the List class
a method to

insert a node into an empty list
insert a node at the front if appropriate
call the recursive version otherwise

public void insert (int item)
{
if (head == null || item < head.info)

head = new Node(item,head);
else

head.insert(item);
}

• in the Node class
a recursive helper method to insert a node

into the tail of a non-empty list

void insert (int item)
{
if (link == null || item < link.info)

link = new Node(item,link);
else

link.insert(item);
}

35.4 Searching for an item in a list

• a boolean method that searches for an item

• in the List class

public boolean contains (int item)
{
boolean result;
if (head == null)

result = false;
else

result = head.contains(item);
return result;

}

• in the Node class

boolean contains (int item)
{
boolean result;

77

if (info == item)
result = true;

else if (link == null)
result = false;

else
result = link.contains(item);

return result;
}

78

36 Binary Trees

36.1 Introduction

• linear lists are one-dimensional

• sometimes relationships among data have more dimensions
e.g. airline networks 2D

lattice structures — 3D

• a common 2D structure is a hierarchical one
show a tree

• for many problems, we can restrict ourselves to a simpler structure
show a binary tree

• introduce some nomenclature (informally, with an example)
root, leaves, children (left and right), parents, siblings, descendants, ancestors

36.2 Formal definition of a binary tree

• give definition and note recursive aspects

• to obtain an ADT, we need operations
could have

print all nodes
insert an item
delete an item
etc.

depends on application

36.3 Traversals

• recall list traversals

• now many possible orderings

• introduce ideas of preorder, inorder, postorder traversals
examples of traversals of all three kinds
note that there are other possibilities — depends on application

36.4 Array implementation of binary trees

• fairly brief

• children of item at index i are located at 2i + 1 and 2i + 2

• fine for bushy trees — bad for stringy trees
show why this is so

79

37 Binary Trees (cont.) and Binary Search Trees

37.1 Linked implementation of binary trees

• show diagram pointing out that
the root is referenced by a field in a BinaryTree object
the other nodes are referenced by values in Node objects

similar to setup with linked lists

• show basics — fields and constructors of BinaryTree class and inner Node class

• show how to perform a preorder traversal, printing values in info fields

• first call is passed a BinaryTree object (implicitly — as an instance variable)

• if null, nothing to do
otherwise, call traversal of non-null tree

public void prePrint () // in class BinaryTree
{
if (root != null)

root.prePrint(); // in class Node
}

• subsequent calls are passed references to Node objects
implicitly — as an instance variable

• each call prints value at root (of sub-tree)
and call traversals of non-null sub-trees

public void prePrint () // in class Node
{
System.out.println(info);
if (lChild != null)

lChild.prePrint();
if (rChild != null)

rChild.prePrint();
}

37.2 Binary search trees

• give definition
clarify difference between a binary tree and a BST

a BST is a type of binary tree
not all binary trees are BST’s

• give an example
draw a tree structure, put 50 at the root

have them supply valid values for other nodes

37.3 Traversal of a binary search tree

• note that an inorder traversal visits nodes in ascending order

• do an example

80

38 Binary Search Trees (cont.)

38.1 Insertion in a binary search tree

• develop following code

• note the way the code uses an inner class
to encapsulate the structure and methods

class BinSearchTree
{
private Node root;

public BinSearchTree ()
{

root = null;
}

// Initiate insertion of a new node into a tree
public void insert (int item)
{

Node newNode = new Node(item,null,null);
if (root == null)

root = newNode;
else

root.insert(newNode);
}

class Node // an inner class
{

Node lChild;
int info;
Node rChild;

Node (int i, Node l, Node r)
{

info = i;
lChild = l;
rChild = r;

}

// Insert a new node into its correct position
// in a non-empty binary search tree
void insert (Node newNode)
{

if (newNode.info < info)
if (lChild == null)

lChild = newNode;
else

lChild.insert(newNode);
else
if (rChild == null)

rChild = newNode;
else

rChild.insert(newNode);
}

} // end of Node class
} // end of BinSearchTree class

81

38.2 Deletion from a binary search tree

• a nasty business — too hard for us

• sketch ideas
note that they are not responsible for deletion

38.3 Notes on final examination

• old exams are posted on course website
solutions will be posted about a week before the exam

• they are responsible for all material taught in lectures
emphasis will be on material since midterm

• text references:
Chapters 1–6 and 8–12
omit: §§ 8.5, 9.4, 10.6, 10.7, 10.8, 11.6, 11.8

• exam is on April 20, at 2:00
I will be available for extra help during the preceding week
try to arrange some days and times that are convenient for them

class agreed on
Monday April 18, from 12 to 2
Tuesday April 19, from 12 to 2

if they need help at some other time, send me e-mail

82

