

SC 343 – Introduction to Databases Entity vs. Attribute Works_In2 does not Should address be an attribute of Employees or allow an employee to work in a department an entity (related to Employees)? ssn lot for two periods. more Depends upon how we want to use address or information, and the semantics of the data: co the problem of wanting to record sever addresses . Similar ✓ If we have several addresses per employee, address must be an entity (since attributes cannot be set-valued). employee: to record we want values of the descriptive attributes for each instance of this relationship. ✓ If the structure (city, street, etc.) is important, address must be modeled as an ssn Employ entity (since attribute values are atomic).

Entity vs. Attribute (Cont.) from to did budget did budget Norks In3 nents Duration from to

Now you try it

Courses database:

- Courses, Students, Professors
- Courses have ids, titles, credits. The id is unique.
- Courses have multiple sections that have time, a room and exactly one teacher
- Professors have a unique name
- Students take courses and receive a grade
- Students may repeat a course
- Must track students' course schedules and transcripts including grades, semester taken, etc.
- Must track which classes a professor has taught
- Database should work over multiple semesters

The Entity-Relationship Model -- 14

Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 Yields a high-level description of data to be stored
- ER model popular for conceptual design
 Constructs are expressive, close to the way people
 - think about their applications.
 - Note: There are many variations on ER model
 Both graphically and conceptually
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities, ISA hierarchies, and aggregation.

Summary of ER (Cont.)

- Several kinds of integrity constraints:
- *verlap/covering* for ISA hierarchies.
 Some *foreign key constraints* are also implicit in the definition of a relationship set.
- Many other constraints (notably, functional dependencies) cannot be expressed.
- Constraints play an important role in determining the best database design for an enterprise.

The Entity-Relationship Model -- 15

Summary of ER (Cont.)

- **E**R design is *subjective*. There are often many ways to model a given scenario!
- Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:
 - Entity vs. attribute, entity vs. relationship, binary or n-ary relationship, whether or not to use ISA hierarchies, aggregation.
- Ensuring good database design: resulting relational schema should be analyzed and refined further.

Check for redundancy (see upcoming lectures)

The Entity-Relationship Model -- 17

ER to Relational Mapping

CSC343 -- Introduction to Databases

The Entity-Relationship Model -- 18

Logical DB Design: ER to Relational Entity sets to tables. ssn name lot 123-22-3666 Attishoo 48 name 231-31-5368 Smiley 22 lot ssn 131-24-3650 Smethurst 35 Employees CREATE TABLE Employees (ssn CHAR(11), name CHAR(20), lot INTEGER, PRIMARY KEY (ssn))

✓ Each employee must be in one of these two subclasses.

The Entity-Relationship Model

	CSC343 – Introduction to Databases
Binary vs. Ternary Relationships (Contd.)	
CREATE TABLE Policies	5(
The key policyid INTEGER,	
constraints allow cost REAL,	
us to combine ^{ssn} CHAR(11) NOT N	ULL,
Purchaser with PRIMARY KEY (policy	rid).
Policies and FOREIGN KEY (ssn) R	EFERENCES Employees,
Beneficiary with ON DELETE CASCAL	DE)
Dependents. CREATE TABLE Dependent	lents (
Participation pname CHAR(20),	
constraints lead age INTEGER,	
to NOT NULL policyid INTEGER	
constraints. PRIMARY KEY (pnam	e, policvid).
EOREIGN KEV (policy	id) REFERENCES Policies
ON DELETE CASCAL)F)
ON DELETE CASCAL	The Estility Deletionship Model 21

