
1

Embedded SQL — 1CSC343 Introduction to Databases — University of Toronto

Week 5: Embedded SQL

Update Statements

Embedded SQL — 2CSC343 Introduction to Databases — University of Toronto

Embedded SQL
Traditional applications often need to “embed” SQL
statements inside the instructions of a procedural
programming language (C, COBOL, etc.)
Programs with embedded SQL use a pre-compiler to
manage SQL statements. Embedded statements are
preceded by ‘$’ or ‘EXEC SQL’
Program variables may be used as parameters in the
SQL statements (preceded by ‘:’)
select statements producing a single row and update
statements can be embedded easily.
The SQL environment offers a predefined variable
sqlcode which describes the execution status of an
SQL statement (=0 if it executed successfully).

Embedded SQL — 3CSC343 Introduction to Databases — University of Toronto

Interactive vs. Non-Interactive SQL
Non-interactive SQL: Statements are included
in an application program written in a host
language — such as C, Java, COBOL
Interactive SQL: Statements input from
terminal; DBMS outputs to screen
Interactive SQL is inadequate for most uses:

It may be necessary to process the data
before output;
Amount of data returned not known in
advance;
SQL has limited expressive power — note: not
Turing-complete.

Embedded SQL — 4CSC343 Introduction to Databases — University of Toronto

Application Program
Host language: A conventional
programming language (e.g., C, Java) that
supplies control structures, computational
capabilities, interaction with physical
devices.
SQL: supplies ability to interact with
database.
Using the facilities of both: the application
program can act as an intermediary
between the user at a terminal and the
DBMS.

2

Embedded SQL — 5CSC343 Introduction to Databases — University of Toronto

Preparation
Before any SQL statement is executed, it
must be prepared by the DBMS:

What indices can be used?
In what order should tables be accessed?
What constraints should be checked?

Decisions are based on schema, table sizes,
etc.
Result is a query execution plan.
Preparation is a complex activity, usually
done at run time, justified by the complexity
of query processing.

Embedded SQL — 6CSC343 Introduction to Databases — University of Toronto

Introducing SQL Into the Application
SQL statements can be incorporated into an
application program in two different ways.
Statement Level Interface (SLI): Application
program is a mixture of host language
statements and SQL statements and
directives.
Call Level Interface (CLI): Application
program is written entirely in host language.
SQL statements are values of string variables
that are passed as arguments to host
language (library) procedures

Embedded SQL — 7CSC343 Introduction to Databases — University of Toronto

Statement Level Interface
SQL statements and directives in the
application have a special syntax that sets
them off from host language constructs
e.g., EXEC SQL SQL_statement

Pre-compiler scans program and
translates SQL statements into calls to
host language library procedures that
communicate with DBMS.
Host language compiler then compiles
program.

Embedded SQL — 8CSC343 Introduction to Databases — University of Toronto

Statement Level Interface
SQL constructs in an application take two
forms:

Standard SQL statements (static or
embedded SQL): Useful when SQL portion
of program is known at compile time
Directives (dynamic SQL): Useful when SQL
portion of program not known at compile
time. Application constructs SQL statements
at run time as values of host language
variables that are manipulated by directives

Pre-compiler translates statements and
directives into arguments of calls to library
procedures.

3

Embedded SQL — 9CSC343 Introduction to Databases — University of Toronto

Call Level Interface

Application program written entirely in host
language (no precompiler)
Examples: JDBC, ODBC

SQL statements are values of string variables
constructed at run time using host language
Similar to dynamic SQL

Application uses string variables as
arguments of library routines that
communicate with DBMS
e.g. executeQuery(“SQL query statement”)

Embedded SQL — 10CSC343 Introduction to Databases — University of Toronto

Static SQL

Declaration section for host/SQL
communication.
Colon convention for value (WHERE) and
result (INTO) parameters.

EXEC SQL BEGIN DECLARE S;
unsigned long num_enrolled;
char crs_code;
char SQLSTATE [6];

EXEC SQL END DECLARE SE;
……….

EXEC SQL SELECT C.NumEnrolled
INTO :num_enrolled
FROM CourseCourse C
WHERE C.CrsCode = :crs_code;

Variables
shared by host

and SQL

“:” used to
set off host
variables

Embedded SQL — 11CSC343 Introduction to Databases — University of Toronto

Status

EXEC SQL SELECT C.NumEnrolled
INTO :num_enrolled
FROM CourseCourse C
WHERE C.CrsCode = :crs_code;

if (!strcmp (SQLSTATE, “00000”)) {
printf (“statement failed”)

};

In parameter

Out parameter

Embedded SQL — 12CSC343 Introduction to Databases — University of Toronto

Connections
To connect to an SQL database, use a
connect statement

CONNECT TO database_name AS
connection_name USING user_id

4

Embedded SQL — 13CSC343 Introduction to Databases — University of Toronto

Transactions

No explicit statement is needed to begin a
transaction: A transaction is initiated when
the first SQL statement that accesses the
database is executed.
The mode of transaction execution can be set
with

SET TRANSACTION READ ONLY
ISOLATION LEVEL SERIALIZABLE

Transactions are terminated with COMMIT or
ROLLBACK statements.

Embedded SQL — 14CSC343 Introduction to Databases — University of Toronto

Example: Course Deregistration
EXEC SQL CONNECT TO :dbserver;
if (! strcmp (SQLSTATE, “00000”)) exit (1);

…..
EXEC SQL DELETE FROM TranscriptTranscript T

WHERE T.StudId = :studid AND T.Semester = ‘S2000’
AND T.CrsCode = :crscode;

if (! strcmp (SQLSTATE, “00000”)) EXEC SQL ROLLBACK;
else {

EXEC SQL UPDATE CourseCourse C
SET C.Numenrolled = C.Numenrolled – 1
WHERE C.CrsCode = :crscode;

if (! strcmp (SQLSTATE, “00000”)) EXEC SQL ROLLBACK;
else EXEC SQL COMMIT;

}

Embedded SQL — 15CSC343 Introduction to Databases — University of Toronto

Buffer Mismatch Problem
Problem: SQL deals with tables (of
arbitrary size); host language program
deals with fixed size buffers

How is the application to allocate
storage for the result of a SELECT
statement?

Solution: Fetch a single row at a time
Space for a single row (number and type
of out parameters) can be determined
from schema and allocated in application

Embedded SQL — 16CSC343 Introduction to Databases — University of Toronto

Cursors

Result set – set of rows produced by a
SELECT statement
Cursor – pointer to a row in the result set.
Cursor operations:

Declaration
Open – execute SELECT to determine result
set and initialize pointer
Fetch – advance pointer and retrieve next
row
Close – deallocate cursor

5

Embedded SQL — 17CSC343 Introduction to Databases — University of Toronto

Cursors (cont’d)

SELECTcursor

Base table

Result set
(or pointers to it)application

Embedded SQL — 18CSC343 Introduction to Databases — University of Toronto

Example of Cursor Use
EXEC SQL DECLAREDECLARE GetEnrollGetEnroll INSENSITIVE CURSORCURSOR FOR

SELECT T.StudId, T.Grade — cursor is not a schema element
FROM TranscriptTranscript T
WHERE T.CrsCode = :crscode AND T.Semester = ‘S2000’;

………
EXEC SQL OPENOPEN GetEnroll;
if (!strcmp (SQLSTATE, “00000”)) {... fail exit... };

……….
EXEC SQL FETCHFETCH GetEnroll INTO :studid, :grade;
while (SQLSTATE = “00000”) {

… process the returned row...
EXEC SQL FETCHFETCH GetEnrollGetEnroll INTO :studid, :grade;

}
if (!strcmp (SQLSTATE, “02000”)) {... fail exit... };

……….
EXEC SQL CLOSECLOSE GetEnroll;

Reference resolved at compile time,
Value substituted at OPEN time

Embedded SQL — 19CSC343 Introduction to Databases — University of Toronto

Cursor Types
Insensitive cursor: Result set (effectively)
computed and stored in a separate table at OPEN
time

Changes made to base table subsequent to
OPEN (by any transaction) do not affect result
set
Cursor is read-only

Cursors that are not insensitive: Specification not
part of SQL standard

Changes made to base table subsequent to
OPEN (by any transaction) can affect result set
Cursor is updatable

Embedded SQL — 20CSC343 Introduction to Databases — University of Toronto

Insensitive Cursor

key1 t t t t t t t t key1 t t t t qq t t t t
key3 yyyyyyyy key2 xxxxxxxxx
key4 zzzzzzzzz key3 yyyrryyyy

key4 zzzzzzzzzz
key5 uuuuuuuuu
key6 vvvvvvvvv

Base Table

cursor

Result Set

Tuples added after
opening the cursor

Changes made after opening
cursor not seen in the cursor

6

Embedded SQL — 21CSC343 Introduction to Databases — University of Toronto

Keyset-Driven Cursor
Example of a cursor that is not
insensitive.
Primary key of each row in result set is
computed at open time.
UPDATE or DELETE of a row in base table
by a concurrent transaction between
OPEN and FETCH might be seen through
cursor.
INSERT into base table, however, not seen
through cursor.
Cursor is updatable.

Embedded SQL — 22CSC343 Introduction to Databases — University of Toronto

Keyset-Driven Cursor

key1 key1 t t t t t t t t t t
key3 key2 xxxxxxxxxxx
key4 key3 yyyyyyyyyyy

key4 zzzzzzzzzzzz
key5 uuuuuuuuuuu
key6 vvvvvvvvvvv

Base table

Cursor

Key set

Tuples added after cursor is open are
not seen, but updates to key1, key3,
key4 are seen in the cursor.

Embedded SQL — 23CSC343 Introduction to Databases — University of Toronto

Cursors
DECLARE cursor-name [INSENSITIVEINSENSITIVE] [SCROLLSCROLL]

CURSOR FOR table-expr
[ORDER BY column-list]
[FOR {READ ONLYREAD ONLY | UPDATEUPDATE [OF column-list] }]

For updatable (not insensitive, not read-only) cursors
UPDATE table-name — base table

SET assignment
WHERE CURRENT OF cursor-name

DELETE FROM table-name — base table
WHERE CURRENT OF cursor-name

Restriction – table-expr must satisfy restrictions of
updatable view

Embedded SQL — 24CSC343 Introduction to Databases — University of Toronto

Scrolling
If SCROLL option not specified in cursor
declaration, FETCH always moves cursor
forward one position
If SCROLL option is included in DECLARE
CURSOR section, cursor can be moved in
arbitrary ways around result set:

FETCH PRIORPRIOR FROM GetEnrollGetEnroll INTO :studid, :grade;

• Also: FIRST, LAST, ABSOLUTE n, RELATIVE n

Get previous tuple

7

Embedded SQL — 25CSC343 Introduction to Databases — University of Toronto

Stored Procedures
Procedure – written in a conventional algorithmic
language

Included as schema element (stored in DBMS)
Invoked by the application

Advantages:
Intermediate data need not be communicated to
application (time and cost savings)
Procedure’s SQL statements prepared in advance
Authorization can be done at procedure level
Added security since procedure resides in server
Applications that call the procedure need not
know the details of database schema – all
database access is encapsulated within the
procedure

Embedded SQL — 26CSC343 Introduction to Databases — University of Toronto

Dynamic SQL

stst is an SQL variable; names the SQL
statement
tmptmp, crscodecrscode, num_enrollednum_enrolled are host
language variables (note colon notation)
crscodecrscode is an in parameter; supplies value
for placeholder (?)
num_enrolled num_enrolled is an out parameter;
receives value from C.NumEnrolled

strcpy (tmp, “SELECT C.NumEnrolled FROM CourseCourse C \
WHERE C.CrsCode = ?”) ;

EXEC SQL PREPAREPREPARE st FROM :tmp;
EXEC SQL EXECUTEEXECUTE st INTO :num_enrolled USING :crs_code;placeholder

Embedded SQL — 27CSC343 Introduction to Databases — University of Toronto

Dynamic SQL

PREPARE names SQL statement stst and
sends it to DBMS for preparation
EXECUTE causes the statement named stst to
be executed

Embedded SQL — 28CSC343 Introduction to Databases — University of Toronto

Parameters for Static SQL
For Static SQLFor Static SQL::

Names of (host language) parameters are contained
in SQL statement and available to pre-compiler.
Address and type information in symbol table.
Routines for fetching and storing argument values
can be generated.
Complete statement (with parameter values) sent to
DBMS when statement is executed.

EXEC SQL SELECT C.NumEnrolled
INTOINTO :num_enrolled
FROM CourseCourse C
WHERE C.CrsCode = :crs_code;

8

Embedded SQL — 29CSC343 Introduction to Databases — University of Toronto

Parameters for Dynamic SQL
Dynamic SQLDynamic SQL: SQL statement constructed at run
time when symbol table is no longer present
Case 1: Parameters are known at compile time

Parameters are named in EXECUTE statement: in
parameters in USING; out parameters in INTO
clauses

EXECUTE statement is compiled using symbol
table

fetch() and store() routines generated

strcpy (tmp, “SELECT C.NumEnrolled FROM CourseCourse C \
WHERE C.CrsCode = ?”) ;

EXEC SQL PREPAREPREPARE st FROM :tmp;

EXEC SQL EXECUTEEXECUTE st INTOINTO :num_enrolled USING :crs_code;

Embedded SQL — 30CSC343 Introduction to Databases — University of Toronto

Parameters for Dynamic SQL
(Case 1: parameters known at compile time)

Fetch and store routines are executed at client
when EXECUTE is executed to communicate
argument values with DBMS
EXECUTE can be invoked multiple times with
different values of in parameters

Each invocation uses same query execution
plan

Values substituted for placeholders by DBMS
(in order) at invocation time and statement is
executed

Embedded SQL — 31CSC343 Introduction to Databases — University of Toronto

Parameters in Dynamic SQL
(parameters supplied at runtime)

Case 2: Parameters not known at compile
time
Example: Statement input from terminal

Application cannot parse statement and
might not know schema, so it does not
have any parameter information

EXECUTE statement cannot name
parameters in INTO and USING clauses

Embedded SQL — 32CSC343 Introduction to Databases — University of Toronto

Parameters in Dynamic SQL
(Case 2: parameters supplied at runtime)
DBMS determines number and type of
parameters after preparing the statement
Information stored by DBMS in a descriptor –
a data structure inside the DBMS, which
records the name, type, and value of each
parameter
Dynamic SQL provides directive GET
DESCRIPTOR to get information about
parameters (e.g., number, name, type) from
DBMS and to fetch value of out parameters
Dynamic SQL provides directive SET DESCRIPTOR
to supply value to in parameters

9

Embedded SQL — 33CSC343 Introduction to Databases — University of Toronto

Descriptors
temp = “SELECT C.NumEnrolled, C.Name FROM CourseCourse C \

WHERE C.CrsCode = ‘CS305’ ”

60
NumEnrolled

integer
“Databases”
Name
string

DBMS

application

GET DESCRIPTOR

1. Application uses GET DESCRIPTOR
to fetch name, type, value

2. Then gets value into appropriate
host variable

3. Then processes value

value

name
type
value
name
type

DescriptorDescriptor

Embedded SQL — 34CSC343 Introduction to Databases — University of Toronto

Dynamic SQL Calls when Descriptors
are Used

… … construct SQL statement in temp ……
EXEC SQL PREPAREPREPARE st FROM :temp; // prepare statement

EXEC SQL ALLOCATE DESCRIPTORALLOCATE DESCRIPTOR ‘desc’; // create descriptor
EXEC SQL DESCRIBE OUTPUTDESCRIBE OUTPUT st USING

SQL DESCRIPTOR ‘desc’; // populate desc with info
// about outout parameters

EXEC SQL EXECUTEEXECUTE st INTO // execute statement and
SQL DESCRIPTOR AREA ‘desc’; // store outout values in desc

EXEC SQL GET DESCRIPTORGET DESCRIPTOR ‘desc’ …; // get outout values

… … similar strategy is used for inin parameters … …

Embedded SQL — 35CSC343 Introduction to Databases — University of Toronto

Example: Nothing Known at Compile Time

sprintf(my_sql_stmt,
“SELECT * FROM %s WHERE COUNT(*) = 1”,
table); // table – host var; even the table is known only at run

time!

EXEC SQL PREPARE st FROM :my_sql_stmt;
EXEC SQL ALLOCATE DESCRIPTOR ‘st_output’;

EXEC SQL DESCRIBE OUTPUT st USING SQL DESCRIPTOR
‘st_output’

The SQL statement to execute is known only at run time
At this point DBMS knows what the exact statement is (including
the table name, the number of out out parameters, their types)
The above statement asks to create descriptors in st_outputst_output for
all the (now known) outout parameters

EXEC SQL EXECUTE st INTO SQL DESCRIPTOR ‘st_output’;

Embedded SQL — 36CSC343 Introduction to Databases — University of Toronto

Example: Getting Meta-Information
from a Descriptor

// Host var colcount gets the number of out out parameters in
// the SQL statement described by st_output
EXEC SQL GET DESCRIPTOR ‘st_output’ :colcount =

COUNTCOUNT;

// Set host vars coltype, collength, colname with the type,
// length, and name of the colnumber’s out out parameter in
// the SQL statement described by st_output
EXEC SQL GET DESCRIPTOR ‘st_output’ VALUE

:colnumber;
:coltype = TYPETYPE, // predefined integer constants,

// such as SQL_CHAR, SQL_FLOAT,…
:collength = LENGTHLENGTH,
:colname = NAMENAME;

10

Embedded SQL — 37CSC343 Introduction to Databases — University of Toronto

Example: Using Meta-Information to
Extract Attribute Value

char strdata[1024];
int intdata;
… … …
switch (coltype) {
case SQL_CHAR:
EXEC SQL GET DESCRIPTOR ‘st_output’ VALUE :colnumber strdata=DATADATA
break;
case SQL_INT:
EXEC SQL GET DESCRIPTOR ‘st_output’ VALUE :colnumber
:intdata=DATADATA;;

break;
case SQL_FLOAT:

… … …
}

Put the value of attribute
colnumber into the

variable strdata

Embedded SQL — 38CSC343 Introduction to Databases — University of Toronto

JDBC

Call-level interface (CLI) for executing SQL
from a Java program
SQL statement is constructed at run time as
the value of a Java variable (as in dynamic
SQL)
JDBC passes SQL statements to the
underlying DBMS. Can be interfaced to any
DBMS that has a JDBC driver
Part of SQL:2003

Embedded SQL — 39CSC343 Introduction to Databases — University of Toronto

JDBC Run-Time Architecture

DBMS

application driver
manager

DB/2
driver

SQLServer
driver

Oracle
driver

DB/2
database

SQLServer
database

Oracle
database

Embedded SQL — 40CSC343 Introduction to Databases — University of Toronto

Executing a Query
import java.sql.*; -- import all classes in package java.sql

Class.forName (driver name); // static method of class Class
// loads specified driver

Connection con = DriverManager.getConnection(Url, Id, Passwd);
• Static method of class DriverManager; attempts to

connect to DBMS
• If successful, creates a connection object, con, for

managing the connection

Statement stat = con.createStatement ();
• Creates a statement object stat
• Statements have executeQuery() method

11

Embedded SQL — 41CSC343 Introduction to Databases — University of Toronto

Executing a Query (cont’d)

String query = “SELECT T.StudId FROM TranscriptTranscript T” +
“WHERE T.CrsCode = ‘cse305’ ” +
“AND T.Semester = ‘S2000’ ”;

ResultSet res = stat.executeQuery (query);
• Creates a result set object, res.
• Prepares and executes the query.
• Stores the result set produced by execution in res

(analogous to opening a cursor).
• The query string can be constructed at run time (as
above).
• The input parameters are plugged into the query
when

the string is formed (as above)

Embedded SQL — 42CSC343 Introduction to Databases — University of Toronto

String query = “SELECT T.StudId FROM TranscriptTranscript T” +
“WHERE T.CrsCode = ? AND T.Semester = ?”;

PreparedStatement ps = con.prepareStatement (query);
• Prepares the statement
• Creates a prepared statement object, ps, containing the

prepared statement
• PlaceholdersPlaceholders (?) mark positions of in in parameters;

special API is provided to plug the actual values in
positions indicated by the ??’s

Preparing and Executing a Query

placeholders

Embedded SQL — 43CSC343 Introduction to Databases — University of Toronto

Preparing and Executing a Query (cont’d)

String crs_code, semester;
………
ps.setString(1, crs_code); // set value of first inin parameter
ps.setString(2, semester); // set value of second inin parameter

ResultSet res = ps.executeQuery ();
• Creates a result set object, res
• Executes the query
• Stores the result set produced by execution in res

while (res.next ()) { // advance the cursor
j = res.getInt (“StudId”); // fetch output int-value
…process output value…

}
Embedded SQL — 44CSC343 Introduction to Databases — University of Toronto

Result Sets and Cursors
Three types of result sets in JDBC:

Forward-only: not scrollable
Scroll-insensitive: scrollable; changes
made to underlying tables after the
creation of the result set are not
visible through that result set
Scroll-sensitive: scrollable; updates
and deletes made to tuples in the
underlying tables after the creation of
the result set are visible through the
set

12

Embedded SQL — 45CSC343 Introduction to Databases — University of Toronto

Result Set

Any result set type can be declared read-only
or updatable – CONCUR_UPDATABLE
(assuming SQL query satisfies the conditions
for updatable views)
UpdatableUpdatable: Current row of an updatable result
set can be changed or deleted, or a new row
can be inserted. Any such change causes
changes to the underlying database table

Statement stat = con.createStatement (
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

res.updateString (“Name”, “John”); // change the attribute “Name” of
// current row in the row buffer.

res.updateRow (); // install changes to the current row buffer
// in the underlying database table

Embedded SQL — 46CSC343 Introduction to Databases — University of Toronto

Handling Exceptions

try/catch is the basic structure within
which an SQL statement should be
embedded
If an exception is thrown, an exception
object, ex, is created and the catch
clause is executed
The exception object has methods to

i t t SQLSTATE

try {
...Java/JDBC code...

} catch (SQLException ex) {
…exception handling code...

}

Embedded SQL — 47CSC343 Introduction to Databases — University of Toronto

Transactions in JDBC
Default for a connection is

Transaction boundaries
Autocommit mode: each SQL statement is

a transaction.
To group several statements into a
transaction use con.setAutoCommit (false)

Isolation
default isolation level of the underlying

DBMS
To change isolation level use
con.setTransactionIsolationLevel
(TRANSACTION_SERIALIZABLE)

With autocommit off:
transaction is committed using con.commit(). Embedded SQL — 48CSC343 Introduction to Databases — University of Toronto

SQLJ

A statement-level interface to Java
A dialect of embedded SQL
designed specifically for Java
Translated by precompiler into
Java
SQL constructs translated into
calls to an SQLJ runtime package,
which accesses database through
calls to a JDBC driver

Part of SQL:2003

13

Embedded SQL — 49CSC343 Introduction to Databases — University of Toronto

SQLJ

Has some of efficiencies of
embedded SQL

Compile-time syntax and type
checking
Use of host language variables
More elegant than embedded SQL

Has some of the advantages of JDBC
Can access multiple DBMSs using
drivers
SQLJ statements and JDBC calls
can be included in the same Embedded SQL — 50CSC343 Introduction to Databases — University of Toronto

SQLJ Example

#SQL {
SELECT C.Enrollment
INTO :numEnrolled
FROM Class Class C
WHERE C.CrsCode = :crsCode

AND C.Semester =
:semester
};

Embedded SQL — 51CSC343 Introduction to Databases — University of Toronto

Example of SQLJ Iterator
Similar to JDBC’s ResultSet; provides a
cursor mechanism

#SQL iterator GetEnrolledIter (int studentId,
String studGrade);

GetEnrolledIter iter1;

#SQL iter1 = {
SELECT T.StudentId as “studentId”,

T.Grade as “studGrade”
FROM TranscriptTranscript T
WHERE T.CrsCode = :crsCode

AND T.Semester = :semester
};

Method names by
which to access the

attributes StudentIdStudentId
and GradeGrade

Embedded SQL — 52CSC343 Introduction to Databases — University of Toronto

Iterator Example (cont’d)
int id;
String grade;
while (iter1.next()) {

id = iter1.studentId();
grade = iter1.studGrade();
… process the values in id and grade

…
};

iter1.close();

14

Embedded SQL — 53CSC343 Introduction to Databases — University of Toronto

ODBC

Call level interface that is database
independent
Related to SQL/CLI, part of SQL:1999
Software architecture similar to JDBC
with driver manager and drivers
Not object oriented
Low-level: application must
specifically allocate and deallocate
storage

Embedded SQL — 54CSC343 Introduction to Databases — University of Toronto

Sequence of Procedure Calls
Needed for ODBC

SQLAllocEnv(&henv); // get environment handle
SQLAllocConnect(henv, &hdbc); // get connection handle
SQLConnect(hdbc, db_name, userId, password); // connect
SQLAllocStmt(hdbc, &hstmt); // get statement handle
SQLPrepare(hstmt, SQL statement); // prepare SQL statement
SQLExecute(hstmt);
SQLFreeStmt(hstmt); // free up statement space
SQLDisconnect(hdbc);
SQLFreeEnv(henv); // free up environment space

Embedded SQL — 55CSC343 Introduction to Databases — University of Toronto

ODBC Features
Cursors

Statement handle (for example hstmt)
is used as name of cursor

Status Processing
Each ODBC procedure is actually a
function that returns status

RETCODE retcode1;
Retcode1 = SQLConnect (…)

Transactions
Can be committed or aborted with

SQLTransact (henv, hdbc,
SQL COMMIT)

Embedded SQL — 56CSC343 Introduction to Databases — University of Toronto

Cursors

Fundamental problem with database
technology: impedance mismatch — traditional
programming languages process records one-
at-a-time (tuple-oriented); SQL processes tuple
sets (set-oriented).
Cursors solve this problem: A cursor accesses
the result of a query in a set-oriented way,
returns tuples for the program to process one-
by-one.
Syntax of cursor definition:
declare CursorName [scroll]
cursor for SelectSQL

[for < read only | update [of Attribute

15

Embedded SQL — 57CSC343 Introduction to Databases — University of Toronto

Operations on Cursors

To execute the query associated with a
cursor:

open CursorName
To extract one tuple from the query result:

fetch [Position from] CursorName
into FetchList

To free the cursor, discarding the query
result:

close CursorName
To access the current tuple (when a
cursor reads a relation, in order to update
it)

Embedded SQL — 58CSC343 Introduction to Databases — University of Toronto

Example of Embedded SQL
void DisplayDepartmentSalaries(char
DeptName[])
{ char FirstName[20], Surname[20];
long int Salary;

$ declare DeptEmp cursor for
select FirstName, Surname, Salary
from Employee
where Dept = :DeptName;

$ open DeptEmp;
$ fetch DeptEmp into :FirstName, :Surname,
:Salary;
printf(“Department %s\n”,DeptName);
while (sqlcode == 0)
{ printf(“Name: %s %s

”,FirstName,Surname);
printf(“Salary: %d\n”,Salary);

Embedded SQL — 59CSC343 Introduction to Databases — University of Toronto

Dynamic SQL
When applications do not know at compile-
time the SQL statement to execute, they need
dynamic SQL.
Major problem: managing the transfer of
parameters between the program and the SQL
environment.
For direct execution:
execute immediate SQLStatement

For execution preceded by the analysis of the
statement:
prepare CommandName from
SQLStatement

followed by:
t CommandName [i t TargetList

Embedded SQL — 60CSC343 Introduction to Databases — University of Toronto

Procedures

SQL-2 allows for the definition of
procedures, also known as stored
procedures.
Stored procedures are part of the schema
procedure AssignCity

(:Dep char(20),:City char(20))
update Department
set City = :City
where Name = :Dep

SQL-2 does not support the the definition of
complex procedures
Most systems offer SQL extensions that

16

Embedded SQL — 61CSC343 Introduction to Databases — University of Toronto

Procedure in Oracle PL/SQL
Procedure Debit(ClientAcct char(5),Withdr
int) is

OldAmount integer; NewAmount integer;
Threshold integer;

begin
select Amount,Overdraft into OldAmount,

Thresh
from BankAcct where AcctNo =

ClientAcct
for update of Amount;

NewAmount := OldAmount - WithDr;
if NewAmount > Thresh
then update BankAcct

set Amount = NewAmount
where AcctNo = ClientAcct;

