Week 2 - Part II
 Relational Algebra

Querying and Updating a Database
The Relational Algebra
Union, Intersection, Difference
Renaming, Selection and Projection Join, Cartesian Product

Query Languages for Relational Databases

\rightarrow Operations on databases:
\checkmark Queries - read data from the database;
\checkmark Updates - change the content of the database.
\rightarrow In this lecture unit we discuss the relational algebra, a procedural language that defines database operations in terms of algebraic expressions.
\rightarrow [The Relational Calculus is a declarative language for database operations based on Predicate Logic; we will not discuss it here.]

Relational Algebra

\rightarrow A collection of algebraic operators that
\checkmark Are defined on relations;
\checkmark Produce relations as results, and therefore can be combined to form complex algebraic expressions.
Operators:
\checkmark Union, intersection, difference;
\checkmark Renaming;
\checkmark Selection and Projection;
\checkmark Join (natural join, Cartesian product, theta join).
$\csc 43 / 343$ Introduction to Databases - University of Toronto

Union, Intersection, Difference

\rightarrow Relations are sets, so we can apply set-theoretic operators
\rightarrow However, we want the results to be relations (that is, homogeneous sets of tuples)
\rightarrow It is therefore meaningful to only apply union, intersection, difference to pairs of relations defined over the same attributes.

Union

Graduates			Graduates \cup Managers		
Number	Surname	Age			
$\begin{aligned} & 7274 \\ & 7432 \\ & 9824 \\ & \hline \end{aligned}$	Robinson O'Malley Darkes	$\begin{aligned} & 37 \\ & 39 \\ & 38 \end{aligned}$			
			Number	Surname	Age
Managers			7274	Robinson	37
			7432	O'Malley	39
			9824	Darkes	38
Number	Surname	Age	9297	O'Malley	56
9297	O'Malley	56			
7432	O'Malley	39			
9824	Darkes	38			

Intersection

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates \cap Managers

Number	Surname	Age
7432	O'Malley	39
9824	Darkes	38

Difference

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers
Graduates - Managers

Number	Surname	Age
7274	Robinson	37

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

A Meaningful but Impossible Union

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity \cup Maternity ???
\rightarrow The problem: Father and Mother are different names, but both represent a parent.
\rightarrow The solution: rename attributes!

Renaming

\rightarrow This is a unary operator which changes attribute names for a relation without changing any values.
\rightarrow Renaming removes the limitations associated with set operators.
\rightarrow Notation: ρ oldName \rightarrow NewName (\mathbf{r})
\rightarrow For example, $\rho_{\text {Father } \rightarrow \text { Parent }}$ (Paternity)
\rightarrow If there are two or more attributes involved in a renaming operation, then ordering is meaningful:
e.g., $\rho_{\text {Branch,Salary } \rightarrow \text { Location,Pay }}$ (Employees)

Example of Renaming

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

$\rho_{\text {Father }->\text { Parent }}$ (Paternity)

Parent	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

- The textbook allows positions rather than attribute names, e.g., $1 \rightarrow$ Parent
- Textbook also allows renaming of the relation itself,e.g.,Paternity, 1 \rightarrow Parenthood, Parent

Renaming and Union

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

$\rho_{\text {Father->Parent }}$ (Paternity) $\cup \rho_{\text {Mother->Parent }}$ (Maternity)

Parent	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Renaming and Union, with Several Attributes

Employees

Surname	Branch	Salary
Patterson	Rome	45
Trumble	London	53

Staff

Surname	Factory	Wages
Patterson	Rome	45
Trumble	London	53

$\rho_{\text {Branch,Salary } \rightarrow \text { Location,Pay }}$ (Employees) $\cup \rho_{\text {Factory, Wages } \rightarrow \text { Lo }}$

Surname	Location	Pay
Patterson	Rome	45
Trumble	London	53
Cooke	Chicago	33
Bush	Monza	32

Selection and Projection

\rightarrow These are unary operators, in a sense orthogonal:
\checkmark selection for "horizontal" decompositions;
\checkmark projection for "vertical" decompositions.

Selection

\rightarrow This is a unary operation which returns a relation
\checkmark with the same schema as the operand;
\checkmark but, with a subset of the tuples of the operand, i.e., only those that satisfy a condition.
\rightarrow Notation: $\sigma_{\mathrm{F}}(\mathbf{r})$
\rightarrow Semantics: $\sigma_{F}(\mathbf{r})=\{\mathbf{t} \mid \mathbf{t} \in \mathbf{r}$ s.t. \mathbf{t} satisfies F, I.e., $F(\mathbf{t})\}$

Selection Example

Employees

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Black	Lucy	40	3000
Verdi	Nico	36	4500
Smith	Mark	40	3900

σ Age <30 v Salary >4000 (Employees)

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Verdi	Nico	36	4500

Selection, Another Example

Citizens

Surname	FirstName	PlaceOfBirth	Residence
Smith	Mary	Rome	Milan
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence
Smith	Mark	Naples	Florence

$\sigma_{\text {PlaceOfBirth=Residence }}$ (Citizens)

Surname	FirstName	PlaceOfBirth	Residence
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence

Projection

\rightarrow Projection returns a relation which includes a subset of the attributes of the operand.
 \rightarrow Notation: Given a relation $r(X)$ and a subset Y of X :
 $\pi_{\mathrm{Y}}(\mathrm{r})$
 \rightarrow Semantics: $\quad \pi_{Y}(r)=\{t[Y] \mid t \in r\}$

Example of Projection

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

$\pi_{\text {Surname, FirstName }}$ (Employees)

Surname	FirstName
Smith	Mary
Black	Lucy
Verdi	Mary
Smith	Mark

Another Example

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

$\pi_{\text {Department, Head }}$ (Employees)

Department	Head
Sales	De Rossi
Personnel	Fox

Cardinality of Projection Operations

\rightarrow Note that the result of a projection contains at most as many tuples as the operand relation.
\rightarrow However, it may contain fewer, if several tuples collapse, i.e., they are identical in all their values.
\rightarrow Theorem: $\pi_{Y}(r)$ contains as many tuples as r if and only if Y is a superkey for r .
\rightarrow This property holds even if Y is "by chance" a superkey, i.e., it is not defined as a superkey in the schema, but it is a superkey for the current database, see the example.

Tuples that Collapse

Students

RegNum	Surname	FirstName	BirthDate	DegreeProg
284328	Smith	Luigi	$29 / 04 / 59$	Computing
296328	Smith	John	$29 / 04 / 59$	Computing
587614	Smith	Lucy	$01 / 05 / 61$	Engineering
934856	Black	Lucy	$01 / 05 / 61$	Fine Art
965536	Black	Lucy	$05 / 03 / 58$	Fine Art

$\pi_{\text {Surname, DegreeProg }}$ (Students)

Surname	DegreeProg
Smith	Computing
Smith	Engineering
Black	Fine Art

Tuples that do not Collapse, "by Chance"

Students

RegNum	Surname	FirstName	BirthDate	DegreeProg
296328	Smith	John	$29 / 04 / 59$	Computing
587614	Smith	Lucy	$01 / 05 / 61$	Engineering
934856	Black	Lucy	$01 / 05 / 61$	Fine Art
965536	Black	Lucy	$05 / 03 / 58$	Engineering

$\pi_{\text {Surname, DegreeProg }}$ (Students)

Surname	DegreeProg
Smith	Computing
Smith	Engineering
Black	Fine Art
Black	Engineering

Join

\rightarrow The most used operator in the relational algebra.
\rightarrow Allows us to establish connections among data in different relations, taking advantage of the "valuebased" nature of the relational model.
\rightarrow Two main versions of the join:
\checkmark "natural" join: takes attribute names into account; \checkmark "theta" join.
\rightarrow Both join operations are denoted by the symbol \bowtie.

A Natural Join

r_{2}

$\mathbf{r}_{\mathbf{1}} \bowtie \mathbf{r}_{\mathbf{2}}$
Employee
Smith
Department
Black
sales
Whoduction
White
:---:

Department	Head
production sales	Mori
Brown	

Definition of Natural Join

$$
\begin{aligned}
& \rightarrow r_{1}\left(X_{1}\right), r_{2}\left(X_{2}\right) \\
& \left.\rightarrow r_{1} \bowtie r_{2} \text { (natural join of } r_{1} \text { and } r_{2}\right) \text { is a relation on } \\
& X_{1} X_{2} \text { (the union of the two sets): } \\
& \quad\left\{t \text { on } X_{1} X_{2} \mid t\left[X_{1}\right] \in r_{1} \text { and } t\left[X_{2}\right] \in r_{2}\right\} \\
& \text { or, equivalently } \\
& \text { \{t on } X_{1} X_{2} \mid \text { exist } t_{1} \in r_{1} \text { and } t_{2} \in r_{2} \text { with } t\left[X_{1}\right]=t_{1} \\
& \left.\qquad \quad \text { and } t\left[X_{2}\right]=t_{2}\right\}
\end{aligned}
$$

Natural Join: Comments

\rightarrow The tuples in the resulting relation are obtained by combining tuples in the operands with equal values on the common attributes
\rightarrow The common attributes often form a key of one of the operands (remember: references are realized by means of foreign keys, and we join in order to follow references)

* Not always! Consider Person(Name,Addr,PostalC) and let us define Neighbour(Name,Addr,Name1,Addr1,PostalC)
by joining Person with $\rho_{\text {Name,Addr } \rightarrow \text { Name 1,Addr1 }}$ (Person); What is criterion for neighbourhood here?

Another Example

Offences | Code | Date | Officer | Dept | Registartion | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 143256 | $25 / 10 / 1992$ | 567 | 75 | 5694 FR |
| | 987554 | $26 / 10 / 1992$ | 456 | 75 | 5694 FR |
| | 987557 | $26 / 10 / 1992$ | 456 | 75 | 6544 XY |
| | 630876 | $15 / 10 / 1992$ | 456 | 47 | 6544 XY |
| | 539856 | $12 / 10 / 1992$ | 567 | 47 | 6544 XY |

Cars | Registration | | | | | Dept | Owner | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 6544 XY | 75 | Cordon Edouard | | | | |
| 7122 HT | 75 | Cordon Edouard | \ldots | | | | |
| | 5694 FR | 75 | Latour Hortense | | | | |
| 6544 XY | 47 | Mimault Bernard | \ldots | | | | |

Offences \bowtie Cars

Code	Date	Officer	Dept	Registration	Owner	
143256	25/10/1992	567	75	5694 FR	Latour Hortense	
987554	26/10/1992	456	75	5694 FR	Latour Hortense	\ldots
987557	26/10/1992	456	75	6544 XY	Cordon Edouard	\ldots
630876	15/10/1992	456	47	6544 XY	Cordon Edouard	\ldots
539856	12/10/1992	567	47	6544 XY	Mimault Bernard	\ldots

Yet Another Join

\rightarrow In this example, join gives very different results from union (see earlier example)

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity \bowtie Maternity

Father	Child	Mother
Adam	Cain	Eve
Abraham	Isaac	Sarah
Abraham	Ishmael	Hagar

Joins can be Incomplete

\rightarrow If a tuple does not have a "counterpart" in the other relation, then it does not contribute to the join ("dangling" tuple)

Smith	sales
Black	production
White	production

Department	Head
production purchasing	Mori
Brown	

$r_{1} \bowtie r_{2}$

Employee	Department	Head
Black	production	Mori
White	production	Mori

Relational Algebra - 29

Joins can be Empty

\rightarrow As an extreme, we might have that no tuple has a counterpart, and all tuples are dangling

Another Extreme

\rightarrow If each tuple of each operand can be combined with all the tuples of the other, then the join has a cardinality that is the product of the cardinalities of the operands
r_{1}

Employee	Project
Smith	A
Black	A
White	A

$\mathbf{r}_{\mathbf{1}} \pitchfork \mathbf{r}_{\mathbf{2}}$

Employee	Project	Head
Smith	A	Mori
Black	A	Brown
White	A	Mori
Smith	A	Brown
Black	A	Mori
White	A	Brown

How Many Tuples in a Join?

\rightarrow Given $r_{1}\left(X_{1}\right), r_{2}\left(X_{2}\right)$ the join has cardinality

$$
0 \leq\left|r_{1} \bowtie r_{2}\right| \leq\left|r_{1}\right| \times\left|r_{2}\right|
$$

where $|r|$ is the cardinality of relation r.
\rightarrow Moreover:
\checkmark if the join is complete, then its cardinality is at least the maximum of $\left|r_{1}\right|$ and $\left|r_{2}\right|$.
\checkmark if $X_{1} \cap X_{2}$ contains a key for r_{2},
then $\left|r_{1} \bowtie r_{2}\right| \leq\left|r_{1}\right|$
\checkmark if $X_{1} \cap X_{2}$ is the primary key for r_{2}, and there is a referential constraint between $X_{1} \cap X_{2}$ in r_{1} and such a key, then $\left|r_{1} \bowtie r_{2}\right|=\left|r_{1}\right|$.

Outer Join

\rightarrow A variant of the join, to keep all pieces of information from the operands.
\rightarrow An outer join operation "pads with nulls" the tuples in one operant relation that have no counterpart in the other relation.
\rightarrow Three variants:
\checkmark LEFT - only tuples of left operand are padded;
\checkmark RIGHT - only tuples of right operand are padded;
\checkmark FULL - tuples of both operands are padded.

Outer Join Operations

$\mathbf{r}_{\mathbf{1}} \bowtie_{\text {LEFT }} \mathbf{r}_{\mathbf{2}}$	Employee	Department	Head
	Smith	Sales	NULL
Black	production	Mori	
White	production	Mori	

	Employee	Department	Head
	Black	production	Mori
$\mathrm{r}_{1} \bowtie$ RIGHT ${ }^{\text {r }}$	White	production	Mori

$\mathrm{r}_{1} \bigotimes_{\text {FULL }} \mathrm{r}_{2}$	Employee	Department	Head
	Smith	Sales	NULL
	Black	production	Mori
	White	production	Mori
	NULL	purchasing	Brown

N -ary Join Operations

\rightarrow The natural join is
\checkmark commutative: $r_{1} \bowtie r_{2}=r_{2} \bowtie r_{1}$ \checkmark associative: $\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}=r_{1} \bowtie\left(r_{2} \bowtie r_{3}\right)$
\rightarrow Therefore, we can write n-ary joins without ambiguity:

$$
r_{1} \bowtie r_{2} \bowtie \ldots \bowtie r_{n}
$$

Example of \mathbf{N}-ary Join Operation

\boldsymbol{r}_{1}	
Employee	Department
Smith	sales
Black	production
Brown	marketing
White	production

r_{3}

Division	Head
A	Mori
B	Brown

$\mathbf{r}_{\mathbf{1}} \bowtie \mathbf{r}_{\mathbf{2}} \bowtie \mathbf{r}_{\mathbf{3}}$			
Employee	Department	Division	Head
Black	production	A	Mori
Brown	marketing	B	Brown
White	production	A	Mori

Join and Intersection

\rightarrow We have made no assumptions about the sets of attributes X_{1} and X_{2} on which the operands of a join operation are defined; the two sets could even be equal or disjoint.
\rightarrow If $X_{1}=X_{2}$ then $r_{1} \bowtie r_{2}=r_{1} \cap r_{2}$ since, by definition, the result is a relation which includes tuples t such that $t\left[X_{1}\right] \in r_{1}$ and $t\left[X_{2}\right] \in r_{2}$, and $X_{1}=X_{2}$.

Natural Join as Cartesian Product

\rightarrow The natural join is defined also when the operands have no attributes in common.
\rightarrow In this case no condition is imposed on tuples, and therefore the result contains tuples obtained by combining the tuples of the operands in all possible ways.

Cartesian Product: Example

Employees

Employee	Project
Smith	A
Black	A
Black	B

Projects

Code	Name
A	Venus
B	Mars

Employes \bowtie Projects

Employee	Project	Code	Name
Smith	A	A	Venus
Black	A	A	Venus
Black	B	A	Venus
Smith	A	B	Mars
Black	A	B	Mars
Black	B	B	Mars

Theta-Join

\rightarrow In most cases, a Cartesian product is meaningful only if followed by a selection:
\checkmark theta-join: a derived operator

$$
r_{1} \bowtie{ }_{F} r_{2}=\sigma_{F}\left(r_{1} \bowtie r_{2}\right)
$$

\checkmark if F is a conjunction of equalities, then we have an equi-join

Equi-join: example

Employees

Employee	Project			
Smith	A			
Black	A			
Black	B	\quad		
:---:	:---:			
	Projects			
Code	Name			
A	Venus			
B	Mars			

Employes $\bowtie_{\text {Project=Code }}$ Projects

Employee	Project	Code	Name
Smith	A	A	Venus
Black	A	A	Venus
Black	B	B	Mars

Division

\rightarrow Consider two relations $A(x, y), B(y)$ and suppose we want to specify the query
"Find all A's that are associated with all B's"
\rightarrow This can be expressed as

$$
\mathrm{A} / \mathrm{B}=\pi_{\mathrm{x}}(\mathrm{~A})-\pi_{\mathrm{x}}\left(\left(\pi_{\mathrm{x}}(\mathrm{~A}) \bowtie \mathrm{B}\right)-\mathrm{A}\right)
$$

\rightarrow This means that division does not extend the expressiveness of Relational Algebra, but it is a convenient operation to use in many situations.

Example of Division

\rightarrow Assume
\checkmark Take(x, y) - "student x has taken course $y "$,
\checkmark CS(y) - " y is a CS course"
\rightarrow We want "All students who have taken all CS courses"

$$
\checkmark \pi_{\mathrm{x}}(\text { Take }) \bowtie \mathrm{CS}--?
$$

$$
\checkmark\left(\pi_{\mathrm{x}}(\text { Take }) \bowtie \mathrm{CS}\right)-\text { Take -- ?? }
$$

$$
\checkmark \pi_{x}\left(\left(\pi_{x}(\text { Take }) \bowtie \mathrm{CS}\right)-\text { Take }\right)-\text { ??? }
$$

$$
\checkmark \pi_{x}(\text { Take })-\pi_{x}\left(\left(\pi_{x}(\text { Take }) \bowtie \mathrm{CS}\right)-\text { Take }\right)-\text { ? ??? }
$$

Queries

\rightarrow A query is a function from database instances to relations.
\rightarrow Queries are formulated in relational algebra by means of expressions over relations.

A Sample Database

Example 1

"Find the numbers, names and ages of employees earning more than 40k."

Employees(Number,Name,Age,Salary)
Supervision(Head,Emp)
Try it!

Example 2

\rightarrow "Find the registration numbers of the supervisors of the employees earning more than 40M."

Employees(Number,Name,Age,Salary)
Supervision(Head,Emp)

Example 3

\rightarrow "Find the names and salaries of the supervisors of the employees earning more than 40M."

Employees(Number,Name,Age,Salary)
Supervision(Head,Emp)
Try it! (this is a bit tougher)

Example 4

\rightarrow "Find the employees earning more than their respective supervisors, return registration numbers, names and salaries of the employees and their supervisors."

Employees(Number,Name,Age,Salary)
Supervision(Head,Emp)
Try it! Definitely challenging ©

Example 5

\rightarrow "Find registration numbers and names of supervisors, all of whose employees earn more than 40M."

Employees(Number,Name,Age,Salary)
Supervision(Head,Emp)

Another Series of Examples:

Films(Film\#,Title,Director,Year,ProdCost)Artists(Actor\#,Surname,FirsName,Sex,Birthday,Nationality)
Roles(Film\#,Actor\#,Character)
\rightarrow Find "The titles of films starring Henry Fonda

Try it!
Csccact3343 hntroduction to Doatabases - Univesity of Toronto

Example 2

Films(Film\#,Title,Director,Year,ProdCost)
Artists(Actor\#,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film\#,Actor\#,Character)

\rightarrow Find "The titles of all films in which the director is also an actor"

Try it!

Example 3

Films(Film\#,Title,Director,Year,ProdCost)
Artists(Actor\#,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film\#,Actor\#,Character)

\rightarrow Find "The actors who have played two characters in the same film; show the title of each such film, first name and surname of the actor and the two characters"

Try it!

\csc C43/343 Introduction to Databases - University of Toronto
Relational Algebra - 53

Example 4

Films(Film\#,Title,Director,Year,ProdCost)

Artists(Actor\#,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film\#,Actor\#,Character)

\rightarrow "The titles of the films in which the actors are all of the same sex"

Try it!

Relational Algebra and Null Values

People | Name | Age | Salary |
| :---: | :---: | :---: |
| | Aldo | 35 |
| 15 | | |
| Andrea | 27 | 21 |
| Maria | NULL | 42 |

\rightarrow Consider $\sigma_{\text {Age }>30}$ (People)
\rightarrow Which tuples belong to the result?
\rightarrow The first yes, the second no, but the third??

Lecture Example (for blackboard)

Blackboard Example II

