Week 2 – Part II Relational Algebra

Querying and Updating a Database
The Relational Algebra
Union, Intersection, Difference
Renaming, Selection and Projection
Join, Cartesian Product

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 1

Query Languages for Relational Databases

- →Operations on databases:
 - ✓ Queries read data from the database;
 - ✓ **Updates** change the content of the database.
- →In this lecture unit we discuss the relational algebra, a procedural language that defines database operations in terms of algebraic expressions.
- →[The Relational Calculus is a declarative language for database operations based on Predicate Logic; we will not discuss it here.]

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra

- →A collection of algebraic operators that
 - ✓ Are defined on relations;
 - ✓ Produce relations as results, and therefore can be combined to form complex algebraic expressions.

Operators:

- ✓ Union, intersection, difference;
- ✓ Renaming;
- √ Selection and Projection;
- ✓ Join (natural join, Cartesian product, theta join).

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 3

Union, Intersection, Difference

- → Relations are sets, so we can apply set-theoretic operators
- → However, we want the results to be relations (that is, homogeneous sets of tuples)
- →It is therefore meaningful to only apply union, intersection, difference to pairs of relations defined over the same attributes.

cscC43/343 Introduction to Databases — University of Toronto

Union

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates ∪ **Managers**

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38
9297	O'Malley	56

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 5

Intersection

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates ∩ **Managers**

Number	Surname Age	
7432	O'Malley	39
9824	Darkes	38

cscC43/343 Introduction to Databases — University of Toronto

Difference

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

managere		
Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates - Managers

Number	Surname	Age
7274	Robinson	37

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 7

A Meaningful but Impossible Union

Paternity

Child
Cain
Abel
Isaac
Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity ∪ Maternity ???

- →The problem: Father and Mother are different names, but both represent a parent.
- →The solution: rename attributes!

Renaming

- → This is a unary operator which changes attribute names for a relation without changing any values.
- → Renaming removes the limitations associated with set operators.
- \rightarrow Notation: $\rho_{OldName \rightarrow NewName}(r)$
- \rightarrow For example, $\rho_{Father \rightarrow Parent}$ (Paternity)
- →If there are two or more attributes involved in a renaming operation, then ordering is meaningful:

 $e.g., \; \rho_{Branch,Salary \, \rightarrow \, Location,Pay}(Employees)$

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 9

Example of Renaming

Paternity

	_
Father	Child
I Adam	l Cain
	ou
Adam	Abel
/ taaiii	7 (DC)
Abraham	Isaac
Abranam	13440
Abraham	Ishmael
Abialialli	isiiilaci

<u>P_{Father-> Parent}</u>(Paternity)

Parent	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

- The textbook allows positions rather than attribute names, e.g., 1 → Parent
- Textbook also allows renaming of the relation itself,e.g.,Paternity,1→ Parenthood,Parent

cscC43/343 Introduction to Databases — University of Toronto

Renaming and Union

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

natorinty			
Mother	Child		
Eve	Cain		
Eve	Seth		
Sarah	Isaac		
Hagar	Ishmael		

 $\rho_{\text{Father-} > \text{Parent}}(\text{Paternity}) \cup \rho_{\text{Mother-} > \text{Parent}}(\text{Maternity})$

Parent	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 11

Renaming and Union, with Several Attributes

Employees

Surname	Branch	Salary
Patterson	Rome	45
Trumble	London	53

Staff

Surname	Factory	Wages
Patterson	Rome	45
Trumble	London	53

 $\rho_{Branch,Salary \rightarrow Location,Pay} \textcolor{red}{\textbf{(Employees)}} \ \cup \ \rho_{Factory, \ Wages \rightarrow Location,Pay} \textcolor{red}{\textbf{(Staff)}}$

Surname	Location	Pay
Patterson	Rome	45
Trumble	London	53
Cooke	Chicago	33
Bush	Monza	32

cscC43/343 Introduction to Databases — University of Toronto

Selection and Projection

- →These are unary operators, in a sense orthogonal:
 - ✓ selection for "horizontal" decompositions;
 - ✓ projection for "vertical" decompositions.

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 13

Selection

- →This is a unary operation which returns a relation
 - ✓ with the same schema as the operand;
 - ✓ but, with a subset of the tuples of the operand, i.e., only those that satisfy a condition.
- \rightarrow Notation: $\sigma_{\mathbf{F}}(\mathbf{r})$
- \rightarrow Semantics: $\sigma_F(r) = \{t \mid t \in r \text{ s.t. } t \text{ satisfies } F, I.e., F(t)\}$

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Selection Example

Employees

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Black	Lucy	40	3000
Verdi	Nico	36	4500
Smith	Mark	40	3900

$\sigma_{Age<30\ v\ Salary>4000}$ (Employees)

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Verdi	Nico	36	4500

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 15

Selection, Another Example

Citizens

Surname	FirstName	PlaceOfBirth	Residence
Smith	Mary	Rome	Milan
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence
Smith	Mark	Naples	Florence

$\sigma_{\,PlaceOfBirth=Residence}\,(\text{Citizens})$

Surname	FirstName	PlaceOfBirth	Residence
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence

cscC43/343 Introduction to Databases — University of Toronto

Projection

- →Projection returns a relation which includes a subset of the attributes of the operand.
- →Notation: Given a relation r(X) and a subset Y of X: $\pi_Y(r)$
- →Semantics: $\pi_Y(r) = \{ t[Y] \mid t \in r \}$

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 17

Example of Projection

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

$\pi_{\text{Surname, FirstName}}(\text{Employees})$

Surname	FirstName
Smith	Mary
Black	Lucy
Verdi	Mary
Smith	Mark

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Another Example

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

 π_{Dep} artment, Head (Employees)

Department	Head
Sales	De Rossi
Personnel	Fox

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 19

Cardinality of Projection Operations

- →Note that the result of a projection contains at most as many tuples as the operand relation.
- → However, it may contain fewer, if several tuples collapse, i.e., they are identical in all their values.
- → Theorem: $\pi_Y(r)$ contains as many tuples as r if and only if Y is a superkey for r.
- → This property holds even if Y is "by chance" a superkey, i.e., it is not defined as a superkey in the schema, but it is a superkey for the current database, see the example.

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Tuples that Collapse

Students

Γ	RegNum	Surname	FirstName	BirthDate	DegreeProg
	284328	Smith	Luigi	29/04/59	Computing
	296328	Smith	John	29/04/59	Computing
	587614	Smith	Lucy	01/05/61	Engineering
	934856	Black	Lucy	01/05/61	Fine Art
	965536	Black	Lucy	05/03/58	Fine Art

 $\pi_{\text{Surna}_{\text{me, DegreeProg}}}$ (Students)

Surname	DegreeProg
Smith	Computing
Smith	Engineering
Black	Fine Art

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 21

Tuples that do not Collapse, "by Chance"

Students

RegNum	Surname	FirstName	BirthDate	DegreeProg
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Engineering

$\pi_{\text{Surname, DegreeProg}}$ (Students)

Surname	DegreeProg
Smith	Computing
Smith	Engineering
Black	Fine Art
Black	Engineering

cscC43/343 Introduction to Databases — University of Toronto

Join

- →The most used operator in the relational algebra.
- → Allows us to establish connections among data in different relations, taking advantage of the "valuebased" nature of the relational model.
- →Two main versions of the join:
 - ✓"natural" join: takes attribute names into account;
 ✓"theta" join.
- →Both join operations are denoted by the symbol ⋈.

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 23

A Natural Join

 $\mathbf{r_1}$

Employee	Department
Smith	sales
Black	production
White	production

 r_2

	<u>Department</u>	Head
ſ	production	Mori
L	sales	Brown

 $r_1 \bowtie r_2$

Employee	Department	Head
Smith	sales	Brown
Black	production	Mori
White	production	Mori

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Definition of Natural Join

```
⇒r_1(X_1), r_2(X_2)

⇒r_1 \bowtie r_2 (natural join of r_1 and r_2) is a relation on X_1X_2 (the union of the two sets):

{ t on X_1X_2 \mid t [X_1] \in r_1 and t [X_2] \in r_2}

or, equivalently

{ t on X_1X_2 \mid exist t_1 \in r_1 and t_2 \in r_2 with t [X_1] = t_1 and t [X_2] = t_2}
```

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 25

Natural Join: Comments

- → The tuples in the resulting relation are obtained by combining tuples in the operands with equal values on the common attributes
- →The common attributes often form a key of one of the operands (remember: references are realized by means of foreign keys, and we join in order to follow references)
- Not always! Consider Person(Name,Addr,PostalC) and let us define Neighbour(Name,Addr,Name1,Addr1,PostalC) by joining Person with ρ_{Name,Addr→Name1,Addr1}(Person); What is criterion for neighbourhood here?

cscC43/343 Introduction to Databases — University of Toronto

Another Example

Offences

Code	Date	Officer	Dept	Registartion
143256	25/10/1992	567	75	5694 FR
987554	26/10/1992	456	75	5694 FR
987557	26/10/1992	456	75	6544 XY
630876	15/10/1992	456	47	6544 XY
539856	12/10/1992	567	47	6544 XY

Cars

Registration	Dept	Owner	
6544 XY	75	Cordon Edouard	
7122 HT	75	Cordon Edouard	
5694 FR	75	Latour Hortense	
6544 XY	47	Mimault Bernard	

Offences M Cars

Code	Date	Officer	Dept	Registration	Owner	
143256	25/10/1992	567	75	5694 FR	Latour Hortense	
987554	26/10/1992	456	75	5694 FR	Latour Hortense	
987557	26/10/1992	456	75	6544 XY	Cordon Edouard	
630876	15/10/1992	456	47	6544 XY	Cordon Edouard	
539856	12/10/1992	567	47	6544 XY	Mimault Bernard	

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 27

Yet Another Join

→In this example, join gives very different results from union (see earlier example)

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity ⋈ **Maternity**

Father	Child	Mother
Adam	Cain	Eve
Abraham	Isaac	Sarah
Abraham	Ishmael	Hagar

cscC43/343 Introduction to Databases — University of Toronto

Joins can be Incomplete

→If a tuple does not have a "counterpart" in the other relation, then it does not contribute to the join ("dangling" tuple)

Department	Head
production	Mori
purchasing	Brown

ent Head
n Mori
on Mori

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 29

Joins can be Empty

→As an extreme, we might have that no tuple has a counterpart, and all tuples are dangling

r ₂				
Head				
Mori				
Brown				

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Another Extreme

→If each tuple of each operand can be combined with all the tuples of the other, then the join has a cardinality that is the product of the cardinalities of the operands

Employee	Project
Smith	Α
Black	Α
White	Α

м	
•	_
	7
-	_

'2			
Project	Head		
Α	Mori		
Α	Brown		

$\mathbf{r_1} \bowtie \mathbf{r_2}$

Employee	Project	Head
Smith	Α	Mori
Black	Α	Brown
White	Α	Mori
Smith	Α	Brown
Black	Α	Mori
White	Α	Brown

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 31

How Many Tuples in a Join?

→Given $r_1(X_1)$, $r_2(X_2)$ the join has cardinality $0 \le |r_1 \bowtie r_2| \le |r_1| \times |r_2|$

where | r | is the cardinality of relation r.

- →Moreover:
 - ✓ if the join is complete, then its cardinality is at least the maximum of $|r_1|$ and $|r_2|$.
 - ✓ if $X_1 \cap X_2$ contains a key for r_2 , then $|r_1 \bowtie r_2| \le |r_1|$
 - ✓ if $X_1 \cap X_2$ is the primary key for r_2 , and there is a referential constraint between $X_1 \cap X_2$ in r_1 and such a key, then $|r_1 \bowtie r_2| = |r_1|$.

cscC43/343 Introduction to Databases — University of Toronto

Outer Join

- → A variant of the join, to keep all pieces of information from the operands.
- →An outer join operation "pads with nulls" the tuples in one operant relation that have no counterpart in the other relation.
- →Three variants:
 - ✓ LEFT only tuples of left operand are padded;
 - ✓ RIGHT only tuples of right operand are padded;
 - √FULL tuples of both operands are padded.

cscC43/343 Introduction to Databases — University of Toronto

N-ary Join Operations

- →The natural join is
 - ✓ commutative: $r_1 \bowtie r_2 = r_2 \bowtie r_1$
 - ✓ associative: $(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$
- →Therefore, we can write n-ary joins without ambiguity:

$$r_1 \bowtie r_2 \bowtie \ldots \bowtie r_n$$

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 35

Example of N-ary Join Operation

Employee Department
Smith sales
Black production
Brown marketing
White production

r ₂				
	Department	Division		
	production	Α		
	marketing	В		
	purchasing	В		

Division Head
A Mori
B Brown

 $r_1 \bowtie r_2 \bowtie r_3$ Employee Department Division Head Black production Α Mori Brown В marketing Brown White Α Mori production

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Join and Intersection

- →We have made no assumptions about the sets of attributes X₁ and X₂ on which the operands of a join operation are defined; the two sets could even be equal or disjoint.
- → If $X_1 = X_2$ then $r_1 \bowtie r_2 = r_1 \cap r_2$ since, by definition, the result is a relation which includes tuples t such that $t[X_1] \in r_1$ and $t[X_2] \in r_2$, and $X_1 = X_2$.

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 37

Natural Join as Cartesian Product

- → The natural join is defined also when the operands have no attributes in common.
- →In this case no condition is imposed on tuples, and therefore the result contains tuples obtained by combining the tuples of the operands in all possible ways.

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Cartesian Product: Example

Employees

Employee	Project
Smith	Α
Black	Α
Black	В

Projects

Code	Name
Α	Venus
В	Mars

Employes ⋈ **Projects**

	Employee	Project	Code	Name
	Smith	Α	Α	Venus
	Black	Α	Α	Venus
	Black	В	Α	Venus
	Smith	Α	В	Mars
	Black	Α	В	Mars
	Black	В	В	Mars
- 4				

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 39

Theta-Join

- →In most cases, a Cartesian product is meaningful only if followed by a selection:
 - √ theta-join: a derived operator

$$r_1 \bowtie_F r_2 = \sigma_F(r_1 \bowtie r_2)$$

√ if F is a conjunction of equalities, then we have an equi-join

 ${\it cscC43/343} \ {\it Introduction to Databases} \quad {\it --- University of Toronto}$

Equi-join: example

Employees

Employee	Project
Smith	Α
Black	Α
Black	В

Projects

Code	Name
Α	Venus
В	Mars

Employes ⋈ Projects Projects

Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	В	Mars
	Smith Black	Smith A Black A	Smith A A Black A A

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 41

Division

- → Consider two relations A(x,y), B(y) and suppose we want to specify the query
 - "Find all A's that are associated with all B's"
- →This can be expressed as

$$A/B = \pi_x(A) - \pi_x((\pi_x(A) \bowtie B) - A)$$

→This means that division does not extend the expressiveness of Relational Algebra, but it is a convenient operation to use in many situations.

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Example of Division

- → Assume
 - √ Take(x,y) "student x has taken course y",
 - √ CS(y) "y is a CS course"
- → We want "All students who have taken all CS courses"

$$\checkmark \pi_x(Take) \bowtie CS -- ?$$
 Table of all students, CS courses

$$\checkmark$$
 (π_x (Take) \bowtie CS) - Take -- ?? Table of all students

$$\checkmark \pi_x((\pi_x(Take) \bowtie CS) - Take) -- ???$$
 All students who

$$\checkmark \pi_{x}(Take) - \pi_{x}((\pi_{x}(Take) \bowtie CS) - Take) -- ????$$

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 43

Queries

- →A query is a function from database instances to relations.
- → Queries are formulated in relational algebra by means of expressions over relations.

cscC43/343 Introduction to Databases — University of Toronto

A Sample Database

Employees

Lilipioyees			
Number	Name	Age	Salary
101	Mary Smith	34	40
103	Mary Bianchi	23	35
104	Luigi Neri	38	61
105	Nico Bini	44	38
210	Marco Celli	49	60
231	Siro Bisi	50	60
252	Nico Bini	44	70
301	Steve Smith	34	70
375	Mary Smith	50	65

Supervision

Head	Employee
210	101
210	103
210	104
231	105
301	210
301	231
375	252

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Relational Algebra — 45

Example 1

"Find the numbers, names and ages of employees earning more than 40k."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it!

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Example 2

→ "Find the registration numbers of the supervisors of the employees earning more than 40M."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it!

cscC43/343 Introduction to Databases — University of Toronto Relational Algebra — 47

Example 3

→ "Find the names and salaries of the supervisors of the employees earning more than 40M."

Employees(<u>Number</u>, Name, Age, Salary) Supervision(Head, <u>Emp</u>)

Try it! (this is a bit tougher)

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Example 4

→ "Find the employees earning more than their respective supervisors, return registration numbers, names and salaries of the employees and their supervisors."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it! Definitely challenging ©

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 49

Example 5

→ "Find registration numbers and names of supervisors, all of whose employees earn more than 40M."

> Employees(<u>Number</u>, Name, Age, Salary) Supervision(Head, <u>Emp</u>)

Try it!

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Another Series of Examples:

Films(<u>Film#</u>,Title,Director,Year,ProdCost)
Artists(<u>Actor#</u>,Surname,FirsName,Sex,Birthday,
Nationality)
Roles(Film#,Actor#,Character)

→ Find "The titles of films starring Henry Fonda

Try it!

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 51

Example 2

 $Films(\underline{Film\#}, Title, Director, Year, ProdCost)$

Artists(<u>Actor#</u>,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film#, Actor#, Character)

→ Find "The titles of all films in which the director is also an actor"

Try it!

cscC43/343 Introduction to Databases — University of Toronto

Example 3

Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirsName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

→ Find "The actors who have played two characters in the same film; show the title of each such film, first name and surname of the actor and the two characters"

Try it! cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 53

Example 4

Films(Film#, Title, Director, Year, ProdCost)

Artists(Actor#, Surname, FirsName, Sex, Birthday, Nationality)

Roles(Film#, Actor#, Character)

→ "The titles of the films in which the actors are all of the same sex"

Try it!

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra and Null Values

People

Name	Age	Salary
Aldo	35	15
Andrea	27	21
Maria	NULL	42

- \rightarrow Consider $\sigma_{Age>30}$ (People)
- →Which tuples belong to the result?
- →The first yes, the second no, but the third??

cscC43/343 Introduction to Databases — University of Toronto

Relational Algebra — 55

Lecture Example (for blackboard)

_

 ${\tt cscC43/343\ Introduction\ to\ Databases}\quad --\ {\tt University\ of\ Toronto}$

Blackboard Example II

cscC43/343 Introduction to Databases — University of Toronto